206 research outputs found

    Investigating the Effects of Network Dynamics on Quality of Delivery Prediction and Monitoring for Video Delivery Networks

    Get PDF
    Video streaming over the Internet requires an optimized delivery system given the advances in network architecture, for example, Software Defined Networks. Machine Learning (ML) models have been deployed in an attempt to predict the quality of the video streams. Some of these efforts have considered the prediction of Quality of Delivery (QoD) metrics of the video stream in an effort to measure the quality of the video stream from the network perspective. In most cases, these models have either treated the ML algorithms as black-boxes or failed to capture the network dynamics of the associated video streams. This PhD investigates the effects of network dynamics in QoD prediction using ML techniques. The hypothesis that this thesis investigates is that ML techniques that model the underlying network dynamics achieve accurate QoD and video quality predictions and measurements. The thesis results demonstrate that the proposed techniques offer performance gains over approaches that fail to consider network dynamics. This thesis results highlight that adopting the correct model by modelling the dynamics of the network infrastructure is crucial to the accuracy of the ML predictions. These results are significant as they demonstrate that improved performance is achieved at no additional computational or storage cost. These techniques can help the network manager, data center operatives and video service providers take proactive and corrective actions for improved network efficiency and effectiveness

    An Empirical Analysis of Cyber Deception Systems

    Get PDF

    Alternative Water Supply Systems

    Get PDF
    This is the final version. Available on open access from IWA Publishing via the DOI in this recordOwing to climate change related uncertainties and anticipated population growth, different parts of the developing and the developed world (particularly urban areas) are experiencing water shortages or flooding and security of fit-for-purpose supplies is becoming a major issue. The emphasis on decentralized alternative water supply systems has increased considerably. Most of the information on such systems is either scattered or focuses on large scale reuse with little consideration given to decentralized small to medium scale systems. Alternative Water Supply Systems brings together recent research into the available and innovative options and additionally shares experiences from a wide range of contexts from both developed and developing countries. Alternative Water Supply Systems covers technical, social, financial and institutional aspects associated with decentralized alternative water supply systems. These include systems for greywater recycling, rainwater harvesting, recovery of water through condensation and sewer mining. A number of case studies from the UK, the USA, Australia and the developing world are presented to discuss associated environmental and health implications. The book provides insights into a range of aspects associated with alternative water supply systems and an evidence base (through case studies) on potential water savings and trade-offs. The information organized in the book is aimed at facilitating wider uptake of context specific alternatives at a decentralized scale mainly in urban areas. This book is a key reference for postgraduate level students and researchers interested in environmental engineering, water resources management, urban planning and resource efficiency, water demand management, building service engineering and sustainable architecture. It provides practical insights for water professionals such as systems designers, operators, and decision makers responsible for planning and delivering sustainable water management in urban areas through the implementation of decentralized water recycling

    Analyzing Data-center Application Performance Via Constraint-based Models

    Get PDF
    Hyperscale Data Centers (HDCs) are the largest distributed computing machines ever constructed. They serve as the backbone for many popular applications, such as YouTube, Netflix, Meta, and Airbnb, which involve millions of users and generate billions in revenue. As the networking infrastructure plays a pivotal role in determining the performance of HDC applications, understanding and optimizing their networking performance is critical. This thesis proposes and evaluates a constraint-based approach to characterize the networking performance of HDC applications. Through extensive evaluations conducted in both controlled settings and real-world case studies within a production HDC, I demonstrated the effectiveness of the constraint-based approach in handling the immense volume of performance data in HDCs, achieving tremendous dimension reduction, and providing very useful interpretability.Doctor of Philosoph

    Configurable data center switch architectures

    Get PDF
    In this thesis, we explore alternative architectures for implementing con_gurable Data Center Switches along with the advantages that can be provided by such switches. Our first contribution centers around determining switch architectures that can be implemented on Field Programmable Gate Array (FPGA) to provide configurable switching protocols. In the process, we identify a gap in the availability of frameworks to realistically evaluate the performance of switch architectures in data centers and contribute a simulation framework that relies on realistic data center traffic patterns. Our framework is then used to evaluate the performance of currently existing as well as newly proposed FPGA-amenable switch designs. Through collaborative work with Meng and Papaphilippou, we establish that only small-medium range switches can be implemented on today's FPGAs. Our second contribution is a novel switch architecture that integrates a custom in-network hardware accelerator with a generic switch to accelerate Deep Neural Network training applications in data centers. Our proposed accelerator architecture is prototyped on an FPGA, and a scalability study is conducted to demonstrate the trade-offs of an FPGA implementation when compared to an ASIC implementation. In addition to the hardware prototype, we contribute a light weight load-balancing and congestion control protocol that leverages the unique communication patterns of ML data-parallel jobs to enable fair sharing of network resources across different jobs. Our large-scale simulations demonstrate the ability of our novel switch architecture and light weight congestion control protocol to both accelerate the training time of machine learning jobs by up to 1.34x and benefit other latency-sensitive applications by reducing their 99%-tile completion time by up to 4.5x. As for our final contribution, we identify the main requirements of in-network applications and propose a Network-on-Chip (NoC)-based architecture for supporting a heterogeneous set of applications. Observing the lack of tools to support such research, we provide a tool that can be used to evaluate NoC-based switch architectures.Open Acces

    Edge and Big Data technologies for Industry 4.0 to create an integrated pre-sale and after-sale environment

    Get PDF
    The fourth industrial revolution, also known as Industry 4.0, has rapidly gained traction in businesses across Europe and the world, becoming a central theme in small, medium, and large enterprises alike. This new paradigm shifts the focus from locally-based and barely automated firms to a globally interconnected industrial sector, stimulating economic growth and productivity, and supporting the upskilling and reskilling of employees. However, despite the maturity and scalability of information and cloud technologies, the support systems already present in the machine field are often outdated and lack the necessary security, access control, and advanced communication capabilities. This dissertation proposes architectures and technologies designed to bridge the gap between Operational and Information Technology, in a manner that is non-disruptive, efficient, and scalable. The proposal presents cloud-enabled data-gathering architectures that make use of the newest IT and networking technologies to achieve the desired quality of service and non-functional properties. By harnessing industrial and business data, processes can be optimized even before product sale, while the integrated environment enhances data exchange for post-sale support. The architectures have been tested and have shown encouraging performance results, providing a promising solution for companies looking to embrace Industry 4.0, enhance their operational capabilities, and prepare themselves for the upcoming fifth human-centric revolution

    Serverless middlewares to integrate heterogeneous and distributed services in cloud continuum environments

    Get PDF
    The application of modern ICT technologies is radically changing many fields pushing toward more open and dynamic value chains fostering the cooperation and integration of many connected partners, sensors, and devices. As a valuable example, the emerging Smart Tourism field derived from the application of ICT to Tourism so to create richer and more integrated experiences, making them more accessible and sustainable. From a technological viewpoint, a recurring challenge in these decentralized environments is the integration of heterogeneous services and data spanning multiple administrative domains, each possibly applying different security/privacy policies, device and process control mechanisms, service access, and provisioning schemes, etc. The distribution and heterogeneity of those sources exacerbate the complexity in the development of integrating solutions with consequent high effort and costs for partners seeking them. Taking a step towards addressing these issues, we propose APERTO, a decentralized and distributed architecture that aims at facilitating the blending of data and services. At its core, APERTO relies on APERTO FaaS, a Serverless platform allowing fast prototyping of the business logic, lowering the barrier of entry and development costs to newcomers, (zero) fine-grained scaling of resources servicing end-users, and reduced management overhead. APERTO FaaS infrastructure is based on asynchronous and transparent communications between the components of the architecture, allowing the development of optimized solutions that exploit the peculiarities of distributed and heterogeneous environments. In particular, APERTO addresses the provisioning of scalable and cost-efficient mechanisms targeting: i) function composition allowing the definition of complex workloads from simple, ready-to-use functions, enabling smarter management of complex tasks and improved multiplexing capabilities; ii) the creation of end-to-end differentiated QoS slices minimizing interfaces among application/service running on a shared infrastructure; i) an abstraction providing uniform and optimized access to heterogeneous data sources, iv) a decentralized approach for the verification of access rights to resources

    2013-2014, University of Memphis bulletin

    Get PDF
    University of Memphis bulletin containing the graduate catalog for 2013-2014.https://digitalcommons.memphis.edu/speccoll-ua-pub-bulletins/1434/thumbnail.jp

    Advancements in Real-Time Simulation of Power and Energy Systems

    Get PDF
    Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics
    • …
    corecore