1,262 research outputs found

    Modeling and Testing a Family of Surgical Robots: An Experience Report

    Get PDF
    Safety-critical applications often use dependability cases to validate that specified properties are invariant, or to demonstrate a counter example showing how that property might be violated. However, most dependability cases are written with a single product in mind. At the same time, software product lines (families of related software products) have been studied with the goal of modeling variability and commonality, and building family based techniques for both analysis and testing. However, there has been little work on building an end to end dependability case for a software product line (where a property is modeled, a counter example is found and then validated as a true positive via testing), and none that we know of in an emerging safety-critical domain, that of robotic surgery. In this paper, we study a family of surgical robots, that combine hardware and software, and are highly configurable, representing over 1300 unique robots. At the same time, they are considered safety-critical and should have associated dependability cases. We perform a case study to understand how we can bring together lightweight formal analysis, feature modeling, and testing to provide an end to end pipeline to find potential violations of important safety properties. In the process, we learned that there are some interesting and open challenges for the research community, which if solved will lead towards more dependable safety-critical cyber-physical systems

    A Data Mining Technique to Improve Configuration Prioritization Framework for Component-based Systems: An Empirical Study

    Get PDF
    In the current application development strategies, families of products are developed with personalized configurations to increase stakeholders’ satisfaction. Product lines have the ability to address several requirements due to their reusability and configuration properties. The structuring and prioritizing of configuration requirements facilitate the development processes, whereas it increases the conflicts and inadequacies. This results in increasing human effort, reducing user satisfaction, and failing to accommodate a continuous evolution in configuration requirements. To address these challenges, we propose a framework for managing the prioritization process considering heterogeneous stakeholders priority semantically. Features are analyzed, and mined configuration priority using the data mining method based on frequently accessed and changed configurations. Firstly, priority is identified based on heterogeneous stakeholder’s perspectives using three factors functional, experiential, and expressive values. Secondly, the mined configuration is based on frequently accessed or changed configuration frequency to identify the new priority for reducing failures or errors among configuration interaction. We evaluated the performance of the proposed framework with the help of an experimental study and by comparing it with analytical hierarchical prioritization (AHP) and Clustering. The results indicate a significant increase (more than 90 percent) in the precision and the recall value of the proposed framework, for all selected cases

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A review of cyber-ranges and test-beds:current and future trends

    Get PDF
    Cyber situational awareness has been proven to be of value in forming a comprehensive understanding of threats and vulnerabilities within organisations, as the degree of exposure is governed by the prevailing levels of cyber-hygiene and established processes. A more accurate assessment of the security provision informs on the most vulnerable environments that necessitate more diligent management. The rapid proliferation in the automation of cyber-attacks is reducing the gap between information and operational technologies and the need to review the current levels of robustness against new sophisticated cyber-attacks, trends, technologies and mitigation countermeasures has become pressing. A deeper characterisation is also the basis with which to predict future vulnerabilities in turn guiding the most appropriate deployment technologies. Thus, refreshing established practices and the scope of the training to support the decision making of users and operators. The foundation of the training provision is the use of Cyber-Ranges (CRs) and Test-Beds (TBs), platforms/tools that help inculcate a deeper understanding of the evolution of an attack and the methodology to deploy the most impactful countermeasures to arrest breaches. In this paper, an evaluation of documented CR and TB platforms is evaluated. CRs and TBs are segmented by type, technology, threat scenarios, applications and the scope of attainable training. To enrich the analysis of documented CR and TB research and cap the study, a taxonomy is developed to provide a broader comprehension of the future of CRs and TBs. The taxonomy elaborates on the CRs/TBs dimensions, as well as, highlighting a diminishing differentiation between application areas

    Computer Architectures to Close the Loop in Real-time Optimization

    Get PDF
    © 2015 IEEE.Many modern control, automation, signal processing and machine learning applications rely on solving a sequence of optimization problems, which are updated with measurements of a real system that evolves in time. The solutions of each of these optimization problems are then used to make decisions, which may be followed by changing some parameters of the physical system, thereby resulting in a feedback loop between the computing and the physical system. Real-time optimization is not the same as fast optimization, due to the fact that the computation is affected by an uncertain system that evolves in time. The suitability of a design should therefore not be judged from the optimality of a single optimization problem, but based on the evolution of the entire cyber-physical system. The algorithms and hardware used for solving a single optimization problem in the office might therefore be far from ideal when solving a sequence of real-time optimization problems. Instead of there being a single, optimal design, one has to trade-off a number of objectives, including performance, robustness, energy usage, size and cost. We therefore provide here a tutorial introduction to some of the questions and implementation issues that arise in real-time optimization applications. We will concentrate on some of the decisions that have to be made when designing the computing architecture and algorithm and argue that the choice of one informs the other

    Genetic Algorithm-based Testing of Industrial Elevators under Passenger Uncertainty

    Get PDF
    Elevators, as other cyber-physical systems, need to deal with uncertainty during their operation due to several factors such as passengers and hardware. Such uncertainties could affect the quality of service promised by elevators and in the worst case lead to safety hazards. Thus, it is important that elevators are extensively tested by considering uncertainty during their development to ensure their safety in operation. To this end, we present an uncertainty testing methodology supported with a tool to test industrial dispatching systems at the Software-in-the-Loop (SiL) test level. In particular, we focus on uncertainties in passenger data and employ a Genetic Algorithm (GA) with specifically designed genetic operators to significantly reduce the quality of service of elevators, thus aiming to find uncertain situations that are difficult to extract by users. An initial experiment with an industrial dispatcher revealed that the GA significantly decreased the quality of service as compared to not considering uncertainties. The results can be used to further improve the implementation of dispatching algorithms to handle various uncertainties

    Seeding Strategies for Multi-Objective Test Case Selection: An Application on Simulation-based Testing

    Get PDF
    The time it takes software systems to be tested is usually long. This is often caused by the time it takes the entire test suite to be executed. To optimize this, regression test selection approaches have allowed for improvements to the cost-effectiveness of verification and validation activities in the software industry. In this area, multi-objective algorithms have played a key role in selecting the appropriate subset of test cases from the entire test suite. In this paper, we propose a set of seeding strategies for the test case selection problem that generate the initial population of multi-objective algorithms.We integrated these seeding strategies with an NSGA-II algorithm for solving the test case selection problem in the context of simulation-based testing. We evaluated the strategies with six case studies and a total of 21 fitness combinations for each case study (i.e., a total of 126 problems). Our evaluation suggests that these strategies are indeed helpful for solving the multi-objective test case selection problem. In fact, two of the proposed seeding strategies outperformed the NSGA-II algorithm without seeding population with statistical significance for 92.8 and 96% of the problems
    • …
    corecore