
Seeding Strategies for Multi-Objective Test Case Selection
An Application on Simulation-based Testing

Aitor Arrieta
Mondragon University
Mondragon, Spain

aarrieta@mondragon.edu

Joseba Andoni Agirre
Mondragon University
Mondragon, Spain

jaagirre@mondragon.edu

Goiuria Sagardui
Mondragon University
Mondragon, Spain

gsagardui@mondragon.edu

ABSTRACT
The time it takes software systems to be tested is usually long.
This is often caused by the time it takes the entire test suite to be
executed. To optimize this, regression test selection approaches
have allowed for improvements to the cost-effectiveness of verifica-
tion and validation activities in the software industry. In this area,
multi-objective algorithms have played a key role in selecting the
appropriate subset of test cases from the entire test suite. In this
paper, we propose a set of seeding strategies for the test case selec-
tion problem that generate the initial population of multi-objective
algorithms. We integrated these seeding strategies with an NSGA-II
algorithm for solving the test case selection problem in the context
of simulation-based testing. We evaluated the strategies with six
case studies and a total of 21 fitness combinations for each case
study (i.e., a total of 126 problems). Our evaluation suggests that
these strategies are indeed helpful for solving the multi-objective
test case selection problem. In fact, two of the proposed seeding
strategies outperformed the NSGA-II algorithm without seeding
population with statistical significance for 92.8 and 96% of the prob-
lems.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Test Case Selection, Search-based Software Testing, Regression
Testing
ACM Reference Format:
Aitor Arrieta, Joseba Andoni Agirre, and Goiuria Sagardui. 2020. Seed-
ing Strategies for Multi-Objective Test Case Selection: An Application on
Simulation-based Testing. In Genetic and Evolutionary Computation Con-
ference (GECCO ’20), July 8–12, 2020, Cancún, Mexico. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3377930.3389810

1 INTRODUCTION
Generally, verification and validation activities are time consuming
on large software systems. In systems like Cyber-Physical Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’20, July 8–12, 2020, Cancún, Mexico
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00
https://doi.org/10.1145/3377930.3389810

(CPSs), testing is time consuming as it requires execution at different
levels, even for the same software versions [7, 16]. In other contexts,
such as Software Product Lines (SPLs), there are a large number
of potential configurations, which makes it infeasible to test every
single configuration thoroughly [15, 61]. To deal with all these
problems, search algorithms have been proposed in the last few
years with the goal of increasing the cost-effectiveness of several
verification and validation activities. These activities include several
optimization aspects, including automated test case generation [1, 2,
4, 17, 32, 40, 47, 51, 52, 58, 64], test case selection/minimization [66,
68, 69, 71] and test prioritization [13, 28, 30, 41].

Awidely investigated technique for increasing the cost- effective-
ness of the verification and validation processes has been regression
test selection [27, 70]. These approaches have already been suc-
cessfully deployed in industry [33, 57]. In the last few years, test
selection based on evolutionary algorithms have gained impor-
tant attention. Most of them have focused either on comparing
(1) which adequacy criteria could fit best for integrating it in the
fitness functions [6, 7, 36, 38, 68] or (2) which algorithm performs
best when selecting test cases (when having one specific fitness
function) [10, 62, 66, 67]. Additionally, most of them compare their
approaches with a baseline algorithm, such as, Random Search
(RS) [6, 7, 10, 62, 66, 67] or Greedy [68].

A common practice in other search-based software engineer-
ing problems has been to seed the initial population with certain
seeding strategies. The results of this have been positive in sev-
eral applications, including test generation [31, 45, 63] and ser-
vice composition [18, 19]. In the case of test case selection, many
studies have proposed either different algorithms or fitness func-
tions [7, 9, 23, 33, 57, 67–69]. However, little attention has been paid
to propose seeding strategies for multi-objective test case selection.
For instance, Panichella et al. proposed a diversity-based genetic
algorithm that seeded the initial population with orthogonal arrays
by employing a Hadamard matrix [59]. Nevertheless, the approach
presented by Panichela et al. [59] was algorithmic, and the seeding
strategy for initializing the population needed to be accompanied by
other mechanisms that injected diversity during the search process.

In this paper, we present three seeding strategies designed for
population-based search algorithms for test selection (one of which
is configurable). In addition, we re-implement the strategy for auto-
matically generating the initial population by Panichella et al. [59].
The seeding strategies are focused on generating the initial popula-
tion of the algorithm, which gives flexibility in terms of using any
state-of-the-art population-based search algorithm. However, for
the empirical evaluation, we integrated our seeding strategies with
the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [26],

https://doi.org/10.1145/3377930.3389810
https://doi.org/10.1145/3377930.3389810


GECCO ’20, July 8–12, 2020, Cancún, Mexico Aitor Arrieta, Joseba Andoni Agirre, and Goiuria Sagardui

which is the most commonly applied Pareto-based search algo-
rithm. In addition, the evaluation was performed in the context of
simulation-based testing by reimplementing the algorithms pro-
posed in our previous studies [6, 7]. We can summarize the main
contributions of this paper as follows:
• We propose a total of three seeding strategies for initializing
the population of Pareto-efficient algorithms for the test case
selection problem.
• We integrate them in the context of the multi-objective test
case selection of simulation models. To this end, we have
integrated the proposed seeding strategies in the framework
for test case selection proposed in our previous work [6, 7],
which is an open-source framework. We have also developed
the population initialization strategy proposed by Panichella
et al. as an additional seeding strategy [58].
• Weperform an empirical evaluation in the context of simulation-
based testing using six case studies, and a total of 21 fitness
function combinations integrated within the NSGA-II algo-
rithm.
• We make all our sources available for replication by other
researchers.

To assess the proposed seeding strategies we employed mutation
testing to determine the fault-revealing capabilities of the solutions.
The results showed that two of the proposed seeding strategies
helped the NSGA-II algorithm produce solutions with higher cost-
effectiveness for the six case studies when compared with a non-
seeded initial population generation strategy. For out of a total of
126 problems, two of the proposed seeding strategies outperformed
the baseline algorithm (i.e., NSGA-II without seeding strategy) in
117 and 121 problems with statistical significance.

The rest of the paper is structured as follows. The proposed seed-
ing strategies are presented in Section 2. The application domain
is presented in Section 3. The empirical evaluation is presented in
Section 4. We position our work with other similar works in Section
5. We conclude the paper and propose future research directions in
Section 6.

2 SEEDING STRATEGIES
Formalization: 𝑇𝑆 = {𝑡𝑐1, 𝑡𝑐2, ..., 𝑡𝑐𝑁 } is a Test Suite of N test
cases (𝑡𝑐). To measure the quality and cost of a test suite, let 𝑂𝐹 =

{𝑜 𝑓1, 𝑜 𝑓2, ..., 𝑜 𝑓𝑝 } be a set of p objective functions (𝑜 𝑓 ) to be satisfied
when selecting test cases [59]. The test case selection algorithm
aims at selecting a subset of test cases from 𝑇𝑆 , such that 𝑇𝑆 ′ =
{𝑡𝑐1, 𝑡𝑐2, ..., 𝑡𝑐𝑀 } is a subset of 𝑇𝑆 (i.e., 𝑇𝑆 ′ ⊆ 𝑇𝑆), that is Pareto-
optimal with respect to the objective functions in 𝑂𝐹 and 𝑀 ≤
𝑁 [59]. Like most multi-objective test selection studies [6, 7, 59],
we used a binary coding representation of solutions. In this case,
if the i-th digit of the binary string is 1, it means that the test case
𝑡𝑐𝑖 from 𝑇𝑆 is included in the solution. On the contrary, if the i-th
digit is 0, it means that the test case 𝑡𝑐𝑖 has not been selected.

2.1 Dynamic Test Suite Size-based Random
Seeding

Pareto-efficient test case selection algorithms aim at producing a
set of non-dominated solutions that provide a trade-off between
effectiveness (e.g., achieve certain degree of coverage) and cost (e.g.,

the time it takes a test suite to be executed or its size). Usually,
solutions encompassing test suites with a larger number of test
cases have higher probabilities of detecting faults [59], whereas
solutions with a lower number of test cases are less costly. With
this seeding strategy, we aim at providing solutions over the en-
tire initial population with different number of test cases. To this
end, we propose to uniformly distribute the test suite size of the
solutions over the population. This would allow for several advan-
tages. Firstly, solutions that are very effective (but costly) will be
produced, along with solutions that are less effective but with lower
cost. Secondly, this could allow for exploring solutions in broader
directions within the search space, leading overall solutions to be
fitter.

The pseudocode in Algorithm 1 shows how we implemented this
seeding strategy. As an input, the Number of test cases (N) and the
population size (nPop) is given. As an output, the algorithm returns
the initial population, which is a two-dimensional array (each row
being a solution). We build the initial population (initialPop) as
follows: for each solution in the population (Line 1), the probability
of a test being included in the solution is i/nPop (Line 3), i being the
index of a solution in the initial population. A test is included in
the j-th position of the i-th solution, if the function 𝑟𝑎𝑛𝑑 () returns
a number lower or equal to i/nPop. If the contrary is observed,
the test case will not be included in the test suite. Subsequently,
the probabilities of a test being selected increases as the solution
index of the initial population increases. This way, the solutions
at the beginning of the population will have a low number of test
cases selected, whereas the solutions in the last positions of the
initial population will have a high number of test cases. This al-
gorithm permits a generation of an initial population of solutions
that include test suites of a different variety of sizes. This strategy
is coined in Section 4 as “Dynamic_seed”.

Algorithm 1: Algorithm for the dynamic test suite size-
based random seeding
Input: N //Number of test cases
nPop //Population size
Result: initialPop(nPop,N) // initial population

1 for i← 1 to nPop do
2 for j← 1 to N do
3 if rand() ≤ i /nPop then
4 initialPop(i,j) = 1;
5 else
6 initialPop(i,j) = 0;
7 end
8 end
9 end

2.2 Static Test Suite Size-based Random
Seeding

Test engineers who have domain knowledge might guess the typical
size required for detecting all faults. To this end, we propose a
strategy where a predefined test suite size could be selected by the
test engineer, in order for the initial population to include solutions
that will have sizes that are close to the predefined test suite size.
This would allow the search algorithm to exploit the search in an



Seeding Strategies for Multi-Objective Test Case Selection GECCO ’20, July 8–12, 2020, Cancún, Mexico

area predefined by the test engineer. Algorithm 2 shows how we
implemented this seeding strategy, which is similar to the algorithm
explained in the previous subsection but with the difference that
the probability of a test case to be included is static. As can be
seen in Line 3, the probability of a test case to be included is of the
desired test suite size (desiredTestSuiteSize), which is a value (in
percentages) provided as input to the algorithm. This strategy is
coined in Section 4 as “Static_seed_XX%”, being XX the assigned
desiredTestSuiteSize.

Algorithm 2: Algorithm for the static test suite size-based
random seeding
Input: N //Number of test cases
nPop //Population size
desiredTestSuiteSize // Percentage of the test suite size
Result: initialPop // initial population

1 for i← 1 to nPop do
2 for j← 1 to N do
3 if rand() ≤ desiredTestSuiteSize /100 then
4 initialPop(i,j) = 1;
5 else
6 initialPop(i,j) = 0;
7 end
8 end
9 end

2.3 Adaptive Random Population Generation
In previous studies, it has been shown that injecting diversity into
the population improves performance of test case selection [59], as
it leads the algorithm to have lower probability of being trapped in
some local optimum [25]. Inspired by the Adaptive Random Testing
(ART) algorithm [22], we propose the Adaptive Random Population
Generation (ARPG) algorithm to generate an initial population
that promotes diversity between solutions. The hypothesis behind
the ART algorithm is that the higher the diversity of test cases,
the higher the probability of detecting faults [22]. This algorithm
has been widely used to generate test cases [20–22], and thus, we
believe it can also be appropriate to generate an initial population
considering diversity.

Algorithm 3 shows the pseudocode of the implemented ARPG
algorithm to generate the initial population. Initially, a first solution
is randomly generated and included in the first index of the initial
population (Line 1). For the remaining solutions in the population,
the process works as follows. A set of candidate solutions to be
included in the initial population is generated (Lines 3-5). Typically,
the size of this set of candidates is 10 [21, 22], sowe used this number
in our evaluation. Among these set of candidate solutions, the one
which is farthest (i.e., the most dissimilar) from the solutions that
are already included in the initial population is selected (Lines 6-17),
as proposed by Chen et al. [22]. We used the Hamming Distance to
measure the distance between a candidate set and a solution of the
population due to its simplicity. This process is repeated until the
entire initial population is generated.

A major issue this seeding strategy could have involves its run-
ning time, especially when the number of population tends to in-
crease. Its big O complexity for this strategy would be 𝑂 [(𝑛𝑃𝑜𝑝 −

Algorithm 3: Algorithm for the ARPG seeding
Input: N //Number of test cases
nPop //Population size
nCandidate //Number of candidate solutions
Result: initialPop // initial population

1 initialPop(1,:) = randSol(N);
2 for i← 2 to nPop do
3 for j← 1 to nCandidate do
4 candidateSets(j,:) = randSol(N);
5 end
6 for j← 1 to nCandidate do
7 minDist = 1;
8 for k← 1 to i-1 do
9 distance = measureDistance(initialPop(j,:),

candidateSet(k,:))
10 if distance < minDist then
11 minDist = distance;
12 end
13 end
14 distArray(j) = minDist ;
15 end
16 distIndx = max(distArray);
17 initialPop(i,:) = candidateSets(distIndx,:);
18 end

1) ∗ (𝑛𝐶𝑎𝑛𝑑 + (𝑛𝐶𝑎𝑛𝑑 (𝑛𝑃𝑜𝑝2 − 𝑛𝑃𝑜𝑝)/2))], which makes the run-
ning time exponential to the population size. However, usually the
population size in the context of test case selection is around 100
[6, 7, 68], which makes this strategy applicable in practice.

2.4 Orthogonal Population Generation
To the best of our knowledge, the only work in the context of
search-based test case selection where an initial population is not
generated in the standard way is that of Panichela et al. [59]. To this
end, we reimplemented their initial population generation approach
to compare it with the seeding strategies proposed in this paper.
This strategy is based on the orthogonal arrays methodology [55]
that uses the Hadamard matrices to build orthogonal arrays. This
strategy is coined in Section 4 as “Orthogonal_seed”.

3 APPLICATION DOMAIN: BLACK-BOX TEST
CASE SELECTION OF SIMULATIONMODELS

Simulationmodels are typically used by engineers to model and sim-
ulate complex systems, such as Cyber-Physical Systems (CPS) [16,
51]. This technology is largely employed as it supports engineers
in several activities, including automated test generation and early
testing of CPSswithout requiring an initial prototype [53]. However,
simulating some of these systems is commonly time-consuming,
where, a single simulation may take hours to complete in some
systems [53]. Furthermore, testing a CPS requires several test levels,
even with the same software version being tested. Usually, test-
ing starts at the Model-in-the-Loop (MiL) level, following with the
Software-in-the-Loop (SiL) level and lasting with the Hardware-
in-the-Loop (HiL) level [7, 12], this being a real-time simulation.



GECCO ’20, July 8–12, 2020, Cancún, Mexico Aitor Arrieta, Joseba Andoni Agirre, and Goiuria Sagardui

Testing these systems by using simulation-based testing also poses
several other difficulties, such as the use of co-simulation, human
test oracle, or several fidelity levels of the models [7, 16]. Conse-
quently, test optimization is paramount, and recent approaches
have proposed black-box testing methodologies, including test case
generation [50, 51, 53] and test case selection [9, 12].With black-box
testing we refer to focusing only on the inputs and outputs of the
system, without requiring either external data related to historical
failures or white-box coverage. This technique has been found to
be appropriate to solve the test case selection problem, showing
improvement over traditionally employed white-box coverage tech-
niques (i.e., Decision Coverage, Condition Coverage, and Modified
Condition/Decision coverage) [7]. Furthermore, this technique is
largely multi-objective, as having larger test suites increases the
probability of detecting faults, but it also increases the test execu-
tion time. The algorithm, thus, needs to find a trade-off between
cost and effectiveness.

In a previous work, we proposed a set of test adequacy crite-
ria for multi-objective test case selection adapted to the context
of simulation-based testing of CPSs [7]. These adequacy criteria
could be categorized into two main parts: (1) adequacy criteria that
measured a quantitative degree of certain anti-patterns defined in
previous works [48], and (2) a measure of distances between test
cases based on the Euclidean distance adapted to the context of
simulation-based testing. The hypothesis behind the former is that
the higher the quantitative degree of an anti-pattern, the higher
the probability of finding faults. As for the latter’s, the hypothesis
is that the more dissimilar the selected test cases are, the higher
the probability of finding faults. This hypothesis has been widely
investigated, showing positive results [29, 35, 36].

Besides multi-objective test case selection for simulation-based
testing of CPSs being an important challenge, we integrated our
seeding strategies with our test case selection framework [7] for
different reasons. Firstly, the availability of an open source bench-
mark on Github along with experimental material (including case
studies, test cases, mutants, execution scripts, etc.). Secondly, we
provided more than one derived fitness function, which allows us
to perform a more comprehensive empirical evaluation, not only
evaluating our seeding strategies with specific case studies, but
also with different fitness functions. The derived fitness functions
are the same as the ones proposed in our previous work [7], and
are summarized in Table 1. A maximum of three objective func-
tions are selected and integrated within the NSGA-II algorithm [26].
The maximum number of objective functions was three because
NSGA-II suffers from scalability issues when solving optimization
problems with more than three objectives [58]. Additionally, many-
objective algorithms with a larger number of objective functions
have shown worse results on this benchmark [7], with the NSGA-II
being the best algorithm.

4 EMPIRICAL EVALUATION
To evaluate the proposed seeding strategies, we defined the follow-
ing two Research Questions (RQ):

RQ1: How do the proposed seeding strategies perform when com-
pared with non-seeded multi-objective search algorithms? With this

Table 1: Fitness function combinations integrated on the
NSGA-II

Fitness
Configuration ID Objective 1 Objective 2 Objective 3

c1 Discontinuity

None

Test
execution
time

c2 Growth to infinity
c3 Instability
c4 Input similarity
c5 Output similarity
c6 MinMax
c7 Discontinuity Growth to infinity
c8 Discontinuity Instability
c9 Discontinuity Input similarity
c10 Discontinuity Output similarity
c11 Discontinuity MinMax
c12 Growth to infinity Instability
c13 Growth to infinity Input similarity
c14 Growth to infinity Output similarity
c15 Growth to infinity MinMax
c16 Instability Input similarity
c17 Instability Output similarity
c18 Instability MinMax
c19 Input similarity Output similarity
c20 Input similarity MinMax
c21 Output similarity MinMax

RQ we aimed at answering whether the seeding strategies do ac-
tually perform better than search algorithms without having the
initial population seeded. To this end, we compared a total of 21
combinations of fitness functions within the NSGA-II algorithm
over six case studies (i.e., a total of 126 combinations). To answer
this RQ, for each of the combinations, four seeding strategies were
compared with a non-seeded approach. The non-seeded NSGA-II
generates initial populations purely randomly.

RQ2: Among the proposed seeding strategies, which one fares best?
The intention behind the second RQ was to see whether there
is a best seeding strategy for test case selection to recommend
to practitioners. To this end, we compared each of the seeding
strategies with one another for each of the 126 combinations.

It should be noted that in the previous studies [6, 7] there was
a sanity check done by comparing the NSGA-II algorithm with
Random Search (RS), demonstrating significant improvement. Thus,
we did not compare the seeding strategies along with the NSGA-II
algorithm with respect to RS.

4.1 Experimental setup
For the experimental setup, we replicated the experiment proposed
in our previous work [7] by adapting it to answer the RQs presented
in this empirical evaluation.

4.1.1 Case Studies. Six case studies involving Simulink models
of different sizes, complexities and domains were employed, which
provides a wide heterogeneity to the experiment. Table 2 provides
a summary of the selected case studies in terms of (1) number
of Simulink blocks, (2) number of inputs, (3) number of outputs,
(4) number of test cases used in the study, (5) the initial number
of mutants and (6) the final number of mutants. It is noteworthy
that one of these case studies, i.e., The Electro-Mechanical Braking
(EMB) system, was an industrial case study developed by Bosch
engineers [65]. This case study was previously used in other evalu-
ations [48]. The remaining case studies involve (1) CW, a model of
four car windows with its control software, (2) CC, the software in
charge of automatically controlling the speed of the car, (3) Tiny,



Seeding Strategies for Multi-Objective Test Case Selection GECCO ’20, July 8–12, 2020, Cancún, Mexico

a toy Simulink model, (4) AC Engine, an Alternating Current En-
gine with its control software involving safety functionalities, and
(5) Two Tanks, a case study involving a Simulink model of Two
Tanks. All these case studies have been previously used to evaluate
Simulink testing methods [6–8, 34, 48, 50, 51, 54, 56]. We used the
same test cases provided by in our benchmark [7] in order for the
results to be compared with their approach.

Table 2: Key characteristics of the selected case studies

Case
Study

# of
Blocks

# of
Inputs

# of
Outputs

# of Test
Cases

Initial set
of mutants

Final set
of mutants

CW 235 15 4 133 250 96
EMB 315 1 1 150 40 18
CC 31 5 2 150 60 20
Tiny 15 3 1 150 20 9
AC Engine 257 4 1 120 20 12
Two Tanks 498 11 7 150 34 6

4.1.2 Evaluation metrics. Mutation testing was employed to as-
sess the fault revealing capability of a solution, as it has shown
to be a good substitute of real faults [37]. To this end, a set of
mutants were generated for each of the case studies, and the re-
lation between test cases and killed mutants was obtained. With
this information, we removed (1) duplicated mutants (i.e., mutants
equivalent to one another but not to the original program) as rec-
ommended by Papadakis et al., [60], (2) mutants that were killed by
all test cases (as we considered them to be too weak mutants) and
(3) mutants that were not killed by any test case (to avoid the inclu-
sion of equivalent mutants). We used the mutants available in the
framework [7], which employed the mutation operators proposed
by Hann et al., [34] for Simulink models. Information related to the
number of mutants in the initial set and the final set are available
in Table 2.

As in the case of [6, 7, 59], we used the revisited Hypervolume
(HV) metric to measure the effectiveness of our approach. In this
case, for a set of solutions from the Pareto-frontier, we used (1) the
cost and (2) the percentage of faults revealed by each solution (i.e.,
mutation score) as external utility functions. Thus, to compute this
revisited HV function, for the Pareto-frontier returned by the search
algorithm, each solution was individually assessed by obtaining
their mutation score and the cost (i.e., the test execution time). By
using this information, a new Pareto-frontier was obtained aiming
at maximizing themutation score andminimizing the test execution
time. The derived Pareto-frontier was later employed to obtain the
HV measure, by having as a reference point 0% for the mutation
score and the time to execute the entire test suite for the cost. Notice
that the higher the HV measure, the better the performance of the
algorithm.

4.1.3 Statistical tests. As suggested by Arcuri and Briand [3],
each algorithm along with the seeding strategy was run 50 times
to account for the random variations. When we obtained the exper-
imental data, the Shapiro-Wilk test was applied to assess how the
data was distributed. As the data was not normally distributed, we
employed the Mann-Whitney U-test to obtain the statistical signifi-
cance between two different combinations. If the p-value was lower
than 0.05, we considered that there was statistical significance. To
assess the difference between the seeding strategies, we employed
the Vargha and Delaney Â12 value.

4.1.4 Algorithms setup. In order for the approach to be com-
pared with the approach proposed in our previous work [6, 7],
we configured the NSGA-II as in their evaluation. The population
size was set to 100 and the total number of fitness evaluations was
25,000. The crossover rate was set to 0.8, and a standard single point
crossover operator was employed. The mutation of a variable was
done with the standard probability 1/N, N being the number of
test cases in the initial test suite. We considered these parameter
values based on other studies related to multi-objective test case
selection [6, 7, 68] as well as guidelines [3]. As in our previous
work [6, 7], for the selection operator, we used the binary tour-
nament selection operator [14, 26]. As for the seeding strategies,
the number of candidate sets in the ARPG strategy was set to 10
based on the original paper [22]. In the case of the static seeds,
we experimented with two instance configurations, where we set
one of the algorithm configuration for a desired test suite size of
30% (coined as Static_seed_30%), and the other one of 70% (coined
as Static_seed_70%). These configurations were selected based on
an initial preliminary experiment. Additionally, we wanted to an-
alyze configurations with larger and shorter test suites than 50%
(as the non-seeded generated initial population typically provides
solutions that include the 50% of test cases).

4.2 Analysis of the Results and Discussion
To keep the paper at a reasonable size, Table 3 reports the summary
of the results after applying the statistical tests. Each selected seed-
ing strategy was compared with one another for each case study
and each fitness combination from Table 1. For each case study, we
provide inside the column𝐴/𝐵/= the number of times each seeding
strategy outperformed another one. The first number (i.e., the one
in the left) represents the number of fitness combinations where the
seeding strategy in column “Strategy A” outperformed the seeding
strategy in column “Strategy B” with statistical significance (i.e.,
Â12 > 0.5 and p-value < 0.05). The second number (i.e., the one in
the middle) represents the number of fitness combinations where
the seeding strategy in column “Strategy B” outperformed the seed-
ing strategy in column “Strategy A” with statistical significance
(i.e., Â12 < 0.5 and p-value < 0.05). The third number (i.e., the one
in the right) represents the number of fitness combinations where
there was no statistical significance between both strategies. The
column “Total” represents a summary of all the results obtained for
each of the case studies. In addition, Figure 1 shows the distribu-
tion of the obtained HV results. As we could not report the results
for the 126 fitness functions combinations, we report for each of
the selected case studies the obtained results for the best fitness
functions combination (obtained from [7]).1

The first RQ aimed at answering whether the proposed seeding
strategies outperformed the NSGA-II algorithm without an initial
seeding strategy. The summary of the results show that overall,
there were two strategies that outperformed the NSGA-II with a
non-seeded population generation whereas others performed simi-
larly to the non-seeded algorithm. For five out of six case studies, the
Dynamic Test Suite Size-based Random Seeding strategy (coined
as Dynamic) and the Static Test Suite Size-based Random Seeding

1The remaining boxplots, along with the scripts used for the statistical analysis as well
as the results are included in the replication package.



GECCO ’20, July 8–12, 2020, Cancún, Mexico Aitor Arrieta, Joseba Andoni Agirre, and Goiuria Sagardui

Table 3: Summary of the performed statistical tests

CW EMB CC Tiny AC Engine TwoTanks Total
Seeding
Strategy A

Seeding
Strategy B A/B/= A/B/= A/B/= A/B/= A/B/= A/B/= A/B/=

RQ1 Non-Seeded

Dynamic 0/21/0 0/21/0 0/21/0 0/21/0 0/12/9 0/21/0 0/117/9
Static30 0/21/0 0/21/0 0/21/0 0/21/0 0/16/5 0/21/0 0/121/5
Static70 21/0/0 21/0/0 21/0/0 21/0/0 21/0/0 21/0/0 126/0/0
ARPG 0/3/18 9/0/12 3/0/18 0/0/21 0/1/20 3/1/17 15/5/106
Orthogonal 2/0/19 1/0/20 0/0/21 1/0/20 0/1/20 1/1/19 5/2/119

RQ2

Dynamic

Static30 8/3/10 3/1/17 6/9/6 2/5/14 0/5/16 11/2/8 30/25/71
Static70 21/0/0 21/0/0 21/0/0 21/0/0 21/0/0 21/0/0 126/0/0
ARPG 21/0/0 21/0/0 21/0/0 21/0/0 11/0/10 21/0/0 116/0/10
Orthogonal 21/0/0 21/0/0 21/0/0 21/0/0 12/0/9 21/0/0 117/0/9

Static30
Static70 21/0/0 21/0/0 21/0/0 21/0/0 21/0/0 21/0/0 126/0/0
ARPG 21/0/0 21/0/0 21/0/0 21/0/0 13/0/8 21/0/0 118/0/8
Orthogonal 21/0/0 21/0/0 21/0/0 21/0/0 13/0/8 21/0/0 118/0/8

Static70 ARPG 0/21/0 0/21/0 0/21/0 0/21/0 0/21/0 0/21/0 0/126/0
Orthogonal 0/21/0 0/21/0 0/21/0 0/21/0 0/21/0 0/21/0 0/126/0

ARPG Orthogonal 4/0/14 0/4/17 0/1/20 1/0/20 0/3/18 0/3/18 5/11/110

Figure 1: Distribution of the obtained HVmetrics for each seeding strategy for the best fitness combination of each case study

strategy, configured to include around 30% of the test cases in the
test suite (coined as Static_seed_30%), significantly outperformed
the non-seeded NSGA-II algorithm for all the fitness combinations.
Additionally, for the AC Engine case study, although in some of
the fitness combinations the seeding strategies performed similarly
(i.e., in 9 out of 21 fitness function combinations for the dynamic
seeding and 5 out of 21 fitness combinations for the static seeding),
in the remaining strategies, the seeding strategies outperformed
the NSGA-II that did not have the initial population seeded with

statistical significance. This means that the non-seeded algorithm
did not outperform these two seeding strategies for any of the
126 cases studied in this paper. Thus, at least two of the proposed
techniques performed positively, giving solutions with higher cost-
effectiveness in the context of multi-objective test case selection
for simulation-based testing.

In the case of the ARPG seeding strategy and the orthogonal
population generation strategy, both strategies performed similarly
to the non-seeded strategy. In fact, for 106 out of 126 cases, there



Seeding Strategies for Multi-Objective Test Case Selection GECCO ’20, July 8–12, 2020, Cancún, Mexico

was no statistical significance between the ARPG seeding strategy
and the algorithm that did not include any seeding strategy. Sim-
ilarly, for the orthogonal population generation strategy, which
was proposed by Panichella et al. [59], there was no statistical sig-
nificance for 119 out of 126 cases. Thus, overall, we did not find
striking differences between these two seeding strategies and the
NSGA-II algorithm without seed. In previous studies [25, 59], it
has been demonstrated that injecting diversity in the population
shows a positive effect on multi-objective test case selection. The
injected diversity in the studies proposed in other studies [25, 59]
were through the entire search process. Our study shows, however,
that injecting diversity solely for generating the initial population is
not enough for test case selection, meaning that techniques, such as
the Orthogonal population seeding strategy would require further
algorithmic treatment, as proposed by Panichella et al. [59].

Unlike for the aforementioned seeding strategies, the static seed-
ing strategies configured to have around 70% of the test suite size
was found to be much worse than the non-seeded strategy. In
fact, the non-seeded algorithm outperformed this strategy with
statistical significance for all the 126 cases (i.e., all fitness function
combinations for the six case studies). A potential reason for this
could be that the population produced with such seeding strategy
converges soon, getting stuck on local regions. Furthermore, the
solutions that contained around the 70% of the test cases from the
entire test suite could be too costly for the context of simulation
models. The first RQ can be answered as follows:

Two of the selected techniques (i.e., the Dynamic_seed and the
Static_seed_30%) outperformed with statistical significance
the NSGA-II algorithm without the initial population seeded,
outperforming it in 93 and 96% of the problems with statis-
tical significance. The strategies ARPG and the Orthogonal
performed similarly to the non-seeded strategy (there were
not statistical significance for 84 and 94% of the problems).
Conversely, the Static_seed_70% strategy performed worse
than the NSGA-II algorithm without the initial population
seeded for the 126 problems.

The second RQ aimed at answering the difference existing be-
tween the proposed seeding strategies. From the previous RQ, it
was easy to determine that the Dynamic Test Suite Size-based Ran-
dom seeding strategy (coined as “Dynamic_seed”) and the Static
Test Suite Size-based Random Seeding (coined as “Static_seed_30%”)
stood out over the rest of the strategies. When comparing these two
approaches, as can be seen in Table 3, the Dynamic_seed outper-
formed the Static_seed_30% strategy with statistical significance in
30 out of 126 cases. Conversely, the Static_seed_30% outperformed
the Dynamic_seed in 25 out of 126 cases. Subsequently, there were
71 cases out of 126 where no statistical significance was appreciated
according to the performed statistical tests.

When having a closer view, we saw that the Dynamic_seed strat-
egy was slightly better than the Static_seed_30% in the CW, EMB
and TwoTanks case studies, whereas the Static_seed_30% slightly
outperformed the Dynamic_seed strategy in the CC, Tiny and AC
Engine case studies. We noticed that the case studies where the
Dynamic_seed was the best seeding strategy were more complex

than the ones from the Static_seed_30%.2 Although further empir-
ical evidence would be required to generalize these findings, our
intuition is that the Dynamic_seed strategy could be more positive
in larger simulation models as it generates initial population with
test suites of all sizes, and thus, it explores wider areas in the search
space. In large case studies, it is noteworthy that finding bugs could
be more time consuming as they might require more test cases to
achieve higher test coverage degrees. Furthermore, a drawback of
the Static_seed_30% is that it is configurable, which means that its
good performance could be system-specific (i.e., 30% could be good
in some systems, whereas it could be bad in other systems). We
could answer the second RQ as follows:

Both the Dynamic_seed and the Static_seed_30% performed
similarly. The Dynamic_seed performed slightly better
in larger case studies whereas the Static_seed_30% per-
formed better in simpler ones. The main drawback of
Static_seed_30% is that as it is configurable it could work
properly in some systems but not so in others.

4.3 Threats to validity
Internal validity: An internal validity threat in our study could
be related to the generated mutants. In Simulink models, employing
mutation testing is highly expensive due to the physical layer en-
compassing complex mathematical equations. Subsequently, a large
set of mutants was not feasible to generate. To reduce this threat,
we employed the same mutants as generated in our previous stud-
ies [6, 7]. Furthermore, notice that the amount of mutants used in
this study was similar to those used in other empirical evaluations
of testing methods for Simulink models [10–12, 34, 39, 42–44, 49–
51]. Additionally, we removed duplicated mutants as recommended
by Papadakis et al. [60] to further mitigate this threat. Another
internal validity threat in this study is referred to the parameters
of the algorithms (e.g., population size), which were not changed.
To mitigate this threat we configured the algorithm considering
related guidelines and works that included Pareto-based search
algorithms for test case selection [68]. Also, some of our seeding
strategies are configurable. The number of candidate sets in the
ARPG strategy was set to 10. Another value could have changed our
results, but we selected this number based on the original ART pa-
per [22]. Additionally, for the static seeding strategies, we selected
two instances of this algorithm (i.e., the test suite size parameter at
30 and 70%) based on initial preliminary algorithm runs.

External validity: As in any search-based software engineering
evaluation, an external validity threat is related to the generalization
of results. We tried to mitigate this threat by using six case studies
involving Simulink models of different sizes and characteristics. As
for the sizes, according to a study of 391 public Simulink models,
more than half of the analyzed models had less than 100 blocks,
and around 75% of models had less than 300 blocks [24]. Four of
the used case studies had from 235 to 498 blocks, which means that
most of our case studies are larger than most of the public subject
models. In addition, for each of the case studies, we used a total

2Notice that although CW had fewer blocks than the AC Engine, the CW has four
complex statecharts that are counted as one block each



GECCO ’20, July 8–12, 2020, Cancún, Mexico Aitor Arrieta, Joseba Andoni Agirre, and Goiuria Sagardui

of 21 different combinations of fitness functions to compare each
seeding strategy with one-another.

Another external validity threat in our study is that we only
tested the strategies within the NSGA-II algorithm. This algorithm,
however, has been largely employed for multi-objective test case
selection [7, 68], and it has shown better performance than two
many-objective algorithms in the framework used in this paper [7].

Conclusion validity: A conclusion validity threat in our study
might be related to the non deterministic nature of evolutionary
algorithms. This threat was mitigated by running each algorithm
50 times to account for the random variations, as recommended in
guidelines [3]. Additionally, we carefully analyzed the results by
applying appropriate statistical tests.

Construct validity: In randomized algorithms, construct valid-
ity threats arise when the measures used are not comparable across
the algorithms. We mitigated this threat by using the same stop-
ping criterion for all the algorithms (i.e., we set the total number of
fitness evaluations at 25,000).

5 RELATEDWORK
Test case selection has been widely studied in the current literature.
Yoo et al., identified and analysed the positive and negative aspects
of 12 different approaches based on an extensive analysis of the
state-of-the-art [70]. Engströem et al. identified 28 techniques for
regression test selection [27]. Multi-objective algorithms to solve
the test case selection problem was first proposed by Yoo et al. [68].
They evaluated the use of the NSGA-II algorithm integrated with
objective functions that included (1) coverage, (2) historical infor-
mation related to faults and (3) testing costs. The same authors later
extended this study, where they proposed an hybrid approach [69].
In the last few years, several new approaches have been proposed to
adapt the test case selection problem to different emergent areas, in-
cluding defence software [33, 57], or compute-intensive CPSs [6, 7].
Most multi-objective test selection approaches aim at proposing
effective objective functions and study whether they act as a rea-
sonable surrogate for fault detection capabilities [6, 7, 36, 38, 68].
Unlike all these studies, our approach aims at comparing how dif-
ferent strategies for seeding the initial population perform in the
context of multi-objective test case selection algorithms.

Other approaches compare the performance of evolutionary
algorithms for selecting test cases in different context, such as time-
constrained scenarios [62], or product lines [10, 66, 67]. However, all
these approaches consider non-seeded initial population generation
approaches. Other approaches have proposed algorithms where the
initial population is particularly seeded following a specific strat-
egy. For instance, Panichella et al., proposed including diversity in
genetic algorithms to improve optimality of multi-objective test
case selection. To this end, they proposed mechanisms of orthog-
onal design and orthogonal evolution with the aim of increasing
diversity during the search process [59]. A similar approach was
proposed by De Lucia et al., which proposed enhancing the NSGA-II
algorithm by increasing population diversity in the obtained Pareto
frontiers during the search [25]. The difference between these ap-
proaches and the one we propose in this paper is that in their case,
diversity is included during the entire search process, whereas our

solution is intended solely to seed the initial population. As pre-
viously commented, this provides high flexibility in practice, as
our seeding strategies can be applied in any population-based algo-
rithms, including the ones proposed in test case selection specific
multi-objective search algorithms [25, 59].

Seeding strategies have been proposed for solving other search-
based software engineering problems. From the testing perspec-
tive, several approaches have been proposed in the past. Fraser
and Arcuri proposed three seeding strategies (e.g., seeding of con-
stants extracted from source code) for search-based test genera-
tion of unit testing, showing a positive impact when compared
to non-seeded algorithms [31]. This study was further extended,
confirming the positive impact of the seeding strategies in further
subject programs [63]. Seeding was also applied on SAPIENZ [46],
a test generation tool for testing Android programs. Specifically,
SAPIENZ statically analyses some files to extract strings to seed the
multi-objective search algorithm in charge of generating test cases.
Lopez-Herrejon et al., proposed a total of three seeding strategies
for pairwise software product lines testing [45], showing a positive
impact both, in the final solutions returned by the search algorithms
as well as the time it takes the algorithm to converge. Besides search-
based testing, seeding has also been successfully applied to solve
other software engineering problems, including service composi-
tion problems [18, 19] and software improvement [5]. In contrast to
all these studies, the proposed seeding strategies proposed in this
paper are designed for the test case selection problem. To the best
of our knowledge, there are no previous papers that have proposed
and studied the impact of seeding strategies for multi-objective test
selection.

6 CONCLUSION AND FUTUREWORK
In this paper we propose three different seeding strategies for ini-
tializing the population of multi-objective test case selection algo-
rithms. We integrate them within the context of simulation-based
testing and the NSGA-II. We empirically evaluated four instances
of the proposed strategies and an additional strategy proposed in
another study [59], by employing six case studies and 21 fitness
function combinations in each case study. Two instances of the pro-
posed seeding strategies (i.e., Dynamic_seed and Static_seed_30%)
outperformed the NSGA-II algorithm without seeding strategies for
92.8 and 96% of the cases with statistical significance. In the future
we would like to extend this work from several perspectives, such
as, including seeding strategies in genetic operators (e.g., mutation
and crossover operators).

Replication package: For the sake of replicability, we make all
our code, experimental scripts and results available at http://doi.
org/10.5281/zenodo.3739219

ACKNOWLEDGEMENTS
This work is part of the TESEO project (KK2019/00026), funded
by the Department of Education, Universities and Research of the
Basque Government. This work was carried out by the Software
and Systems Engineering research group of Mondragon Unibert-
sitatea (IT1326-19), supported by the Department of Education,
Universities and Research of the Basque Government.

http://doi.org/10.5281/zenodo.3739219
http://doi.org/10.5281/zenodo.3739219


Seeding Strategies for Multi-Objective Test Case Selection GECCO ’20, July 8–12, 2020, Cancún, Mexico

REFERENCES
[1] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-

Walawege. 2010. A systematic review of the application and empirical inves-
tigation of search-based test case generation. IEEE Transactions on Software
Engineering 36, 6 (2010), 742–762.

[2] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Jānis Bene-
felds. 2017. An industrial evaluation of unit test generation: Finding real faults
in a financial application. In Proceedings of the 39th International Conference on
Software Engineering: Software Engineering in Practice Track. IEEE Press, 263–272.

[3] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests
to assess randomized algorithms in software engineering. In Software Engineering
(ICSE), 2011 33rd International Conference on. IEEE, 1–10.

[4] Andrea Arcuri and Gordon Fraser. 2014. On the effectiveness of whole test suite
generation. In International Symposium on Search Based Software Engineering.
Springer, 1–15.

[5] Andrea Arcuri, David Robert White, John Clark, and Xin Yao. 2008. Multi-
objective improvement of software using co-evolution and smart seeding. In
Asia-Pacific Conference on Simulated Evolution and Learning. Springer, 61–70.

[6] Aitor Arrieta, Shuai Wang, Ainhoa Arruabarrena, Urtzi Markiegi, Goiuria Sagar-
dui, and Leire Etxeberria. 2018. Multi-objective Black-box Test Case Selection
for Cost-effectively Testing Simulation Models. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’18). ACM, New York, NY, USA,
1411–1418. https://doi.org/10.1145/3205455.3205490

[7] Aitor Arrieta, ShuaiWang, UrtziMarkiegi, AinhoaArruabarrena, Leire Etxeberria,
and Goiuria Sagardui. 2019. Pareto efficient multi-objective black-box test case
selection for simulation-based testing. Information & Software Technology 114
(2019), 137–154. https://doi.org/10.1016/j.infsof.2019.06.009

[8] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeber-
ria. 2017. Search-Based Test Case Generation for Cyber-Physical Systems. In
Evolutionary Computation (CEC), 2017 IEEE Congress on. 688–697.

[9] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria.
2018. Employing Multi-Objective Search to Enhance Reactive Test Case Gen-
eration and Prioritization for Testing Industrial Cyber-Physical Systems. IEEE
Transactions on Industrial Informatics 14, 3 (2018), 1055–1066.

[10] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2016. Search-
based Test Case Selection of Cyber-physical System Product Lines for Simulation-
based Validation. In Proceedings of the 20th International Systems and Software
Product Line Conference. 297–306.

[11] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2016. Test
Case Prioritization of Configurable Cyber-Physical Systems with Weight-Based
Search Algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016 (GECCO ’16). ACM, New York, NY, USA, 1053–1060. https:
//doi.org/10.1145/2908812.2908871

[12] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2019. Search-
Based test case prioritization for simulation-Based testing of cyber-Physical
system product lines. Journal of Systems and Software 149 (2019), 1 – 34. https:
//doi.org/10.1016/j.jss.2018.09.055

[13] Wesley Klewerton Guez Assunção, Thelma Elita Colanzi, Silvia Regina Vergilio,
and Aurora Pozo. 2014. A multi-objective optimization approach for the integra-
tion and test order problem. Information Sciences 267 (2014), 119–139.

[14] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2018.
Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms.
In Proceedings of the 40th International Conference on Software Engineering (ICSE
’18). 12.

[15] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
analysis of feature models 20 years later: A literature review. Information Systems
35, 6 (2010), 615 – 636.

[16] Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bianculli. 2016.
Testing the Untestable: Model Testing of Complex Software-intensive Systems.
In Proceedings of the 38th International Conference on Software Engineering Com-
panion (ICSE ’16). ACM, 789–792. https://doi.org/10.1145/2889160.2889212

[17] Jose Campos, Yan Ge, Gordon Fraser, Marcello Eler, and Andrea Arcuri. 2017. An
Empirical Evaluation of Evolutionary Algorithms for Test Suite Generation. In
Symposium on Search-Based Software Engineering.

[18] Tao Chen, Miqing Li, and Xin Yao. 2018. On the effects of seeding strategies: a
case for search-based multi-objective service composition. In Proceedings of the
Genetic and Evolutionary Computation Conference. ACM, 1419–1426.

[19] Tao Chen, Miqing Li, and Xin Yao. 2019. Standing on the Shoulders of Giants:
Seeding Search-based Multi-Objective Optimization with Prior Knowledge for
Software Service Composition. Information and Software Technology (2019).

[20] Tsong Yueh Chen, F-C Kuo, Robert G Merkel, and Sebastian P Ng. 2004. Mirror
adaptive random testing. Information and Software Technology 46, 15 (2004),
1001–1010.

[21] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. 2010. Adaptive
random testing: The art of test case diversity. Journal of Systems and Software 83,
1 (2010), 60–66.

[22] Tsong Yueh Chen, Hing Leung, and IK Mak. 2004. Adaptive random testing. In
Annual Asian Computing Science Conference. Springer, 320–329.

[23] Ankur Choudhary, Arun Prakash Agrawal, and Arvinder Kaur. 2018. An effective
approach for regression test case selection using pareto based multi-objective
harmony search. In Proceedings of the 11th InternationalWorkshop on Search-Based
Software Testing. ACM, 13–20.

[24] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T Johnson, and Christoph Csallner. 2018. Automatically finding bugs in
a commercial cyber-physical system development tool chain with SLforge. In
Proceedings of the 40th International Conference on Software Engineering. ACM,
981–992.

[25] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and Annibale Panichella.
2012. On the role of diversity measures for multi-objective test case selection.
In Proceedings of the 7th International Workshop on Automation of Software Test.
IEEE Press, 145–151.

[26] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[27] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A systematic review
on regression test selection techniques. Information and Software Technology 52,
1 (2010), 14–30.

[28] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. 2015.
Empirical Evaluation of Pareto Efficient Multi-objective Regression Test Case
Prioritisation. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA, 234–245.

[29] Robert Feldt, Simon M. Poulding, David Clark, and Shin Yoo. 2016. Test Set Diam-
eter: Quantifying the Diversity of Sets of Test Cases. In 2016 IEEE International
Conference on Software Testing, Verification and Validation, ICST 2016, Chicago, IL,
USA, April 11-15, 2016. 223–233. https://doi.org/10.1109/ICST.2016.33

[30] Javier Ferrer, Peter M. Kruse, Francisco Chicano, and Enrique Alba. 2012. Evolu-
tionary Algorithm for Prioritized Pairwise Test Data Generation. In Proceedings of
the 14th Annual Conference on Genetic and Evolutionary Computation (GECCO ’12).
ACM, New York, NY, USA, 1213–1220. https://doi.org/10.1145/2330163.2330331

[31] Gordon Fraser and Andrea Arcuri. 2012. The seed is strong: Seeding strategies
in search-based software testing. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation. IEEE, 121–130.

[32] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291.

[33] Vahid Garousi, Ramazan Özkan, and Aysu Betin-Can. 2018. Multi-objective
regression test selection in practice: An empirical study in the defense software
industry. Information and Software Technology 103 (2018), 40–54.

[34] Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh Tung. 2016. A Novel
Fitness function of metaheuristic algorithms for test data generation for simulink
models based on mutation analysis. Journal of Systems and Software 120, C (2016),
17–30.

[35] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2013. Achieving scalable
model-based testing through test case diversity. ACM Transactions on Software
Engineering and Methodology 22, 1 (2013), 6:1–6:42.

[36] Hadi Hemmati and Lionel Briand. 2010. An industrial investigation of similarity
measures for model-based test case selection. In Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on. IEEE, 141–150.

[37] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 654–665.

[38] Remo Lachmann, Michael Felderer, Manuel Nieke, Sandro Schulze, Christoph
Seidl, and Ina Schaefer. 2017. Multi-objective black-box test case selection for
system testing. In Proceedings of the Genetic and Evolutionary Computation Con-
ference. ACM, 1311–1318.

[39] Khuat Thanh Le Thi My Hanh and Nguyen Thanh Binh Tung. 2014. Mutation-
based test data generation for simulink models using genetic algorithm and
simulated annealing. International Journal of Computer and Information Technol-
ogy 3, 04 (2014), 763–771.

[40] Xuelin Li, W. Eric Wong, Ruizhi Gao, Linghuan Hu, and Shigeru Hosono. 2017.
Genetic Algorithm-based Test Generation for Software Product Line with the
Integration of Fault Localization Techniques. Empirical Software Engineering
(2017), 1–51. https://doi.org/10.1007/s10664-016-9494-9

[41] Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search algorithms for
regression test case prioritization. IEEE Transactions on software Engineering 33,
4 (2007), 225–237.

[42] Bing Liu, Lucia, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2016.
Simulink fault localization: an iterative statistical debugging approach. Software
Testing, Verification and Reliability 26, 6 (2016), 431–459.

[43] Bing Liu, Lucia Lucia, Shiva Nejati, and Lionel Briand. 2017. Improving Fault
Localization for Simulink Models using Search-Based Testing and Prediction
Models. In 24th IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER 2017).

https://doi.org/10.1145/3205455.3205490
https://doi.org/10.1016/j.infsof.2019.06.009
https://doi.org/10.1145/2908812.2908871
https://doi.org/10.1145/2908812.2908871
https://doi.org/10.1016/j.jss.2018.09.055
https://doi.org/10.1016/j.jss.2018.09.055
https://doi.org/10.1145/2889160.2889212
https://doi.org/10.1109/ICST.2016.33
https://doi.org/10.1145/2330163.2330331
https://doi.org/10.1007/s10664-016-9494-9


GECCO ’20, July 8–12, 2020, Cancún, Mexico Aitor Arrieta, Joseba Andoni Agirre, and Goiuria Sagardui

[44] Bing Liu, Shiva Nejati, Lionel C Briand, et al. 2018. Effective fault localization of
automotive Simulink models: achieving the trade-off between test oracle effort
and fault localization accuracy. Empirical Software Engineering (2018), 1–47.

[45] Roberto E Lopez-Herrejon, Javier Ferrer, Francisco Chicano, Alexander Egyed,
and Enrique Alba. 2014. Comparative analysis of classical multi-objective evolu-
tionary algorithms and seeding strategies for pairwise testing of software product
lines. In 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 387–396.

[46] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated test-
ing for Android applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis. ACM, 94–105.

[47] Reza Matinnejad, Shiva Nejati, Lionel Briand, Thomas Bruckmann, and Claude
Poull. 2015. Search-based automated testing of continuous controllers: Frame-
work, tool support, and case studies. Information and Software Technology 57
(2015), 705 – 722.

[48] Reza Matinnejad, Shiva Nejati, and Lionel C. Briand. 2017. Automated Testing of
Hybrid Simulink/Stateflow Controllers: Industrial Case Studies. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017).
ACM, New York, NY, USA, 938–943. https://doi.org/10.1145/3106237.3117770

[49] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2015.
Effective test suites for mixed discrete-continuous stateflow controllers. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 84–95.

[50] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. 2016.
Automated Test Suite Generation for Time-continuous Simulink Models. In
Proceedings of the 38th International Conference on Software Engineering (ICSE
’16). ACM, New York, NY, USA, 595–606.

[51] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. 2019.
Test Generation and Test Prioritization for Simulink Models with Dynamic Be-
havior. IEEE Trans. Software Eng. 45, 9 (2019), 919–944. https://doi.org/10.1109/
TSE.2018.2811489

[52] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105–156.

[53] Claudio Menghi, Shiva Nejati, Lionel C Briand, and Yago Isasi Parache. 2020.
Approximation-Refinement Testing of Compute-Intensive Cyber-Physical Mod-
els: An Approach Based on System Identification. In International Conference on
Software Engineering (ICSE).

[54] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. 2019.
Generating automated and online test oracles for Simulink models with con-
tinuous and uncertain behaviors. In Proceedings of the ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019. 27–38. https://doi.org/10.1145/3338906.3338920

[55] Douglas C Montgomery. 2017. Design and analysis of experiments. John wiley &
sons.

[56] Shiva Nejati, Khouloud Gaaloul, Claudio Menghi, Lionel C. Briand, Stephen
Foster, and David Wolfe. 2019. Evaluating model testing and model checking for
finding requirements violations in Simulink models. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019. 1015–1025. https://doi.org/10.1145/3338906.3340444

[57] Ramazan Özkan, Vahid Garousi, and Aysu Betin-Can. 2017. Multi-objective
regression test selection in practice: an empirical study in the defense software

industry. In Proceedings of ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM).

[58] Annibale Panichella, Fitsum Kifetew, and Paolo Tonella. 2017. Automated test
case generation as amany-objective optimisation problemwith dynamic selection
of the targets. IEEE Transactions on Software Engineering (2017).

[59] Annibale Panichella, Rocco Oliveto, Massimiliano Di Penta, and Andrea De Lucia.
2015. Improving multi-objective test case selection by injecting diversity in
genetic algorithms. IEEE Transactions on Software Engineering 41, 4 (2015), 358–
383.

[60] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective equivalent
mutant detection technique. In Proceedings of the 37th International Conference
on Software Engineering-Volume 1. IEEE Press, 936–946.

[61] Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry, and
Yves Le Traon. 2012. Pairwise testing for software product lines: Comparison of
two approaches. Software Quality Journal 20, 3-4 (2012), 605–643.

[62] Dipesh Pradhan, Shuai Wang, Shaukat Ali, and Tao Yue. 2016. Search-Based
Cost-Effective Test Case Selection Within a Time Budget: An Empirical Study. In
Proceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO
’16). ACM, New York, NY, USA, 1085–1092. https://doi.org/10.1145/2908812.
2908850

[63] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2016. Seeding strategies in
search-based unit test generation. Software Testing, Verification and Reliability
26, 5 (2016), 366–401.

[64] Alireza Salahirad, Hussein Almulla, and Gregory Gay. 2019. Choosing the fitness
function for the job: Automated generation of test suites that detect real faults.
Software Testing, Verification and Reliability 29, 4-5 (2019), e1701.

[65] T. Strathmann and J. Oehlerking. 2015. Verifying Properties of an Electro-
Mechanical Braking System. In In 1st and 2nd International Workshop on Applied
veRification for Continuous and Hybrid Systems. 49–56.

[66] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. 2013. Minimizing test suites in
software product lines using weight-based genetic algorithms, In Proceedings
of the 2013 Genetic and Evolutionary Computation Conference. GECCO 2013 -
Proceedings of the 2013 Genetic and Evolutionary Computation Conference, 1493 –
1500.

[67] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. 2015. Cost-effective test suite
minimization in product lines using search techniques. Journal of Systems and
Software 103, 0 (2015), 370 – 391.

[68] Shin Yoo and Mark Harman. 2007. Pareto efficient multi-objective test case
selection. In Proceedings of the 2007 international symposium on Software testing
and analysis. ACM, 140–150.

[69] Shin Yoo and Mark Harman. 2010. Using hybrid algorithm for pareto efficient
multi-objective test suite minimisation. Journal of Systems and Software 83, 4
(2010), 689–701.

[70] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Softw. Test. Verif. Reliab. 22, 2 (March 2012), 67–120.

[71] Shin Yoo, Mark Harman, and Shmuel Ur. 2011. Highly scalable multi objective test
suite minimisation using graphics cards. In International Symposium on Search
Based Software Engineering. Springer, 219–236.

https://doi.org/10.1145/3106237.3117770
https://doi.org/10.1109/TSE.2018.2811489
https://doi.org/10.1109/TSE.2018.2811489
https://doi.org/10.1145/3338906.3338920
https://doi.org/10.1145/3338906.3340444
https://doi.org/10.1145/2908812.2908850
https://doi.org/10.1145/2908812.2908850

	Abstract
	1 Introduction
	2 Seeding Strategies
	2.1 Dynamic Test Suite Size-based Random Seeding
	2.2 Static Test Suite Size-based Random Seeding
	2.3 Adaptive Random Population Generation
	2.4 Orthogonal Population Generation

	3 Application Domain: Black-box Test Case Selection of Simulation Models
	4 Empirical Evaluation
	4.1 Experimental setup
	4.2 Analysis of the Results and Discussion
	4.3 Threats to validity

	5 Related Work
	6 Conclusion and Future Work
	References

