25,230 research outputs found

    Estimation under group actions: recovering orbits from invariants

    Full text link
    Motivated by geometric problems in signal processing, computer vision, and structural biology, we study a class of orbit recovery problems where we observe very noisy copies of an unknown signal, each acted upon by a random element of some group (such as Z/p or SO(3)). The goal is to recover the orbit of the signal under the group action in the high-noise regime. This generalizes problems of interest such as multi-reference alignment (MRA) and the reconstruction problem in cryo-electron microscopy (cryo-EM). We obtain matching lower and upper bounds on the sample complexity of these problems in high generality, showing that the statistical difficulty is intricately determined by the invariant theory of the underlying symmetry group. In particular, we determine that for cryo-EM with noise variance σ2\sigma^2 and uniform viewing directions, the number of samples required scales as σ6\sigma^6. We match this bound with a novel algorithm for ab initio reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from heterogeneous cryo-EM samples.Comment: 54 pages. This version contains a number of new result

    Synthesis for Polynomial Lasso Programs

    Full text link
    We present a method for the synthesis of polynomial lasso programs. These programs consist of a program stem, a set of transitions, and an exit condition, all in the form of algebraic assertions (conjunctions of polynomial equalities). Central to this approach is the discovery of non-linear (algebraic) loop invariants. We extend Sankaranarayanan, Sipma, and Manna's template-based approach and prove a completeness criterion. We perform program synthesis by generating a constraint whose solution is a synthesized program together with a loop invariant that proves the program's correctness. This constraint is non-linear and is passed to an SMT solver. Moreover, we can enforce the termination of the synthesized program with the support of test cases.Comment: Paper at VMCAI'14, including appendi

    Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus

    Get PDF
    We present a probabilistic Las Vegas algorithm for computing the local zeta function of a genus-gg hyperelliptic curve defined over Fq\mathbb F_q with explicit real multiplication (RM) by an order Z[η]\Z[\eta] in a degree-gg totally real number field. It is based on the approaches by Schoof and Pila in a more favorable case where we can split the \ell-torsion into gg kernels of endomorphisms, as introduced by Gaudry, Kohel, and Smith in genus 2. To deal with these kernels in any genus, we adapt a technique that the author, Gaudry, and Spaenlehauer introduced to model the \ell-torsion by structured polynomial systems. Applying this technique to the kernels, the systems we obtain are much smaller and so is the complexity of solving them. Our main result is that there exists a constant c>0c>0 such that, for any fixed gg, this algorithm has expected time and space complexity O((logq)c)O((\log q)^{c}) as qq grows and the characteristic is large enough. We prove that c9c\le 9 and we also conjecture that the result still holds for c=7c=7.Comment: To appear in Journal of Complexity. arXiv admin note: text overlap with arXiv:1710.0344

    On the asymptotic and practical complexity of solving bivariate systems over the reals

    Get PDF
    This paper is concerned with exact real solving of well-constrained, bivariate polynomial systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based method, and \sOB(N^{12}) for two subresultant-based methods: this notation ignores polylogarithmic factors, where NN bounds the degree and the bitsize of the polynomials. The previous record bound was \sOB(N^{14}). Our main tool is signed subresultant sequences. We exploit recent advances on the complexity of univariate root isolation, and extend them to sign evaluation of bivariate polynomials over two algebraic numbers, and real root counting for polynomials over an extension field. Our algorithms apply to the problem of simultaneous inequalities; they also compute the topology of real plane algebraic curves in \sOB(N^{12}), whereas the previous bound was \sOB(N^{14}). All algorithms have been implemented in MAPLE, in conjunction with numeric filtering. We compare them against FGB/RS, system solvers from SYNAPS, and MAPLE libraries INSULATE and TOP, which compute curve topology. Our software is among the most robust, and its runtimes are comparable, or within a small constant factor, with respect to the C/C++ libraries. Key words: real solving, polynomial systems, complexity, MAPLE softwareComment: 17 pages, 4 algorithms, 1 table, and 1 figure with 2 sub-figure

    Software Engineering and Complexity in Effective Algebraic Geometry

    Full text link
    We introduce the notion of a robust parameterized arithmetic circuit for the evaluation of algebraic families of multivariate polynomials. Based on this notion, we present a computation model, adapted to Scientific Computing, which captures all known branching parsimonious symbolic algorithms in effective Algebraic Geometry. We justify this model by arguments from Software Engineering. Finally we exhibit a class of simple elimination problems of effective Algebraic Geometry which require exponential time to be solved by branching parsimonious algorithms of our computation model.Comment: 70 pages. arXiv admin note: substantial text overlap with arXiv:1201.434
    corecore