
HAL Id: hal-01905580
https://hal.inria.fr/hal-01905580v2

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting points on hyperelliptic curves with explicit
real multiplication in arbitrary genus

Simon Abelard

To cite this version:
Simon Abelard. Counting points on hyperelliptic curves with explicit real multiplication in arbitrary
genus. Journal of Complexity, Elsevier, In press, �10.1016/j.jco.2019.101440�. �hal-01905580v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/233855509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01905580v2
https://hal.archives-ouvertes.fr

Counting points on hyperelliptic curves with explicit real
multiplication in arbitrary genus

Simon Abelard
Université de Lorraine, CNRS, Inria

University of Waterloo

simon.abelard@uwaterloo.ca
Cheriton School of Computer Science

Waterloo, Ontario, N2L 3G1
Canada

Abstract
We present a probabilistic Las Vegas algorithm for computing the local zeta

function of a genus-g hyperelliptic curve defined over Fq with explicit real multi-
plication (RM) by an order Z[η] in a degree-g totally real number field.

It is based on the approaches by Schoof and Pila in a more favorable case
where we can split the `-torsion into g kernels of endomorphisms, as introduced
by Gaudry, Kohel, and Smith in genus 2. To deal with these kernels in any genus,
we adapt a technique that the author, Gaudry, and Spaenlehauer introduced to
model the `-torsion by structured polynomial systems. Applying this technique
to the kernels, the systems we obtain are much smaller and so is the complexity
of solving them.

Our main result is that there exists a constant c > 0 such that, for any fixed g,
this algorithm has expected time and space complexity O((log q)c) as q grows and
the characteristic is large enough. We prove that c ≤ 9 and we also conjecture
that the result still holds for c = 7.

Keywords: Hyperelliptic curves, Real multiplication, Local zeta function, Multi-
homogeneous polynomial systems, Schoof-Pila’s algorithm

1 Introduction

Due to its numerous applications in cryptology, number theory, algebraic geometry or
even as a primitive used in other algorithms, the problem of counting points on curves
and Abelian varieties has been extensively studied over the past three decades. Among
the milestones in the history of point-counting, one can mention the first polynomial-
time algorithm by Schoof [29] for counting points on elliptic curves, and the subsequent
extension to Abelian varieties by Pila [25]. Using similar approaches, we design a
probabilistic algorithm for computing the local zeta functions of hyperelliptic curves
of arbitrary fixed genus g with explicit real multiplication and bound its complexity.

Given an Abelian variety of dimension g over a finite field Fq, Pila’s algorithm
computes its local zeta function in time (log q)∆, where ∆ is doubly exponential in g.
Further contributions were made in [19, 4] so that this exponent ∆ is now proven to
be polynomial in g in general, and even linear in the hyperelliptic case [3].

1

In genus 2, a tailor-made extension of Schoof’s algorithm due to Gaudry, Harley
and Schost [13, 15, 16] allows to count points in time Õ(log8 q). Yet, this remains much
larger than the complexity of the Schoof-Elkies-Atkin (SEA) algorithm [30], which is
the standard for elliptic point-counting in large characteristic and runs in Õ(log4 q)
bit operations. For genus-2 curves with explicit real multiplication (RM), i.e. curves
having an additional endomorphism for which an explicit expression is known, a much
more efficient point-counting algorithm is introduced in [14] with a bit complexity in
Õ(log5 q), thus narrowing the gap between genus 1 and 2.

These algorithms were extended to genus-3 hyperelliptic curves in [2] with an
asymptotic complexity in Õ(log14 q) bit operations that is decreased to Õ(log6 q) bit
operations when the curve has explicit RM.

The aim of this paper is to study the asymptotic complexity of point-counting on
hyperelliptic curves with explicit RM when g is arbitrary large. In this case, we bound
the exponent of log q by 9 and therefore remove the dependency on g from the exponent
of log q.

Another way to avoid such a painful dependency in g in the complexity without
restricting to such particular cases is to use the p-adic methods, in the spirit of Satoh’s
and Kedlaya’s algorithms [27, 20] for elliptic and hyperelliptic curves. These methods
have also been extended beyond the hyperelliptic case [32, 9] and one can also mention
the algorithms of Lauder and Lauder-Wan that also hold for very general varieties [22,
23]. Although these methods are polynomial in g, they are exponential in log p and
therefore cannot be used in large characteristic.

Indeed, the `-adic approaches derived from Schoof’s algorithm and the p-adic ap-
proaches are complementary when either g or p is small but we still lack a classical
algorithm running in time polynomial in both g and log q. However, for counting points
on reductions modulo many primes p of the same curve, an algorithm introduced by
Harvey in [18] is polynomial in g and polynomial on average in log p.

In this paper, we follow the spirit of the Schoof-Pila algorithm and recover the
local zeta function by computing the characteristic polynomial χπ of the action of the
Frobenius endomorphism π on the `-torsion subgroups for sufficiently many primes
`. The key to our complexity result is that, thanks to the real multiplication, it is
sufficient to have π act on much smaller subgroups of the `-torsion, at least for a
postive proportion of the primes `. The following definition sums up the assumptions
that we make on our particular (families of) curves.

Definition 1 (Explicit real multiplication). We say that a curve C has explicit real
multiplication by Z[η] if the subring Z[η] ⊂ End(Jac(C)) is isomorphic to an order in a
totally real degree-g number field, and if we have explicit formulas describing η(P−P∞)
for some fixed base point P∞ and a generic point P of C.

Remark. Once a rational Weierstrass point P∞ is picked on C, we represent elements
(reduced divisors) of Jac C as formal sums

∑w
i=1(Pi−P∞) and call w the weight of the

divisor. Alternatively, we represent elements of Jac C using the Mumford form 〈u, v〉
where u and v are polynomials in Fq[X] with deg u = w and u|v2 − f . We refer to [8,
Sec. 4.4 & 14.1] for more background on Jacobians of hyperelliptic curves. In cases
where C does not have an odd-degree Weierstrass model, we can work in an extension
of degree at most 2g+ 2 of the base field in order to ensure the existence of a rational
Weierstrass point.

2

By explicit formulas, we mean 2g + 2 polynomials in Fq[x, y] which we denote by
(η(u)
i (x, y))i∈{0,1,...,g} and (η(v)

i (x, y))i∈{0,1,...,g} such that, when C is given in odd-degree
Weierstrass form, the Mumford coordinates of η((x, y)− P∞) are

〈
Xg +

g−1∑
i=0

(
η

(u)
i (x, y)/η(u)

g (x, y)
)
Xi,

g−1∑
i=0

(
η

(v)
i (x, y)/η(v)

g (x, y)
)
Xi
〉
,

where (x, y) is the generic point of the curve.
As in [14, 2], we consider primes ` ∈ Z such that `Z[η] splits as a product p1 · · · pg

of prime ideals. Computing the kernels of an endomorphism αi in each pi provides
us with an algebraic representation of the `-torsion Jac(C)[`] ⊂ Kerα1 + · · ·+ Kerαg.
Then, we compute from this representation integers a0, . . . , ag−1 in Z /`Z such that
the sum π + π∨ of the Frobenius endomorphism and its dual equals a0 + a1η + · · · +
ag−1η

g−1 mod `. Once enough modular information is known, the values of the ai’s
such that π + π∨ =

∑g−1
i=0 aiηi are recovered via the Chinese Remainder Theorem

and the coefficients of the characteristic polynomial of the Frobenius can be directly
expressed in terms of the ai’s.

Computing the kernels of the endomorphisms αi is the dominant step in terms of
complexity and thus the cornerstone of our result. We still model these kernels by
polynomial systems that we then have to solve, but the resultant-based techniques
that were used in [14] and [2] are no longer satisfying when g is arbitrary large. We
therefore use the modelling strategy of [3] and apply it to the kernels instead of applying
it to the whole `-torsion. The polynomial systems we derive from this approach are
in fact very similar to those of [3], except that our kernels are comparable in size to
the “`1/g-torsion”, resulting in much smaller degrees and ultimately in a complexity
gain by a factor g in the exponent of log q, decreasing it from linear to constant.
Using the geometric resolution algorithm just as in [3], we solve these systems in
time K(log q)9+o(1) where K depends on η (and thus on g too) but not on q. It
is interesting to note that this result suffers from the pessimistic cubic bounds on
the degrees of Cantor’s polynomials established in [3] and that—assuming quadratic
bounds as proven in genus 1, 2 and 3—we get a complexity in K(log q)7+o(1), which
is close to the complexity bound proven in [2] for genus-3 hyperelliptic curves with
explicit RM.

For hyperelliptic curves with RM, we have thus been able to eliminate the depen-
dency in g in the exponent of log q, but this does not mean that our algorithm reaches
polynomial-time complexity in both g and log q. Indeed, we also discuss the reasons
why the “constant” K depends exponentially on g. Among them, we shall see that
some can actually be discarded by considering even more particular cases while some
appear to be inherent to our geometric-resolution based approach. This remaining ex-
ponential dependency also explains why this algorithm is currently not a practical one
in genus ≥ 4, although its complexity seems close to that of the algorithm presented
in [2].

Organization. In Section 2, we give an overview of our point-counting algorithm,
along with an example of families of hyperelliptic curves of arbitrary high genus with
RM by a real subfield of a cyclotomic field. In particular, we prove a bound on the size
and number of primes ` to consider in our algorithm. Section 3 focuses on the main

3

primitive of our algorithm: the computation of a non-zero element in the kernel of an
endomorphism α whose degree is a small multiple of `2. This section adapts methods
and results of [3, Sec. 4 & 5] to design structured polynomial systems whose solution
sets are subsets of J [α]. Section 4 concludes on the complexity of solving these systems,
and on the overall complexity result. We also present an analysis on the dependency
of the final complexity in g, investigating the various places where exponential factors
may occur and how to avoid them when it is possible.

2 Overview

The main result of this paper can be summarized by the following theorem, which
makes the dependency on η explicit.

Theorem 2. For any g and any η ∈ Q such that Q(η) is a totally-real number field
of degree g, there exists an explicitly computable c(η) > 0 such that there is an integer
q0(g, η) such that for all prime power q = pn larger than q0(g, η) with p ≥ (log q)c(η)

and for all genus-g hyperelliptic curves C with explicit RM by Z[η] defined over Fq, the
local zeta function of C can be computed with a probabilistic algorithm in expected time
bounded by (log q)c(η).

In Section 4, we also bound c by 9 + ε(η) and conjecture that it should be 7 + ε(η),
where the term ε(η) is added to take into account factors depending only on η and
factors in O((log q)ε) for any ε > 0. In the whole paper, we will make use of the
following notation to implicitly include those terms.

Notation. We say that a function F (η, q) is in Oη((log q)c) if for any fixed η and any
ε > 0 we have F (η, q) ∈ O((log q)c+ε), in the sense of the usual O()-notation. Using
this notation, our point-counting algorithm runs in time Oη((log q)9). We emphasize
once more that this notation includes polylogarithmic factors in q.

Remark. It is also possible to explicit the lower bound on p required by Theorem 2.
Indeed, p is only constrained by Proposition 13 of Section 4.1. With the Oη() notation,
this condition amounts to p being greater than a quantity in Oη((log p)3).

2.1 Families of RM curves

We present one-dimensional families of hyperelliptic curves from [31], constructed via
cyclotomic covers. They have an affine model Cn,t : Y 2 = Dn(X) + t, where t is a
parameter and Dn is the n-th Dickson polynomial with parameter 1 defined inductively
by D0(X) = 2, D1(X) = X, and

Dn(X) = XDn−1(X)−Dn−2(X).

Since Dn(X) has degree n, setting n = 2g+1 for odd n yields a one-dimensional family
Cn,t of genus g hyperelliptic curves given by an odd-degree Weierstrass model. Their
Jacobians all have an explicit endomorphism η, and when n is prime, [21, Prop. 2]
shows that Z[η] ∼= Z[ζn + ζ−1

n], where ζn is a primitive n-th root of unity over Q. Note
that the construction of an explicit endomorphism is still possible whenever n = 2g+1

4

is not prime, but then the curves in Cn,t have non-simple Jacobians, which means there
are better alternatives than using our algorithm for counting points on them.

Another family based on Artin-Schreier covering is detailed in the same paper but
these curves have genus (p−1)/2 where p is the characteristic of the base field, so that
our complexity study using the Oη() notation would be pointless in that case. Since g
becomes much larger than log p in that case, it would be more efficient to use p-adic
algorithms anyway.

Let C be a (genus-g) hyperelliptic curve in the family C2g+1,t, defined over a fi-
nite field Fq. In [21], Kohel and Smith compute formulas for the Mumford form of
η ((x, y)− P∞), where (x, y) is the generic point on C. These formulas are given ex-
plicitly for some examples in genus 2 and 3, and an algorithm [21, Algorithm 5] is
presented to compute them for any C. This algorithm has a time complexity in O(g2)
field operations and requires to store O(g3) field elements. Thus, given a curve from
that family as input, an explicit endomorphism of its Jacobian can be computed once
and for all in Õ(g3 log q) time and space complexity, which is negligible compared to
the cost of counting points on the curve.

2.2 The characteristic equation

Let us consider a genus-g hyperelliptic curve C over Fq with explicit RM in the sense
of Definition 1 and let J be its Jacobian. We denote by π the Frobenius map x 7→ xq

over Fq. It extends to an endomorphism of J which we also denote by π. The dual
endomorphism of π is denoted by π∨ and satisfies ππ∨ = π∨π = q.

Counting points (or computing local zeta functions) amounts to computing χπ,
the characteristic polynomial of the Frobenius endomorphism. Following Schoof and
Pila, we do it by computing χπ mod ` for sufficiently many primes ` coprime to q, using
the fact that χπ mod ` is the characteristic polynomial of the Frobenius endomorphism
acting on J [`]. This approach works thanks to the Weil conjectures, which were proven
by Dwork, Deligne and Grothendieck (see for instance [11] for the original proof).
For our purpose, the important consequences of the Weil conjectures are that χπ =∑2g
i=0 ciX

i is a degree-2g polynomial whose coefficients ci are integers such that for any
i ≤ 2g, we have ci = qg−ic2g−i and |ci| ≤

(2g
i

)
q(2g−i)/2.

As in [14, 2], let us consider ψ = π + π∨ and recall that ψ ∈ Q[η]. We still have
ψπ = π2 + q and once again, we test this equation to determine ψ instead of the
characteristic equation of π. The link between ψ and π needs to be made explicit,
which is the aim of the present section. Using the above relation between the ci’s, we
can write

χπ(X) =
g∑
i=0

σi(X2g−i + qg−iXi),

with σi = c2g−i for i 6= g and σg = cg/2. Then we propagate the Weil bounds to the
σi’s and get |σi| = |c2g−i| ≤

(2g
i

)
qi/2 for i 6= g and |σg| ≤

(2g
g

)
qg/2/2.

Since we have q−g(π∨)gχπ(π) = 0 by the Cayley-Hamilton theorem, and using the
fact that ππ∨ = q, we rewrite that as

g∑
i=0

σg−i(πi + (π∨)i) = 0.

Our plan is to compute χπ mod ` by determining ψ. Let us write ψ =
∑g−1
i=0 aiη

i,

5

the goal of the section is to prove bounds on the coefficients ai, so that we can estimate
the number and maximal size of primes ` required to compute ψ without ambiguity.
Note that ψ is in the maximal order of Q(η), but not necessarily in Z[η]. However,
as in [14, 2], Z[η] has finite index in the maximal order and the possible common
denominator of the ai’s has to divide

[
OQ(η) : Z[η]

]
. This denominator entails that

additional primes may be required to fully determine ψ, however
[
OQ(η) : Z[η]

]
depends

only on η so that it will disappear in the Oη-notation of our complexity estimates.
Therefore, we do not detail further this subtlety and assume for simplicity that the
ai’s are integers, which we wish to bound by Oη(

√
q).

Let us first express the quantities πi + (π∨)i in terms of powers of ψ as a first step
towards expressing the σi’s as functions of the ai’s.

Lemma 3. For any i ∈ {1, . . . , g}, there exist integers (αi,j)0≤j<i such that αi,j is in
O(q(i−j)/2) and

πi + (π∨)i = ψi +
i−1∑
j=0

αi,jψ
j .

Proof. The statement holds for i = 1 with α1,0 = 0 by the definition of ψ. For i = 2,
we have ψ2 = π2 + (π∨)2 + 2ππ∨, so that we have the result with α2,0 = −2q and
α2,1 = 0.

In this proof, we set the convention αi,i = 1 to simplify our recurrence relations.
Let us now assume the lemma holds for any positive integer no greater than a certain
i. We therefore have

ψi+1 = (π + π∨)ψi = (π + π∨)

(πi + (π∨)i)−
i−1∑
j=0

αi,jψ
j

 .
The first term is equal to πi+1 + (π∨)i+1 + q(πi−1 + (π∨)i−1) so that we can use the
lemma once again for i− 1 and get

ψi+1 = πi+1 + (π∨)i+1 − αi,i−1ψ
i + qαi−1,0 +

i−1∑
j=1

(qαi−1,j − αi,j−1)ψj .

Thus, we have computed the αi+1,j given by

αi+1,j =


αi,i−1 if j = i,

−qαi−1,0 if j = 0,
αi,j−1 − qαi−1,j else.

Let us now study the order of magnitude of the αi+1,j : from the recurrence hypothesis
on both i and i− 1, αi,i−1 = αi+1,i is in O(√q), αi−1,0 is in O(q(i−1)/2) so that αi+1,0
is in O(q(i+1)/2), and both qαi−1,j and αi,j−1 are in O(q(i+1−j)/2), which proves the
result for any other αi+1,j . By induction, the lemma is proven.

Note that our O-notation in the previous statement and proof can be a bit mislead-
ing as there may not be an absolute constant bounding all the αi,j/q(i−j)/2. However,
from the recurrence relation between the ai,j ’s, one sees that each αi,j is equal to
q(i−j)/2 plus an error term that is in Oη(q(i−j−1)/2) and at worst quadratic in g, hence
the error term is negligible compared to q(i−j)/2.

6

Proposition 4. The polynomial χπ is uniquely determined by the coefficients ai’s of
ψ in the basis (1, η, . . . , ηg−1), and there exists Cη > 0 depending only on g and η such
that for any i ∈ {0, . . . , g − 1}, we have |ai| ≤ Cη

√
q.

Proof. Recall that σi is the coefficient c2g−i of χπ for i 6= g, and that σg = cg/2. Using
Lemma 3 for any i ∈ {1, . . . , g} and setting αi,i = 1, we have

g∑
i=0

σg−i

i∑
j=0

αi,jψ
j =

g∑
j=0

ψj
g∑
i=j

αi,jσg−i = 0.

Let us define sj =
∑g
i=j αi,jσg−i and χψ(X) = Xg+sg−1X

g−1 +· · ·+s0. We previously
showed that for any i the coefficient σi is in O(qi/2), therefore each σg−i is in O(q(g−i)/2)
and by Lemma 3 we know that αi,j is in O(q(i−j)/2), so that each sj is in O(q(g−j)/2).

Note that χψ is a degree-g monic polynomial vanishing on ψ, and it is therefore its
characteristic polynomial. Let us denote by ψk the g conjugates of ψ, which are the g
real roots of χψ. By the Fujiwara bounds from [12], for any k ∈ {1, . . . , g} we have

|ψk| ≤ 2 max
0≤k≤g

(
|sg−k|1/k

)
.

We already know that |sg−k| = O(√qk), so we deduce that the |ψk| are in O(√q).
The conjugates ψk can be expressed explictly: by definition we have ψ =

∑g−1
i=0 aiη

i,
so we can write ψk =

∑g−1
i=0 aiη

i
k by choosing a convenient order for the g conjugates

of η (possibly in the Galois-closure of Q(η)). We can view this operation as a change
of variables from ai’s to ψk’s and the matrix associated to this linear transformation
is the Vandermonde matrix of the conjugates ηk’s. This matrix is invertible because η
is separable so that the ηi are all distinct reals. Then, inverting the linear change of
variable, we prove that the ai are also in Oη(

√
q) since the matrix norm of the inverse

of the Vandermonde matrix only depends on η. This proves the bound given in the
proposition and gives a bijection between ai’s and ψk’s. We must now justify that
there is a one-to-one correspondance between the ai’s and the coefficients of χπ.

Since the ψk are exactly the real roots (possibly in the Galois-closure of Q(η)) of
χψ, by Vieta’s formula they satisfy the g equations

sg−i = (−1)iSi(ψ1, . . . , ψg) for 1 ≤ i ≤ g,

where the Si’s are the elementary symmetric polynomials in g variables. Thus, once
the ai’s are known, the values for ψ and its conjugates are known and a unique value
for each si is deduced. Furthermore, the expressions of the si’s in terms of the σi’s form
a linear triangular system whose determinant equals 1, so that there is an efficiently
computable one-to-one correspondence between χψ and χπ. Therefore, χπ is uniquely
determined by the ai’s.

Our algorithm is based on determining the ai’s modulo ` for sufficiently many `
until they are known without ambiguity and we can deduce χπ. While the Weil bounds
on the σi’s are enough for our purpose, we have proven that the ai’s are in Oη(

√
q)

as in genus 2 and 3 [14, 2]. The next section details the process of recovering such
modular information on the ai’s.

7

2.3 Overview of our algorithm

The general RM point counting algorithm is Algorithm 1. As mentioned above, we
want to compute the coefficients a0, . . . , ag−1 of the endomorphism ψ. More precisely,
we compute their values modulo sufficiently many totally-split primes ` until we can
deduce their values from the bounds of Prop 4 and the Chinese Remainder Theorem.
Then, the coefficients of χπ are deduced from the ai’s.

Apart from being totally split, we actually require that the primes ` we consider
satisfy the additional conditions (C1) to (C4) below. The reasons why we need these
technical conditions will be made clearer in this section.

(C1) ` must be different from the characteristic of the base field;

(C2) ` must be coprime to the discriminant of the minimal polynomial of η;

(C3) there must exist αi ∈ pi as in Lemma 5 below with norm non-divisible by `3 for
i ∈ {1, . . . g};

(C4) the ideal `Z[η] must split completely.

Condition (C2) means that Z[η] is locally maximal at `, this implies that even if Z[η]
is not the maximal order of Q(η), this defect will have no impact on the factorization of
` as a product of prime ideals, which is at the heart of our complexity gain. Condition
(C3) implies that there is a unique subgroup of order `2 in J [αi].

input : q an odd prime power, and f ∈ Fq[X] a monic squarefree polynomial
of degree 2g + 1 such that the hyperelliptic curve Y 2 = f(X) has
explicit RM by Z[η].

output: The characteristic polynomial χπ ∈ Z[T] of the Frobenius
endomorphism on the Jacobian J of the curve.

w ← 1;
Define Cg as in Prop. 4;
while w ≤ 2

[
OQ(η) : Z[η]

]
Cη
√
q + 1 do

Pick the next prime ` that satisfies conditions (C1) to (C4);
Compute the ideal decomposition ` Z[η] = p1 · · · pg, corresponding to the
eigenvalues µ1, . . . , µg of η in J [`] ;

for i← 1 to g do
Compute a small element αi of pi as in Lemma 5;
Compute a non-zero element Di of order ` in J [αi] ;
Find the unique ki ∈ Z /`Z such that kiπ(Di) = π2(Di) + qDi ;

end
Find the unique tuple (a0, . . . , ag−1) in (Z /`Z)g such that

∑g−1
j=0 ajµ

j
i = ki,

for i in {1, . . . , g} ;
w ← w · `;

end
Reconstruct (a0, . . . , ag−1) using the Chinese Remainder Theorem ;
Deduce χπ from ψ.

Algorithm 1: Overview of our RM point-counting algorithm

8

The first 3 conditions eliminate only a finite number of `’s that depends only on η.
This is not immediate for Condition (C3), so we give further details. Let us consider
an element αi as in Lemma 5 below, i.e. an element represented as a degree < g
polynomial in η with integer coefficients in Oη(`1/g). Then from this size constraint,
its norm in the CM field is of the form c `2, with c only depending on η. Therefore,
for ` > c, it is impossible that this norm could be divisible by `3. Condition (C3) will
thus only discard primes smaller than c, which are in finite number.

Condition (C4) will eliminate a finite proportion of primes ` depending only on η
which we need to detail in order to bound the size of the largest ` that our algorithm
will have to consider. Given a genus-g curve C with RM by Z[η], by Chebotarev’s
density theorem, the proportion of primes ` satisfying the last condition is at least
1/# Gal(Q(η)/Q), which is bounded below by 1/g!. To count points on C, we need
to find L a set of primes satisfying all the above conditions and such that

∏
`∈L ` >

2
[
OQ(η) : Z[η]

]
Cη
√
q. By the prime number theorem, both the number and size of the

primes contained in L are in O(g! log(Cηq)). In some particular cases, the proportion
of “nice” primes may be much larger: for instance when the RM field is the totally
real subfield of a cyclotomic field. In the field Q(ζn + ζ−1

n), a prime ` totally splits if
and only if ` ≡ ±1 mod n, and therefore condition (C4) is satisfied by a proportion of
primes equal to 2/(n − 1) = 1/g. In that case, the number and size of primes in the
set L can be reduced to O(g log(Cηq)).

We now explain how the algorithm works for a given split `. First its decomposition
as a product of prime ideals ` Z[η] = p1 · · · pg is computed, and for each prime ideal pi,
a non-zero element αi in pi is found with a small representation as in Lemma 5 below.
In fact, pi is not necessarily principal and αi need not generate pi. The kernel of αi
is denoted by J [αi] and it contains a subgroup isomorphic to Z /`Z×Z /`Z, since the
norm of αi is a multiple of `.

Since ` satisfies Condition (C2), there is a correspondence between the prime ideals
pi in the decomposition of ` in Z[η] and irreducible factors of the minimal polynomial
of η modulo `. On one side we have g prime ideals coprime to each other, so we have
g coprime factors X − λi on the other side.

This way, we know that the two-element representation of each ideal pi is of the
form (`, η−λi), which means that λi is an eigenvalue of η viewed as an endomorphism
of J [`] ∼= (Z/`Z)2g. Furthermore, the pi’s are coprime so we have J [`] =

⊕g
i=1 J [pi]

and since each of them has norm ` in Q(η), they have norm `2 in the CM field and
therefore each J [pi] is isomorphic (as a group) to (Z /`Z)2. Since ` satisfies Condition
(C3) we know that it is actually the only subgroup of J [αi] isomorphic to (Z /`Z)2.

On J [pi] ⊂ J [αi], the endomorphism η acts as the multiplication by λi. There-
fore, the endomorphism ψ =

∑g−1
i=0 aiη

i also acts as a scalar multiplication on this
2-dimensional space, and we write ki ∈ Z /`Z the corresponding eigenvalue: for any
Di in J [pi], we have ψ(Di) = kiDi. On the other hand, from the definition of ψ, it
follows that ψπ = π2 + q. Therefore, if such a Di is known, we can test which value of
ki ∈ Z /`Z satisfies

kiπ(Di) = π2(Di) + qDi. (1)

Since ` is a prime and Di is of order exactly `, this is also the case for π(Di).
Finding ki can then be seen as a discrete logarithm problem in the subgroup of order
` generated by π(Di); hence the solution is unique. Equating the two expressions for

9

ψ, we get explicit relations between the aj ’s modulo `:

g−1∑
j=0

ajλ
j
i ≡ ki mod `.

Therefore we have a linear system of g equations in g unknowns, the determinant of
which is the Vandermonde determinant of the λi, which are distinct since the ideals pi
are coprime. Hence the system can be solved and it has a unique solution modulo `.

It remains to show how to construct a divisor Di in J [pi], i.e. an element of order
` in the kernel J [αi]. Since an explicit expression of η as an endomorphism of the
Jacobian of C is known, an explicit expression can be deduced for αi, using the explicit
group law. The coordinates of the elements of this kernel are solutions of a polynomial
system that can be directly derived from this expression of αi, using a modelling similar
to that of [3]. Likewise, we use the geometric resolution algorithm to find the solutions
of this system, perhaps in a finite extension of the base field, from which divisors in
J [αi] can be constructed. Multiplying by the appropriate cofactor, we can reach all
the elements of J [pi]; but we stop as soon as we get a non-trivial one.

Lemma 5. For any prime ` that splits completely in Z[η], each prime ideal p above `
contains a non-zero element α of the form α =

∑g−1
i=0 αiη

i, where the |αi| are integers
smaller than i

−1/g
η `1/g and iη stands for the index

[
OQ(η) : Z[η]

]
.

Proof. In this proof, we will consider two different embeddings from p to Rg. First, the
elements of the ideal p are inside Z[η] so we can define the embedding τ :

∑g−1
j=0 ajη

j 7→
(a0, . . . ag−1). Let (β1, . . . , βg) a basis of p as a Z-module and define B the g×g matrix
obtained by concatenating the g column vectors τ(βi). The volume of the lattice τ(p)
is by definition |detB|.

To compute this volume, we introduce another embedding from p to a lattice of Rg
whose volume is already known. Let us introduce the g real embeddings σi : Q(η)→ R
and define the embedding σ : Q(η) → Rg by σ : α 7→ (σ1(α), . . . , σg(α)). By [24,
Prop 4.26], σ(p) is a full lattice in Rg and its volume is N(p)

√
|∆|, where ∆ is the

discriminant of Q(η). In our case, N(p) = ` so the volume of σ(p) is `
√
|∆|.

Now, we link both volumes by remarking that we can reorder the embeddings to
make them compatible with our previous definition of the conjugates ηk of η so that
for any i, k ∈ {1, . . . , g}2 we have σk(βi) =

∑g−1
j=0 bijη

j
k, where the bij satisfy βi =∑

j=0 bijη
j . Phrased differently, with V the Vandermonde matrix of the conjugates of

η, this amounts to σk(βi) being the k-th coordinate of the vector V τ(βi). If we call S the
matrix whose entries are the σj(βi) then we have S = V B. We know that |detS| is the
volume of σ(p) which we previously computed so we deduce |detB| = `

√
|∆|/|detV |.

Finally, we give a significance to the quotient
√
|∆|/|detV |. Defining iη as in

the statement of the lemma, we have Disc(1, η, . . . , ηg−1) = i2η Disc(OQ(η)/Z) (see
for instance [24, Remark 2.25]) but since Disc(1, η, . . . , ηg−1) = (detV)2 we finally
conclude that the volume of τ(p) is `/iη.

Let us consider C = {x ∈ Rg | ||x||∞ ≤ i
−1/g
η `1/g}. The volume of the convex C is

2g`/iη. Since g is the dimension of τ(p) and `/iη is its volume, Minkowski’s theorem
guarantees the existence of a non-zero element v of τ(p) belonging to C. By definition,
v =

∑g−1
i=0 viη

i is an element of p whose coordinates vi’s are integers of absolute values
bounded by i−1/g

η `1/g, which concludes the proof.

10

Since we know it exists, given one of the ideals pi, we can find αi a small element
of pi as in Lemma 5 by exhaustive search in at most 2g`/iη operations in Z[η]. Note
that there is an extensive litterature on finding short vectors in a lattice of dimension
d, motivated for instance by cryptographic applications. An example is the quantum
algorithm of [10] which computes a 2Õ(

√
d)-approximation of the shortest non-zero

vector in time polynomial in d. Restricting to classical algorithms, the best option
in general is the BKZ algorithm [28] that computes a 2Õ(dα)-approximation in time
2Õ(d1−α), for any α ∈ [0, 1]. In our case however, the existence of a very short vector is
already known and, more importantly, the factor 2g due to the dimension is acceptable
since it vanishes in the Oη-notation.

3 Modelling kernels of endomorphisms

Let α be an explicit endomorphism of degree O(`2) on the Jacobian of C, which satisfies
the properties of Lemma 5. We want to compute a polynomial system that describes
the kernel J [α] of α, and then solve it. The resultant-based approach of [2] cannot
be used as the degrees are squared each time we eliminate a variable, causing an
exponential dependency in g in the exponent of `. Instead, we use the modelling
techniques from [3], where the endomorphism α replaces the multiplication by `. This
time, the g variables of large degrees have degrees in Oη(`3/g) instead of Oη(`3) so
that the final complexity bound for computing the kernel α is in Oη(`D(log q)2) binary
operations, with D an absolute constant.

The main change between this section and [3, Sec. 4 & 5] is that the di and ei
no longer denote `-division but α-division polynomials, and the polynomials uj and
vj intervening in the Mumford representation of the candidate kernel element are
modified accordingly. The structure of our modelling is very similar but require some
adaptations at various places, which is the reason why we repeat the analysis in the
generic case. In the non-generic case, we go over the main results of [3, Sec. 5] and
detail the parts requiring adjustments.

3.1 The generic case

Let us first recall the definition of Cantor’s `-division polynomials introduced in [7],
the coefficients of the polynomials δ`(X) and ε`(X) such that, for (x, y) a generic point
of the curve and ` > g, we have

` ((x, y)− P∞) =
〈
δ`

(
x−X

4y2

)
, ε`

(
x−X

4y2

)〉
.

An important step towards our complexity bounds is to bound the degrees of these
polynomials, so that we can later on deduce degree-bounds for the polynomial systems
modelling the kernels J [αi]. To this end, we use the following result proven in [3,
Sec. 6].

Theorem 6. [3, Lemma 10] For any integer ` > g, the polynomial δ`(X) of degree
g in X has coefficients in Fq[x] whose degrees in x are bounded by g`3/3 + Og(`2);
the polynomial ε`(X)/y has coefficients in Fq(x) whose respective numerators and de-
nominators have degrees bounded by 2g`3/3 + Og(`2). Furthermore, the roots of the
denominators are roots of the leading coefficient of δ`(X).

11

These polynomials describe the multiplication by `, but for our purpose we need
to describe more general endomorphisms of Jac C, i.e. endomorphisms corresponding
to an element α of Z[η]. Thus, we define the α-division polynomials di and ei such
that, denoting by P = (x, y) the generic point of C, a non-normalized Mumford form
of α(P − P∞) is equal to 〈 g∑

i=0
di(x)Xi, y

g−1∑
i=0

ei(x)
eg(x)X

i

〉
.

By Lemma 5, we know that α =
∑g−1
i=0 αiη

i with |αi| = Oη(`1/g). Since the degrees
of the ηi(P − P∞) do not depend on `, by Theorem 6 applied to Cantor’s αi-division
polynomials we prove that the degrees of the di’s and ei’s are in Oη(`3/g).

Definition 7. In what follows, we will say that an element of J is α-generic if it has
weight g and the corresponding reduced divisor

∑g
i=1(Pi − P∞) satisfies the following

two properties:

• For any i, the u-coordinate of the divisor α(Pi−P∞) in Mumford form has degree
g;

• For any i 6= j, the u-coordinates of the divisors α(Pi − P∞) and α(Pj − P∞) are
coprime.

This implies that if an affine point P occurs in the support of α(Pi − P∞) then
neither P nor −P appears in the support of another α(Pj − P∞).

Suppose there exists D =
∑g
i=1(Pi − P∞) an α-generic divisor in J . We shall

consider a system equivalent to α(D) = 0 but let us first introduce some notation. For
each point Pi = (xi, yi) in the support of D, we denote 〈ui, vi〉 the Mumford form of
α(Pi − P∞) and (aij , bij)1≤j≤g the coordinates of the g points in its support counted
with multiplicities, which means that for any i the g roots of ui are exactly the aij ,
and that for any j, bij = vi(aij).

Proposition 8. We can model the set of generic α-division elements as the so-
lution set of a bihomogeneous polynomial system consisting of O(g2) equations in
Fq[X1, . . . , Xg, Y1, . . . , Yny] such that ny = O(g2) and the degrees dx and dy in the
Xi’s and Yj’s are respectively in Oη(`3/g) and Oη(1).

Proof. Following the modelling of [3, Sec. 4], we have α(D) = 0 if and only if the sum of
the divisors

∑g
i=1 α(Pi−P∞) is a principal divisor. The only pole is at infinity, so this is

equivalent to the existence of a non-zero function ϕ ∈ Fq(C) of the form P (X)+Y Q(X)
with P and Q two polynomials such that the g2 points (aij , bij) are the zeros of ϕ, with
multiplicities. Since we want ϕ to have g2 affine points of intersection with the curve
C (once again, counted with multiplicities), the polynomial ResY (Y 2 − f, P + Y Q) =
P 2− fQ2 must have degree g2 which yields 2 deg(P) ≤ g2 and 2 deg(Q) ≤ g2− 2g− 1.
Exactly one of those two bounds is even (it depends on the parity of g), and for
this particular bound, the inequality must be an equality, otherwise the degree of
the resultant would not be g2. Since the function ϕ is defined up to a multiplicative
constant, we can normalize it so that the polynomial P 2 + fQ2 is monic, which is
equivalent to enforce that either P or Q is monic depending on the parity of g.

12

For a fixed i ∈ [1, g], requiring the (aij , bij) to be zeros of ϕ amounts to asking
for the aij to be roots of P (X) + Q(X)vi(X), with multiplicities. Since the aij are
by definition the roots of the ui, α(D) = 0 is equivalent to g congruence relations
P + Qvi ≡ 0 mod ui. Thus, for any α-generic divisor, α(D) = 0 is equivalent to the
existence of P and Q satisfying the above g congruence relations.

The variables are the coefficients of P and Q, as well as the xi and yi. With the
degree conditions and the normalization, we have g2 − g variables coming from P and
Q. Adding the 2g variables xi and yi, we get a total of g2 + g variables. Each one of
the g congruence relations amounts to g equations providing a total of g2 conditions on
the coefficients of P and Q. The fact that the (xi, yi) are points of the curve yields the
g additional equations y2

i = f(xi). Finally, we have to enforce the α-genericity of the
solutions, which can be done by requiring that

∏
i dg(xi)eg(xi)

∏
i<j Res(ui, uj) 6= 0.

Note that we do not extend Theorem 6 to the α-division polynomials but instead add
the non-vanishing condition for the denominator eg of the v-coordinate of α(D). Still,
we get a polynomial system with g2 + g equations in g2 + g variables, together with
an inequality.

We now estimate the degrees to which the variables occur in the equations. Each
congruence relation is obtained by reducing P +Qvi, which is a polynomial of degree
O(g2) in X, by ui which is of degree g. We can do it by repeatedly replacing Xg by
−
∑
j<g(dj(xi)/dg(xi))Xj , which we will have to do at most O(g2) times. Since the dj

have degree in Oη(`3/g) in xi, the fully reduced polynomial will have coefficients that
are fractions for which the degrees of the numerators and of the denominators are at
most Oη(`3/g) in the xi variables. In these equations, the degree in the yi variables
and in the variables for the coefficients of P and Q is 1. The degrees in xi and yi in
the curve equations are 2g + 1 and 2 respectively.

It remains to study the degree of the inequality. Each resultant is the determinant
of a 2g×2g Sylvester matrix whose coefficients are the di, which have degrees bounded
by Oη(`3/g). Since for any i there are exactly g resultants involving xi in the product,
the degree of this inequality in any xi is in Oη(`3/g), and it does not involve the other
variables. In order to be able to use Proposition [3, Prop. 3] that we recall in Section 4,
we must model this inequality by an equation, which is done classically by introducing
a new variable T and by using the equation T ·

∏
i dg(xi)eg(xi)

∏
i<j Res(ui, uj) = 1.

To conclude, we have a polynomial system with two blocks of variables: the g
variables xi on the one hand and the g2− g variables coming from the coefficients of P
and Q, along with the g variables yi on the other hand. The degrees of the equations
in the first block of variables grows cubically in `1/g, while the degrees in the other
block of variables depends only on η.

3.2 Non-generic kernel elements

As in [3, Sec. 4], apart from the neutral element, we expect to capture the whole
kernel of the endomorphism α by using the modelling of Section 3.1. Contrary to [3],
Algorithm 1 does not require us to find a basis of J [α] because the determination of
the ki’s does only require a single non-zero element in each J [αi]. Thus, a study of
non-generic elements in J [α] is necessary only if there is no α-generic element in J [α].
Such a case happens if and only if the polynomial

∏g
i=1 dg(xi)eg(xi)

∏
i 6=j Res(ui, uj)

in the variables x1, . . . , xg vanishes on J [α]. It seems very unlikely that the whole set
J [α] would live in such a hypersurface, and if it happens, one can discard the ` for

13

which we fail to find an α-generic element. Although it seems even more unlikely that
this situation could happen for sufficiently many ` so as to threaten the validity of our
complexity bound, we are far from a proven statement and do not exclude it might be
possible to design a highly non-generic curve providing a counterexample.

Therefore, we follow the non-genericity analysis of [3, Sec. 5] except that we consider
ui and vi defined as the Mumford form of α(Pi−P∞) instead of `(Pi−P∞). Let us first
briefly review the non-generic situations that one can encounter, following [3, Sec. 5.1]
and keeping the same numbering.

Case 1: Modelling a kernel element of weight w < g. We write D =
∑w
i=1(Pi−

P∞) and look for a ϕ = P (X)+Y Q(X) vanishing at each point of each reduced divisor
α(Pi − P∞). This is similar to the Case 1 of [3, Sec. 5.1].

Case 2: Modelling a kernel element with multiple points. It may happen
that the element we are looking for is D =

∑w
i=1(Pi − P∞) but not all the Pi’s are

distinct. In that case, we rewrite it D =
∑s
j=1 µj(Pj − P∞) such that the Pj ’s are

distinct and look for a ϕ = P (X) + Y Q(X) vanishing at each point of each reduced
divisor µjα(Pj − P∞). Apart from the modification of ui and vi, the modelling is
identical to that of [3].

Case 4: Modelling a kernel element after reduction. Even if all the α(Pi−P∞)
had full weight, there may still be less than g2 points in the union of their supports
due to possible cancellations of points appearing in the supports of several α(Pi−P∞)
with different signs. Exactly as in [3, Sec. 5.1], if P appears within α(Pi − P∞) and
α(Pj−P∞) with respective multiplicities νi and νj of opposite signs, this is modelled by
ensuring that the corresponding ui, uj , and vi+vj share a common factor (X−ξ)ν where
ν = max(|νi|, |νj |). In that case, we look for ϕ(X,Y) = (X − ξ)ν(P̃ (X) + Y Q̃(X)),
with P̃ coprime to Q̃. Once modified the values of the ui and vi, nothing changes
from [3].

Case 5: Modelling a kernel element with multiplicity. Conversely, α(Pi−P∞)
and α(Pj − P∞) can also share the same point with multiplicities of identical sign,
leading to multiplicities in the reduced divisor α(D). Similarly to what was done
in the Case 5 of [3, Sec. 5.1], we can group the corresponding ui, uj , vi and vj in
polynomials U and V such that U |V 2 − f and deg V < degU , and then look for
ϕ = P (X) + Y Q(X) such that P + QV ≡ 0 mod U . Once again, nothing changes
apart from the definition of the ui’s and vi’s.

Case 3: Low weight after applying α. We kept this case for the end because
it is not a straightforward extension of the Case 3 appearing in [3, Sec. 5.1]. Until
now, we assumed that all the Pi’s in the support of D were such that α(Pi −P∞) had
weight g, i.e. dg(xi) 6= 0. We now want to model the case where D =

∑w
i=1(Pi − P∞)

such that each α(Pi − P∞) has weight wi. In [3], this was done using a result from [7]
giving a necessary and sufficient condition for `(Pi − P∞) to be of weight wi. When
α is an endomorphism other than scalar multiplication, no such result holds a priori.
In what follows, we address this issue by designing non-generic α-division polynomials

14

(Definition 11 below) Γα,t and ∆α,t such that α ((x, y)− P∞) has weight w if and only
if ∆α,w(x) = 0 and Γα,w−1(x) 6= 0.

Combining all degeneracies. As in [3, Sec. 5.2], we have to consider situations in
which several of the previous cases occur simultaneously. Note that while we wanted to
compute the whole `-torsion in [3], we now only need one kernel element per endomor-
phism αi to determine χπ mod `. Therefore, after finding a non-zero solution to any of
the subsequent systems, one need not consider the others. The aim of the Section is to
prove Proposition 9 below, in order to bound the number and respective sizes (number
of equations and variables) of all the systems modelling non-generic situations.

Proposition 9. We can model the set of non-generic elements of J [α] as the solution
set of Oη(1) bihomogeneous polynomial systems each consisting of O(g2) equations in
Fq[X1, . . . , Xg, Y1, . . . , Yny] such that ny = O(g2) and the degrees dx and dy in the Xi’s
and Yj’s are respectively in Oη(`3/g) and Oη(1).

To do so, we first describe a data structure to represent any combination of the non-
generic cases detailed above. Then, we explain how we can transform any occurrence
of this data structure into a polynomial system. Throughout this transformation, we
will keep track of equations and variables that we need and sum everything up in
Tables 1 and 2. Everything here is a careful adaptation of [3, Sec. 5.2] with three
notable differences: the fact that we consider α(D) instead of `D, the slight difference
in defining non-generic α-division polynomials and most importantly the fact that the
degrees dx are now in Oη(`3/g) instead of Og(`3). Any reader convinced by this very
brief overview can skip to these tables to avoid technicalities.

A data structure to describe each type of non-genericity. We consider an α-
torsion divisor D of weight w ≤ g (like in Case 1). Next, a partition µ = (µ1, . . . , µk)
of w is picked to represent the multiplicity pattern in the u-coordinate of the `-torsion
divisor, as in Case 2 so that D =

∑k
i=1 µi(Pi − ∞). Then, a vector t = (t1, . . . , tk)

is chosen, to represent the weights of the Pi after applying µi α as in Case 3: for i
in [1, k], the reduced divisor µi α(Pi −∞) is of weight ti. Then, we need to consider
how many common or opposite points these divisors have in their supports to take
into account Cases 4 and 5. We denote by Q1, . . . , Qs the points in the union of the
supports of all the reduced divisors µi α(Pi−∞), keeping only one point in each orbit
under the hyperelliptic involution. We represent the non-genericity by a k × s matrix
M such that its non-zero entries mij verify mij = ordQj (µi α(Pi −∞)) when Qj is in
the support of µi α(Pi −∞) or mij = − ordQ′j (µi α(Pi −∞)) when the hyperelliptic
conjugate Q′j of Qj is in the support. Note that this matrix, that we shall call the
matrix of shared points, represents both multiplicities and non-semi-reduction. Since
the row i represents what happens with points in the support of µi α(Pi −∞), which
is of weight ti, the sum of the absolute values of the entries of the row i of M is equal
to ti. Also, by construction, there is at least one non-zero entry in each column. An
additional complication arises when one of the Pi is a ramification point, i.e. when
its y-coordinate is zero, because this would cause multiplicities if care is not taken,
leading to non-radicality of the polynomial system we build. Since this corresponds to
Pi −∞ being of order 2, the weight ti is equal to 0 or 1. If ti = 0, then the divisor
D−µi(Pi−∞) is also an α-torsion divisor of weight w−µi, so that we can reconstruct

15

D from another polynomial system. There is however no obvious way to avoid the
possibility ti = 1. Therefore, we will encode the fact that Pi is a ramification point by
a bit εi that can be set only in the cases where ti = 1 and µi = 1. Changing the order
of the columns of M amounts to permuting the points Qj . Also, changing the sign of
all the entries of a column j corresponds to taking the opposite of the point Qj . While
it would not change the final complexity not to do so, it makes sense to consider only
normalized tuples, in the sense that the columns of M are sorted in lexicographical
order, and the choice between a point Qj and its opposite is done so that the sum
of all elements in the corresponding column is nonnegative. We remark that this is
not enough to guarantee that two normalized tuples do not describe similar situations.
This is not a problem for the general algorithm: the same α-torsion elements can
correspond to solutions of two different systems, but what is important to us is non-
multiplicity (i.e. radicality of the ideal) in each individual system. All this discussion
is summed up by the following definition:

Definition 10. [3, Def. 13] A normalized non-genericity tuple is a tuple (w, µ, t, ε,M),
where 1 ≤ w ≤ g is an integer, µ = (µ1, . . . , µk) is a partition of w, t and ε are vectors
t = (t1, . . . , tk) and ε = (ε1, . . . , εk) of the same length as µ with 1 ≤ ti ≤ g and
εi ∈ {0, 1}, where εi can be 1 only if ti = 1 and µi = 1, and finally M is a matrix with
k rows and s columns, where 0 ≤ s ≤ g k, and its entries are integers such that:

• For all 1 ≤ i ≤ k, the sum of the absolute values of the entries on the row i is
equal to ti;

• The columns are sorted in lexicographical order;

• The sum of the rows of the matrix is a vector whose coordinates are nonnegative.

We can follow the analysis of [3, Sec. 5.2] to describe more explicitly the equations
and their degrees / number of variables, and remark that the only part that does not
generalize readily is the definition of non-generic α-division polynomials, as in the Case
3 above. Let us first fix this issue.

When the weight ti of µi α(Pi−P∞) is strictly smaller than g, the usual coordinate
system given by the Mumford form is no longer available, due to the vanishing of the
denominator eg(xi). We define an adequate coordinate system to describe non-generic
elements of weight t. Let us consider the variety

Vα,t = {(x, y) ∈ C | α ((x, y)− P∞) has weight t} .

We want to define polynomials ∆α,t and Γα,t such that a point is in Vα,w if and only
if ∆α,w(x) = 0 and Γα,w−1(x) 6= 0 iteratively. First, ∆α,g−1 = GCD(dg, eg), so that
the points (x, y) of Vα,g−1 satisfy ∆α,g−1(x, y) = 0. Assuming that for k < g we have
already constructed a squarefree polynomial ∆α,k vanishing on the abscissae of points
in Vα,k, then one can compute α ((x, y)− P∞) over Fp[x, y]/(∆α,k(x), y2 − f(x)). By
our induction hypothesis, the Mumford form of the result is 〈u, v〉, with u of degree k
and v of degree k − 1. Let Γα,k−1 be the product of LC(u) with the denominator of
LC(v), then Vα,k is the set of points (x, y) such that ∆α,k(x) = 0 and Γα,k−1(x) 6= 0.
Furthermore, ∆α,k−1 = GCD(∆α,k,Γα,k−1) vanishes on the points of Vα,k−1.

To avoid multiplicities, we replace ∆α,t(x) by the square-free polynomial whose
roots are exactly the roots of ∆α,t(x) that are not roots of Γα,t−1(x) when it is necessary.

16

Note that the degrees of the ∆ and Γ are by construction bounded by deg ∆α,g−1 ≤
deg dg with deg dg itself bounded by Oη(`1/g). This way, we state an analogue of [3,
Def. 14] for non-generic α-division polynomials:

Definition 11. The non-generic α-division polynomials uα,t and vα,t are the polyno-
mials in X with coefficients in Fp[x, y]/(∆α,t(x), y2 − f(x)) such that

α((x, y)−∞) =
〈
uα,t(X), vα,t(X)

〉
,

in weight-t Mumford representation: uα,t(X) is monic of degree t, v`,t(X) is of degree
at most t− 1 and they satisfy uα,t | v2

α,t − f .

Now that we have all the ingredients to describe any non-generic situation, let us
prove Proposition 9 by writing carefully the systems coming from non-genericity tuples
and bounding their respective sizes (number of variables and degrees).

Proof of Proposition 9. As in [3], we encode each possible non-generic situation by a
normalized non-genericity tuple (w, µ, t, ε,M) in the sense of Definition 10, and derive
an associated polynomial system whose solution set corresponds to elements D ∈ J [α]
such that:

• the reduced divisor D of weight w has the form
∑k
i=1 µiPi with distinct Pi’s,

• each µi α(Pi − P∞) has weight ti,

• each εi is in {0, 1} and such that εi = 1 if and only if ti = µi = 1.

• the k × s matrix M represents the points shared by the µi α(Pi − P∞) as in the
discussion above, with s ≤ gk.

Following [3, Sec. 5.2], let us write the equations associated to a non-genericity
tuple (w, µ, t, ε,M).

First, we need variables for the coordinates of the Pi such that the α-torsion element
is D =

∑k
i=1 µi(Pi −∞), with Pi 6= ±Pj for all i 6= j. As a consequence, we introduce

2k variables for the coordinates (xi, yi) of all the points Pi. Since these points are
on the curve, they satisfy y2

i = f(xi), however if Pi is a ramification point this can
be simplified into yi = 0 = f(xi), which avoids multiplicities. We get a first set of
equations {

y2
i = f(xi) 6= 0, for all i in [1, k] such that εi = 0,
yi = f(xi) = 0, for all i in [1, k] such that εi = 1. (Sys.1)

We model the fact that Pi 6= ±Pj for i 6= j via the following set of inequalities:

xi 6= xj , for all i, j in [1, k] such that i 6= j. (Sys.2)

The next step is to enforce the fact that the element µi α(Pi −∞) is of weight ti.
For the indices for which ti < g, this is encoded by the equation defining Vµi α,ti :{

∆µi α,ti(xi) = 0,
Γµi α,ti−1(xi) 6= 0, for all i in [1, k] such that ti < g. (Sys.3)

17

while for the indices for which ti = g, this is encoded by the non-vanishing of the
leading coefficient of the µi α-division polynomial:

dg(xi) 6= 0, for all i in [1, k] such that ti = g. (Sys.4)

We now need to model the fact that the µi α(Pi −∞) satisfy the conditions given
by the matrix M . We write µi α(Pi−∞) = 〈ui(X), vi(X)〉 in Mumford representation,
where ui(X) and vi(X) correspond the µi α-division polynomials if ti = g or the non-
generic division polynomials uµi α,ti and vµi α,ti , if ti < g. In both cases, these are
polynomials in X whose coefficients are polynomials in xi and yi. Recall that the
entries of M , denoted by(mij)i∈[1,k],j∈[1,s], are such that mij is the order of Qj in
µi α(Pi−∞) if it is positive, or the opposite of the order of Q′j if it is negative. To this
effect, we introduce s new variables ξj for the abscissae of the Qj , and the following
equations enforce the multiplicities:

u
(n)
i (ξj) = 0, for all i, j in [1, k]× [1, s] and for all n ≤ |mij | − 1 (Sys.5)

u
(|mij |)
i (ξj) 6= 0, for all i, j in [1, k]× [1, s] (Sys.6)

vi(ξj)− vi′(ξj) = 0, for all i, i′, j such that mijmi′j > 0 (Sys.7)
vi(ξj) + vi′(ξj) = 0, for all i, i′, j such that mijmi′j < 0 (Sys.8)

ξj′ 6= ξj , for all j 6= j′. (Sys.9)

In Equations Sys.5 and Sys.6, the notation u
(n)
i is for the n-th derivative of ui. This

simple way of describing multiple roots is valid because the characteristic is large
enough.

The next step of the construction is to consider a semi-reduced version of the divisor
α(D) =

∑k
i=1 µi α(Pi −∞). This semi-reduction process can be described directly on

the matrix M : if two entries in a same column have opposite signs, a semi-reduction
can occur (corresponding to subtracting the principal divisor of the function (x− ξj)),
thus reducing the difference between these entries. This semi-reduction can continue
until one of these two entries reaches zero. This whole process can be repeated as long
as there are still columns containing entries with opposite signs.

Using this process, we compute a matrix M̃ with the same dimensions such that if
M describes all the multiplicities in a divisor, then M̃ describes all the multiplicities
of a semi-reduced divisor equivalent to the input divisor. More precisely, the matrix
M̃ satisfies the following properties: (1) In each column, all elements are nonnegative;
(2) The sum of the rows of M equals the sum of the rows of M̃ ; (3) For all i, j such
that mi,j is nonnegative, m̃ij ≤ mij .

The function ϕ that we will use to model the principality of the divisor α(D) will
have two parts: a product of “vertical lines” corresponding to semi-reductions, and a
part of the form P (X)+Y Q(X), where P and Q are coprime. Modelling the existence
of this second part requires to introduce new entities ũi that are the ui polynomials
from which we remove the linear factors coming from semi-reduction as described by
M̃ . Formally, we have the following equations defining ũi:

ui(X) = ũi(X)
s∏
j=1

(X − ξj)|mij |−m̃ij , for all i ∈ [1, k]. (Sys.10)

Indeed, by definition of the matrix M , the factor (X − ξj)|mij | divides exactly ui(X),
and the factor (X − ξj)m̃ij divides exactly ũi(X). In order to express these conditions

18

efficiently in the polynomial system, we introduce new variables for the coefficients
of the ũi polynomials. Since we are now dealing with a semi-reduced divisor, we can
consider its Mumford representation, i.e. two polynomials U and V with the following
properties:

U =
k∏
i=1

ũi, U |V 2 − f, (Sys.11)

V ≡ vi mod ũi, for all i ∈ [1, k]. (Sys.12)

The expression of U is simple enough, so we do not have to introduce new variables for
its coefficients. However, this will be necessary for the coefficients of the V polynomial.
Finally, in order to impose that the semi-reduced part of ϕ has exactly the zeros
described by this divisor, we have the equation

P +QV ≡ 0 mod U, (Sys.13)

which is expressed with new variables for the coefficients of P and Q.
In Table 1, we summarize all the variables used in the polynomial system and count

them. A key quantity for this count is the degree of U which is the sum of the degrees
of the ũi’s. It can be computed directly from the tuple (w, µ, t, ε,M). Then, to ensure
existence and unicity of the V polynomial to represent the semi-reduced divisor, we
have to impose that deg V < degU , so that we have exactly degU variables for the
coefficients of V . For the polynomials P and Q, we need the degree of P 2 − Q2f to
be exactly degU . After a normalization depending on the parity of degU , we get
degU − g variables for their coefficients.

In the above process of turning the systems describing J [`] into systems describing
J [α], we did not add any new variable, so that the study of [3, Sec. 5.2] recalled in
Table 1 is still valid and in particular the total number of variables is bounded by
4g2 + g.

Variables Number of variables Bound
Coordinates (xi, yi) of Pi 2k 2g
Abscissae ξj of shared points s, column-size of the matrix M g2

Coefficients of the ũi polynomials degU =
∑
i(ti −

∑
j(|mij | − m̃ij)) g2

Coefficients of the V polynomial degU g2

Coefficients of the P and Q polynomials degU − g g2 − g
Total s+ 2k + 3 degU − g 4g2 + g

Table 1: Summary of the variables in the polynomial system corresponding to a nor-
malized non-genericity tuple (w, µ, t, ε,M).

As for the number of equations and their respective degrees, the only difference
with [3] comes from the fact that the coefficients of the ui and vi have degrees in the
xi’s bounded by Oη(`3/g) instead of Oη(`3). For convenience, we also define deg1 as
the degree with respect to the variables xi and deg2 for all the other indeterminates
(we moved the variables yi to the second group because they only appear with degree
≤ 2).

An updated version [3, Tab. 2] is given by Table 2. In particular, there are at
most O(g4) equations involving at most O(g2) variables, and apart from the xi’s, the

19

Equations reference Number of equations (and bound) deg1 deg2
Eq. and Ineq. Sys.1 2k ≤ 2g 2g + 1 ≤ 2
InEq. Sys.2 k(k − 1)/2 ≤ g(g − 1)/2 1 0
Eq. and Ineq. Sys.3 ≤ 2g Oη(`3/g) 0
InEq. Sys.4 ≤ g Oη(`3/g) 0
Eq. Sys.5

∑k
i=1

∑s
j=1 |mij | ≤ g4 Oη(`3/g) ≤ g

InEq. Sys.6 ks ≤ g3 Oη(`3/g) ≤ g
Eq. Sys.7 and Sys.8 ≤ k2s ≤ g4 Oη(`3/g) ≤ g
InEq. Sys.9 ≤ s2 ≤ g4 0 1
Eq. Sys.10

∑k
i=1 ti ≤ g2 Oη(`3/g) ≤ g

Eq. Sys.11 degU ≤ g2 0 O(g3)
Eq. Sys.12

∑k
i=1 deg ũi ≤ g2 Oη(`3/g) O(g2)

Eq. Sys.13 degU ≤ g2 0 O(g3)

Table 2: Summary of the degrees of the equations in the polynomial system corre-
sponding to a normalized non-genericity tuple (w, µ, t, ε,M).

variables have degrees bounded by O(g3). This shows that any system corresponding
to a non-genericity tuple satisfies the degree conditions of Proposition 9. As in [3], the
number of such tuples is bounded by gO(g3) and Proposition 9 is proved.

4 Complexity analysis

Now that we have modelled subsets of J [α] by polynomial systems whose sizes in
terms of equations, variables and degrees have been carefully bounded, we apply the
geometric resolution algorithm and bound its complexity.

4.1 Solving the polynomial systems modelling J [α]
Just as in [3], we use geometric resolutions to describe 0-dimensional (i.e. finite) sets
V ⊂ Fq

n where V is defined over Fq. The terminology here is borrowed from [6], see
also [17].

Definition 12 (Geometric resolution). An Fqe-geometric resolution of V is a tuple
((`1, . . . , `n), Q, (Q1, . . . , Qn)) where:

• The vector (`1, . . . , `n) ∈ Fnqe is such that the linear form

` : Fq
n → Fq

(x1, . . . , xn) 7→
∑n
i=1 `ixi

takes distinct values at all points in V . The linear form ` is called the primitive
element of the geometric resolution;

• The polynomial Q ∈ Fqe [T] equals
∏

x∈V (T − `(x));

• The polynomials Q1, . . . , Qn ∈ Fqe [T] parametrize V by the roots of the polyno-
mial Q, i.e.

V = {(Q1(t), . . . , Qn(t)) | t ∈ Fq, Q(t) = 0}.

20

We will need to bound the complexity of computing geometric resolutions of biho-
mogeneous polynomial systems. We do so by using a variant of [3, Prop. 3], which is
restated here.

Proposition 13. [3, Prop. 3] There exists a probabilistic Turing machine T which
takes as input polynomial systems with coefficients in a finite field Fq and which satisfies
the following property. For any function h : Z>0 → Z>0, for any positive number
C > 0 and for any ε > 0, there exists a function ν : Z>0 → Z>0 and a positive number
D > 0 such that for all positive integers g, `, nx, ny, dx, dy,m > 0 such that nx < C g,
ny < h(g), dx < h(g) `C , dy < h(g), m < h(g), for any prime power q such that the
prime number p dividing q satisfies 2nx+nydnxx d

ny
y < p, and for any polynomial system

f1, . . . , fm ∈ Fq[X1, . . . , Xnx , Y1, . . . , Yny] such that

• for all i ∈ [1,m], degx(fi) ≤ dx and degy(fi) ≤ dy,

• the ideal I = 〈f1, . . . , fm〉 has dimension 0 and is radical,

the Turing machine T with input f1, . . . , fm returns an Fqdν(g) log `e-geometric resolution
of the variety {x ∈ Fq | f1(x) = · · · = fm(x) = 0} with probability at least 5/6, using
space and time bounded above by ν(g) `D g (log q)2+ε.

Proof. This is done in [3, Sec. 3].

Proposition 14. For any ε > 0, there is a constant D such that for any endomorphism
α ∈ Z[η] of norm a multiple of ` > g coprime to the base field characteristic, there is a
Monte Carlo algorithm which computes an Fqe-geometric resolution of the sub-variety
of J [α] consisting of α-generic α-torsion elements, where e = Oη(log `). The time and
space complexities of this algorithm are bounded by Oη(`D(log q)2) and it returns the
correct result with probability at least 5/6.

Proof. Let us consider the sub-variety S ⊂ J [α] consisting of α-generic elements, and
I the corresponding ideal. More precisely, we see I as the ideal of a sub-scheme of
the scheme J [α], itself subscheme of J [degα], which is the kernel of a finite and étale
map because degα is a small multiple of ` and is hence coprime to the characteristic
p thanks to our assumptions on the size of p in the statement of Theorem 2.

Therefore, I is 0-dimensional and radical. Since all the elements in S have the
same weight g we can use the Mumford coordinates 〈u(X), v(X)〉 with deg u = g and
deg v < g − 1 as a local system of coordinates to represent them. But the polynomial
system that we have built is with the (xi, yi) coordinates, that is, it generates the
ideal Iunsym obtained by adjoining to the equations defining I the 2g equations coming
from u(X) =

∏
(X − xi) and yi = v(xi). Then we have deg Iunsym = g! deg I. By

the α-genericity condition, all the fibers in the variety have exactly g! distinct points
corresponding to permuting the (xi, yi) which are all distinct. Therefore the radicality
of I implies the radicality of Iunsym and we can apply the modified version of [3, Prop. 3]
to our polynomial system.

These systems are very similar to those presented in [3], which is the reason why
we will be using Proposition 13. In this paper, however, we bound dx by some h(g) `3/g
instead of h(g) `3. Following the proof provided in [3, Sec. 3], the factor 1/g in the ex-
ponent propagates which yields a final complexity bound bounded by ν(g) `D (log q)2+ε

(the exponent of ` is now a constant).

21

Indeed, by Proposition 8 we now have a function h such that dx ≤ h(g)`3/g instead
of h(g)`3. As we remarked, we can propagate this factor 1/g and compute an Fqe-
geometric resolution of S in time and space bounded by Oη(`D(log q)2+ε), with e =
Oη(log `), using the result of Proposition 13 with C = 3. Note that by our definition
of Oη() the ε can be removed.

Remark. The bottleneck of this algorithm is the computation of geometric resolu-
tions of polynomial systems which is quadratic in δ the maximum of the degrees of the
intermediate ideals 〈f1, . . . , fi〉 (see for instance [17] for a detailed complexity analysis).
This δ is hard to assess, but it is bounded by the (multihomogeneous) Bézout bound,
and we bound it by 2g+nydgxd

ny
y using [3, Prop. 8] (itself derived from [26, Prop. I.1]).

Neglecting factors in Oη(1), δ is in Oη(dgx). The exponent D is essentially determined
by δ, more details we be given when explicitly computing D in the next section.

Following the same proof but invoking Proposition 9 instead of Proposition 8, the
same complexity bound holds for solving the polynomial system associated to any
non-genericity tuple. Even if a non-zero α-torsion element is only found after solving
all the systems associated to non-genericity tuples, the cost for computing ψ mod ` is
only multiplied by a factor in Oη(1).

4.2 An explicit bound for the exponent of log q
From the result of Proposition 14, we can compute the elements Di of Algorithm 1
from which we deduce ψ mod ` in Oη(`D(log q)2+ε) bit operations. However, the use
of the geometric resolution algorithm makes this a Monte-Carlo algorithm while we
claim that our point-counting algorithm is a Las Vegas one. This easily fixed because
once an element Di is computed using this Monte-Carlo algorithm, we can check for
a negligible cost that this Di has the required property (it is a non-zero element of
order ` in J [αi]). Then if it turns out that our Monte-Carlo algorithm did not return
a correct output, we simply repeat until it succeeds. Since the probability of success
is lower-bounded by a positive constant, the expected runtime of the resulting Las
Vegas algorithm is the runtime of the Monte-Carlo algorithm up to multiplication by
a constant.

We have proven that there exists a constant D such that for any prime ` satisfying
conditions (C1) to (C4), computing ψ mod ` is achieved within Oη(`D(log q)2+ε) bit
operations. Since both the number of such primes ` and the size of the largest prime
to consider are in Oη(log q), the overall complexity of our point-counting algorithm is
in Oη((log q)D+3).

Now it only remains to compute an explicit value for D, which we do by following
the proof of [3, Prop. 3]. Going straight to the point, the dominant part in the
complexity analysis that is done in the proof is in Oη(dxδ2 log q + δ2(log q)2), where
δ is as in the previous remark. From the degree bound of Prop 8, δ is in Oη(`3) and
so the complexity of solving the systems is in Oη(`6+3/g log q + `6(log q)2). Since we
have better bounds for point-couting in genus ≤ 3, we can assume that g > 3 and
since ` = Oη(log q), the second term of the sum is the dominant one and so the D of
Proposition 14 can be chosen equal to 6. From the previous paragraph, it follows that
our point-counting algorithm runs in time Oη((log q)9).

Note that our bound on dx is pessimistic because we used the proven cubic bound
for the degrees of Cantor’s division polynomials while we expect them to be actually

22

quadratic (see the final remark of [3, Sec. 6] for detailed experiments and conjectures).
This bound was achieved thanks to recurrence formulas for Cantor’s polynomials that
are provided in [7] but it does not seem possible to do better than a cubic bound using
them. To prove the quadratic bounds in genus 3, another set of formulas also given
in [7] were used. However, they have a bad dependency in the genus g and give a
bound that is worse than cubic for g ≥ 5, which is the reason we do not use them here.

Assuming that we can prove a quadratic bound for the degrees of Cantor’s poly-
nomials, dx is reduced to Oη(`2/g) so that δ is in Oη(`2) and so D is bounded by 4
instead of 6. Thus, the overall complexity would therefore be in Oη(log7 q) for any g.

Since we have removed the dependency in g from the exponent of log q, it is natural
to investigate further how the factor hidden in the Oη() notation grows when g grows.
This is what we do in the next section.

4.3 Dependency in g of the complexity

The goal of this section is to assess the potential of our algorithm to achieve a
polynomial-time complexity both in g and log q on some family of curves. To this
end, we review our complexity analysis with additional attention given to the factors
that previously vanished in the Oη.

Dependency in g of the largest `. Let us first come back to the constant Cη of
Section 2.2. We have seen that the only non-polynomial dependency in g came from
the matrix norm when inverting the linear change of variables ψk =

∑g−1
i=0 aiη

i
k, which

is described by the Vandermonde matrix of the g conjugates of η, denoted by ηk for
k ∈ {1, . . . , g}. Let B be the inverse of this matrix, then we have

Bij =

∑
1≤k1<···<kg−j<g
k1,...,kg−j 6=i

(−1)j−1ηk1 · · · ηkg−j

ηi
∏
k 6=i

(ηk − ηi)
.

Let E = maxk(|η1|, . . . , |ηk|), e = 1/mink(|η1|, . . . , |ηk|), and D = maxi 6=j
(
|ηi − ηj |−1),

then we can bound the absolute value of any entry of B very roughly either by
ge(2ED)g or by ge if 2ED ≤ 1, and the matrix-norm of B is bounded by g times
this previous bound. Note that the possible denominators on the ai are also a nui-
sance but they are bounded by the discriminant of Z[η]. This discriminant is in turn
bounded by maxi 6=j (|ηi − ηj |)2g. Thus, the constant Cη can be bounded by g2cg, where
c has a polynomial dependency in η and its conjugates.

By the prime number theorem, the set L of primes such that
∏
`∈L ` > 2Cη

√
q

is such that the number and size of primes in L is in Õ(g log q). As we already
mentioned, the primes to consider must satisfy the conditions (C1) to (C4) and that
may cause them to be larger by a factor depending exponentially on g a priori. Since
the complexity of computing χπ mod ` is polynomial in `, this implies that the overall
complexity depends exponentially in g in general.

However, a curve in the family Cn,t introduced in Section 2.1 has RM by the real
subfield of Q(ζn), for which we know that the proportion of split primes is 2/(n− 1) =
1/g. Therefore, this first obstacle due to the size of primes to consider can be overcome
provided that we further strengthen the assumptions on the RM-curves we consider.

23

Finding small elements in lattices. This time, the exhaustive search is no longer
sufficient for our needs because of the exponential factor 2g in the size of the ball{
v | ||v||∞ ≤

[
OQ(η) : Z[η]

]−1/g
`1/g

}
. Unfortunately, the currently known algorithms

for finding short vectors in time subexponential in the dimension of the lattice have a
drawback that makes them unusable in our point-counting algorithm. Indeed, although
they run faster than the naive approach, they do not necessarily output the shortest
non-zero vector on the lattice, but an approximation that may be greater by a factor
which is also subexponential in the dimension. The size of the short vector plays a
prominent role in the complexity analysis of our point-counting algorithm as it gives
a bound on the degrees of the equations modelling J [α]. Even if we find an α whose
coordinates are in C`1/g, the constant factor C will cause a factor Cg in the bound
2g+nydgxd

ny
y , and hence in the final complexity of solving the polynomial systems.

Although finding short generators of ideal in number fields is believed to be hard
in general, we may still expect to further restrict the RM curves we consider so as
to fall in a case for which the complexity of such task becomes affordable. Examples
are given in [5], where a classical algorithm is shown to compute short generators of
principal ideals in particular number fields called multiquadratics, i.e. fields of the form
Q(
√
d1, . . . ,

√
dn), in time quasipolynomial in the degree (which is g in our context).

While we acknowledge that it is quite speculative to hope for families of curves of
arbitrary high genus with RM by a Z[η] satisfying all the previous hypotheses, we do
not linger on this because the next point is much more of a concern anyway.

Solving polynomial systems. Using the strategy of Section 3, the complexity is
quadratic in the bound 2g+nydgxd

ny
y of [3, Prop. 8], which includes a factor gO(g2).

Indeed, although the ideals of α-torsion have degree `2 independent of g, this is not
true for the number of variables involved in our modelling, which is at least g2 in the
generic case.

However, even if none of the current complexity bounds for solving polynomial
systems is sufficient to derive a polynomial-time algorithm both in g and log q, there
are still reasons to hope. Indeed, while the analysis made in [1] pointed out the fact that
the systems themselves could have exponential size in g, these fears were based on very
rough estimates of their size as straight-line programs. In fact, the cost of evaluating
our equations of the form P + Qvi = 0 mod ui can be split into two parts : first
computing ui and vi, which amounts to computing α((xi, yi)− P∞) in Fq[xi, yi]/(y2

i −
f(xi)). This is done within O(||α||∞/g log ` + g2) operations on polynomials whose
sizes are bounded by O(g‖|α||∞`3/g) field elements. Then, one has to finally reduce
the degree-g2 polynomial P + Qvi modulo the degree-g polynomial ui, which can be
done naively by replacing powers of X larger than g, for at most g4 operations on
polynomials of degrees ≤ g2 with coefficients in Frac

(
Fq[xi, yi]/(y2

i − f(xi))
)

whose
sizes are bounded by 2g3`3/g field elements.

Thus, our systems have polynomial sizes in both g and log q, which still fosters the
hope that it could still be possible to solve them in time also polynomial in these pa-
rameters, although we recognize that improving on the estimate given by the multiho-
mogeneous Bézout bound would be a significant progress. Other possible workarounds
to avoid an exponential dependency in g could be looking for easier instances in which
we could model the α-torsion by even smaller polynomial systems, or cases for which
there are simpler ways of obtaining a generic α-torsion divisor than the one we used.

24

5 Future work

Based on the facts that the genus-3 RM point-counting algorithm of [2] is practical and
that we extended it to arbitrary genus with a similar complexity (at least conjecturally),
one could hope to use it for practical computations in genus larger than 3. In the
current state, the exponential dependency in g and the difficulties that were already
encountered in genus 3 make it unrealistic, and we also lack an open and competitive
implementation of the geometric resolution algorithm.

Proving the quadratic bound on the degrees of Cantor’s polynomials still has to
be done in order to prove that we have a complexity result close to the genus-3 case.
Cantor’s original paper is quite long and technical but also provides recurrence formulas
that remains relatively simple. However, a straightforward use of these formulas is not
sufficient to establish tight bounds in genus larger than 3. Maybe a deeper and more
technical analysis of intermediate results presented in Cantor’s paper [7] could yield
sharper bounds but we leave this subject to further research.

An interesting problem that could have both practical and theoretical impact in
terms of complexity is to find new (families of) curves with explicit real multiplication.
While RM by multiquadratics is theoretically interesting to control the exponential
dependency in g, finding curves with RM by an order in which a small prime (say
` ≤ 11) happens to be totally split could be a first step towards practical experiments
in genus ≥ 4.

Lastly, even if we were to find a way of solving the polynomial systems within a
polynomial (or at least subexponential) complexity, the number of non-generic systems
is still exponential in g. Heuristically, non-genericity should never be a problem, but
in order to reach a proven subexponential complexity, one also needs to find another
way of dealing with non-genericity.

Acknowledgements. Most of this work already appears as Chapter VII in the au-
thor’s thesis manuscript [1]. As such, the author received helpful feedback from his
advisors Pierrick Gaudry and Pierre-Jean Spaenlehauer; and from his thesis referees
Christophe Ritzenthaler and Fréderik Vercauteren. The author is also grateful to Ben-
jamin Smith and David Kohel for pointing out references and for fruitful discussions.
The author is indebted to the anonymous reviewers for numerous improvements to the
clarity of the paper as well as for pointing out an error in the exponent of log q.

References

[1] Simon Abelard. Counting points on hyperelliptic curves in large characteristic:
algorithms and complexity. PhD thesis, Université de Lorraine, 2018.

[2] Simon Abelard, Pierrick Gaudry, and Pierre-Jean Spaenlehauer. Counting points
on genus-3 hyperelliptic curves with explicit real multiplication. The Open Book
Series, 2(1):1–19, 2019.

[3] Simon Abelard, Pierrick Gaudry, and Pierre-Jean Spaenlehauer. Improved com-
plexity bounds for counting points on hyperelliptic curves. Foundations of Com-
putational Mathematics, 19(3):591–621, 2019.

25

[4] Leonard M. Adleman and Ming-Deh Huang. Counting points on curves and
Abelian varieties over finite fields. Journal of Symbolic Computation, 32(3):171–
189, 2001.

[5] Jens Bauch, Daniel J. Bernstein, Henry de Valence, Tanja Lange, and Chris-
tine Van Vredendaal. Short generators without quantum computers: the case of
multiquadratics. In EUROCRYPT 2017, volume 10210 of LNCS, pages 27–59.
Springer, 2017.

[6] Antonio Cafure and Guillermo Matera. Fast computation of a rational point of a
variety over a finite field. Mathematics of Computation, 75(256):2049–2085, 2006.

[7] David G. Cantor. On the analogue of the division polynomials for hyperelliptic
curves. Journal fur die reine und angewandte Mathematik, 447:91–146, 1994.

[8] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange,
Kim Nguyen, and Frederik Vercauteren. Handbook of elliptic and hyperelliptic
curve cryptography. CRC press, 2005.

[9] Edgar Costa, David Harvey, and Kiran Kedlaya. Zeta functions of nondegenerate
hypersurfaces in toric varieties via controlled reduction in p-adic cohomology. The
Open Book Series, 2(1):221–238, 2019.

[10] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short
generators of principal ideals in cyclotomic rings. In EUROCRYPT 2016, volume
9666 of LNCS, pages 559–585. Springer, 2016.

[11] Pierre Deligne. La conjecture de Weil : I. Publications Mathématiques de l’IHÉS,
43:273–307, 1974.

[12] Matsusaburô Fujiwara. Über die obere schranke des absoluten betrages der
wurzeln einer algebraischen gleichung. Tohoku Mathematical Journal, First Se-
ries, 10:167–171, 1916.

[13] Pierrick Gaudry and Robert Harley. Counting points on hyperelliptic curves over
finite fields. In ANTS 2000, volume 1838 of LNCS, pages 313–332. Springer, 2000.

[14] Pierrick Gaudry, David R. Kohel, and Benjamin A. Smith. Counting points on
genus 2 curves with real multiplication. In ASIACRYPT 2011, volume 7073 of
LNCS, pages 504–519. Springer, 2011.

[15] Pierrick Gaudry and Éric Schost. Construction of secure random curves of genus
2 over prime fields. In EUROCRYPT 2004, volume 3027 of LNCS, pages 239–256.
Springer, 2004.

[16] Pierrick Gaudry and Éric Schost. Genus 2 point counting over prime fields. Journal
of Symbolic Computation, 47(4):368–400, 2012.

[17] Marc Giusti, Grégoire Lecerf, and Bruno Salvy. A Gröbner free alternative for
polynomial system solving. Journal of Complexity, 17(1):154–211, 2001.

[18] David Harvey. Counting points on hyperelliptic curves in average polynomial
time. Annals of Mathematics, 179(2):783–803, 2014.

26

[19] Ming-Deh Huang and Doug Ierardi. Counting points on curves over finite fields.
Journal of Symbolic Computation, 25(1):1–21, 1998.

[20] Kiran S. Kedlaya. Counting points on hyperelliptic curves using Monsky-
Washnitzer cohomology. Journal of the Ramanujan Mathematical Society,
16(4):323–338, 2001.

[21] David R. Kohel and Benjamin A. Smith. Efficiently computable endomorphisms
for hyperelliptic curves. In ANTS VII, volume 4076 of LNCS, pages 495–509.
Springer Verlag, 2006.

[22] Alan G. B. Lauder. Deformation theory and the computation of zeta functions.
Proceedings of the London Mathematical Society, 88(3):565–602, 2004.

[23] Alan G. B. Lauder and Daqing Wan. Counting points on varieties over finite fields
of small characteristic. In J. P. Buhler and P. Stevenhagen, editors, Algorithmic
Number Theory: Lattices, Number Fields, Curves and Cryptography, Mathemati-
cal Sciences Research Institute Publications, pages 579–612. Cambridge University
Press, 2008.

[24] James S Milne. Algebraic number theory (v3. 07). https://www.jmilne.org/
math/CourseNotes/ANTc.pdf, 2009.

[25] Jonathan Pila. Frobenius maps of Abelian varieties and finding roots of unity in
finite fields. Mathematics of Computation, 55(192):745–763, 1990.

[26] Mohab Safey El Din and Éric Schost. A nearly optimal algorithm for deciding
connectivity queries in smooth and bounded real algebraic sets. Journal of the
ACM, 63(6):1– 48, 2017.

[27] Takakazu Satoh. The canonical lift of an ordinary elliptic curve over a finite
field and its point counting. Journal of the Ramanujan Mathematical Society,
15(4):247–270, 2000.

[28] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems. Mathematical programming,
66(1-3):181–199, 1994.

[29] René Schoof. Elliptic curves over finite fields and the computation of square roots
mod p. Mathematics of Computation, 44(170):483–494, 1985.

[30] René Schoof. Counting points on elliptic curves over finite fields. J. Théor.
Nombres Bordeaux, 7(1):219–254, 1995.

[31] Walter Tautz, Jaap Top, and Alain Verberkmoes. Explicit hyperelliptic
curves with real multiplication and permutation polynomials. Canad. J. Math,
43(5):1055–1064, 1991.

[32] Jan Tuitman. Counting points on curves using a map to P1, II. Finite Fields and
Their Applications, 45:301–322, 2017.

27

https://www.jmilne.org/math/CourseNotes/ANTc.pdf
https://www.jmilne.org/math/CourseNotes/ANTc.pdf

	Introduction
	Overview
	Families of RM curves
	The characteristic equation
	Overview of our algorithm

	Modelling kernels of endomorphisms
	The generic case
	Non-generic kernel elements

	Complexity analysis
	Solving the polynomial systems modelling
	An explicit bound for the exponent of logq
	Dependency in g of the complexity

	Future work

