128,186 research outputs found

    Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration

    Full text link
    Testing in Continuous Integration (CI) involves test case prioritization, selection, and execution at each cycle. Selecting the most promising test cases to detect bugs is hard if there are uncertainties on the impact of committed code changes or, if traceability links between code and tests are not available. This paper introduces Retecs, a new method for automatically learning test case selection and prioritization in CI with the goal to minimize the round-trip time between code commits and developer feedback on failed test cases. The Retecs method uses reinforcement learning to select and prioritize test cases according to their duration, previous last execution and failure history. In a constantly changing environment, where new test cases are created and obsolete test cases are deleted, the Retecs method learns to prioritize error-prone test cases higher under guidance of a reward function and by observing previous CI cycles. By applying Retecs on data extracted from three industrial case studies, we show for the first time that reinforcement learning enables fruitful automatic adaptive test case selection and prioritization in CI and regression testing.Comment: Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2017). Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration. In Proceedings of 26th International Symposium on Software Testing and Analysis (ISSTA'17) (pp. 12--22). AC

    Empirical Evaluation of Mutation-based Test Prioritization Techniques

    Full text link
    We propose a new test case prioritization technique that combines both mutation-based and diversity-based approaches. Our diversity-aware mutation-based technique relies on the notion of mutant distinguishment, which aims to distinguish one mutant's behavior from another, rather than from the original program. We empirically investigate the relative cost and effectiveness of the mutation-based prioritization techniques (i.e., using both the traditional mutant kill and the proposed mutant distinguishment) with 352 real faults and 553,477 developer-written test cases. The empirical evaluation considers both the traditional and the diversity-aware mutation criteria in various settings: single-objective greedy, hybrid, and multi-objective optimization. The results show that there is no single dominant technique across all the studied faults. To this end, \rev{we we show when and the reason why each one of the mutation-based prioritization criteria performs poorly, using a graphical model called Mutant Distinguishment Graph (MDG) that demonstrates the distribution of the fault detecting test cases with respect to mutant kills and distinguishment

    Is XML-based test case prioritization for validating WS-BPEL evolution effective in both average and adverse scenarios?

    Get PDF
    In real life, a tester can only afford to apply one test case prioritization technique to one test suite against a service-oriented workflow application once in the regression testing of the application, even if it results in an adverse scenario such that the actual performance in the test session is far below the average. It is unclear whether the factors of test case prioritization techniques known to be significant in terms of average performance can be extrapolated to adverse scenarios. In this paper, we examine whether such a factor or technique may consistently affect the rate of fault detection in both the average and adverse scenarios. The factors studied include prioritization strategy, artifacts to provide coverage data, ordering direction of a strategy, and the use of executable and non-executable artifacts. The results show that only a minor portion of the 10 studied techniques, most of which are based on the iterative strategy, are consistently effective in both average and adverse scenarios. To the best of our know-ledge, this paper presents the first piece of empirical evidence regarding the consistency in the effectiveness of test case prioritization techniques and factors of service-oriented workflow applications between average and adverse scenarios.published_or_final_versio

    On the Use of Mutation Faults in Empirical Assessments of Test Case Prioritization Techniques

    Get PDF
    Regression testing is an important activity in the software life cycle, but it can also be very expensive. To reduce the cost of regression testing, software testers may prioritize their test cases so that those which are more important, by some measure, are run earlier in the regression testing process. One potential goal of test case prioritization techniques is to increase a test suite’s rate of fault detection (how quickly, in a run of its test cases, that test suite can detect faults). Previous work has shown that prioritization can improve a test suite’s rate of fault detection, but the assessment of prioritization techniques has been limited primarily to hand-seeded faults, largely due to the belief that such faults are more realistic than automatically generated (mutation) faults. A recent empirical study, however, suggests that mutation faults can be representative of real faults and that the use of hand-seeded faults can be problematic for the validity of empirical results focusing on fault detection. We have therefore designed and performed two controlled experiments assessing the ability of prioritization techniques to improve the rate of fault detection of test case prioritization techniques, measured relative to mutation faults. Our results show that prioritization can be effective relative to the faults considered, and they expose ways in which that effectiveness can vary with characteristics of faults and test suites. More importantly, a comparison of our results with those collected using hand-seeded faults reveals several implications for researchers performing empirical studies of test case prioritization techniques in particular and testing techniques in general

    Prioritization of combinatorial test cases by incremental interaction coverage

    Get PDF
    Combinatorial testing is a well-recognized testing method, and has been widely applied in practice. To facilitate analysis, a common approach is to assume that all test cases in a combinatorial test suite have the same fault detection capability. However, when testing resources are limited, the order of executing the test cases is critical. To improve testing cost-effectiveness, prioritization of combinatorial test cases is employed. The most popular approach is based on interaction coverage, which prioritizes combinatorial test cases by repeatedly choosing an unexecuted test case that covers the largest number on uncovered parameter value combinations of a given strength (level of interaction among parameters). However, this approach suffers from some drawbacks. Based on previous observations that the majority of faults in practical systems can usually be triggered with parameter interactions of small strengths, we propose a new strategy of prioritizing combinatorial test cases by incrementally adjusting the strength values. Experimental results show that our method performs better than the random prioritization technique and the technique of prioritizing combinatorial test suites according to test case generation order, and has better performance than the interaction-coverage-based test prioritization technique in most cases

    Aggregate-strength interaction test suite prioritization

    Get PDF
    Combinatorial interaction testing is a widely used approach. In testing, it is often assumed that all combinatorial test cases have equal fault detection capability, however it has been shown that the execution order of an interaction test suite's test cases may be critical, especially when the testing resources are limited. To improve testing cost-effectiveness, test cases in the interaction test suite can be prioritized, and one of the best-known categories of prioritization approaches is based on “fixed-strength prioritization”, which prioritizes an interaction test suite by choosing new test cases which have the highest uncovered interaction coverage at a fixed strength (level of interaction among parameters). A drawback of these approaches, however, is that, when selecting each test case, they only consider a fixed strength, not multiple strengths. To overcome this, we propose a new “aggregate-strength prioritization”, to combine interaction coverage at different strengths. Experimental results show that in most cases our method performs better than the test-case-generation, reverse test-case-generation, and random prioritization techniques. The method also usually outperforms “fixed-strength prioritization”, while maintaining a similar time cost

    A Comparison of Test Case Prioritization Criteria for Software Product Lines

    Get PDF
    Software Product Line (SPL) testing is challenging due to the potentially huge number of derivable products. To alleviate this problem, numerous contributions have been proposed to reduce the number of products to be tested while still having a good coverage. However, not much attention has been paid to the order in which the products are tested. Test case prioritization techniques reorder test cases to meet a certain performance goal. For instance, testers may wish to order their test cases in order to detect faults as soon as possible, which would translate in faster feedback and earlier fault correction. in this paper, we explore the applicability of test case prioritization techniques to SPL testing. We propose five different prioritization criteria based on common metrics of feature models and we compare their effectiveness in increasing the rate of early fault detection, i.e. a measure of how quickly faults are detected. The results show that different orderings of the same SPL suite may lead to significant differences in the rate of early fault detection. They also show that our approach may contribute to accelerate the detection of faults of SPL test suites based on combinatorial testingMinisterio de Ciencia e Innovación TIN2009-07366 (SETI)Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía P10-TIC-590
    corecore