
A Comparison of Test Case Prioritization Criteria
for Software Product Lines

Ana B. Sánchez, Sergio Segura and Antonio Ruiz-Cortés

Department of Computer Languages and Systems, University of Seville, Spain
Email: {anabsanchez,sergiosegura,aruiz}@us.es

Abstract—Software Product Line (SPL) testing is challenging
due to the potentially huge number of derivable products.
To alleviate this problem, numerous contributions have been
proposed to reduce the number of products to be tested while
still having a good coverage. However, not much attention has
been paid to the order in which the products are tested. Test
case prioritization techniques reorder test cases to meet a certain
performance goal. For instance, testers may wish to order their
test cases in order to detect faults as soon as possible, which
would translate in faster feedback and earlier fault correction. In
this paper, we explore the applicability of test case prioritization
techniques to SPL testing. We propose five different prioritization
criteria based on common metrics of feature models and we
compare their effectiveness in increasing the rate of early fault
detection, i.e. a measure of how quickly faults are detected. The
results show that different orderings of the same SPL suite may
lead to significant differences in the rate of early fault detection.
They also show that our approach may contribute to accelerate
the detection of faults of SPL test suites based on combinatorial
testing.

I. INTRODUCTION

Software Product Line (SPL) engineering is about devel-
oping a set of related software products by reusing a common
set of features instead of building each product from scratch.
Products in an SPL are differentiated by their features, where a
feature defines capabilities and behaviour of a software system.
SPLs are often represented through feature models. Feature
models capture the information of all the possible products of
the SPL in terms of features and relationships among them.
Figure 1 shows a sample feature model representing an e-
commerce SPL. The automated analysis of feature models
deals with the computer-aided extraction of information from
feature models. These analyses allow studying properties of
the SPL such as consistency, variability degree, complexity,
etc. In the last two decades, many operations, techniques and
tools for the analysis of feature models have been presented
[4].

Product line testing is about deriving a set of products and
testing each product [21]. An SPL test case can be defined
as a product of the product line to be tested, i.e. a set of
features. The high number of feature combinations in SPLs
may lead to thousands or even millions of different products,
e.g. the e-shop model available in the SPLOT repository has
290 features and represents more than 1 billion of products
[19]. This makes exhaustive testing of an SPL infeasible, that
is, testing every single product is too expensive in general. In
this context, there have been many attempts to reduce the space
of testing through feature-based test selection [7], [15], [20],

[22]. Test case selection approaches choose a subset of test
cases according to some coverage criteria. Most common test
selection approaches are those based on combinatorial testing
[15], [20], [21], [22]. In these approaches test cases are selected
in a way that guarantee that all combinations of t features are
tested. Other authors have proposed using search-based and
grammar-based techniques to reduce the number of test cases
while maintaining a high fault detection capability [2], [10].

Test selection techniques have taken a step forward to make
SPL testing affordable. However, the number of test cases
derived from selection could still be high and expensive to run.
This may be especially costly during regression testing when
tests must be repeatedly executed after any relevant change to
the SPL. In this context, the order in which products are tested
is commonly assumed to be irrelevant. As a result, it could be
the case that the most promising test cases (e.g. those detecting
more faults) are run in last place forcing the tester to wait for
hours or even days before staring the correction of faults. In
a worse scenario, testing resources could be exhausted before
running the whole test suite remaining faults undetected.

Test case prioritization techniques schedule test cases for
execution in an order that attempts to increase their effective-
ness at meeting some performance goal [5], [16], [24], [25].
Many goals can be defined, for instance, testers may wish
to order their test cases in order to achieve code coverage
at the fastest rate possible, exercise components in expected
frequency of use or increase the rate of fault detection of test
cases. Given a goal, several ordering criteria may be proposed.
For instance, in order to increase the rate of fault detection,
testers could order test cases according to the number of
faults detected by the test cases in previous executions of
the suite, or according to the expected error-proneness of
the components under test. Test case prioritization techniques
have been extensively studied as a complement for test case
selection techniques in demanding testing scenarios [9], [23].

In this paper, we present a test case prioritization approach
for SPLs. In particular, we explore the applicability of schedul-
ing the execution order of SPL test cases as a way to reduce
the effort of testing and to improve their effectiveness. To
show the feasibility of our approach, we propose five different
prioritization criteria intended to maximize the rate of early
fault detection of the SPL suite, i.e. detect faults as fast as
possible. Three of these criteria are based on the complexity
of the products. Hence, more complex products are assumed
to be more error-prone and therefore are given higher priority
over less complex products, i.e. they are tested first. Another
prioritization criterion is based on the degree of reusability

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of products features. In this case, products including the more
reused features are given priority during tests. This enables the
early detection of high-risk faults that affect to a high portion
of the products. Finally, we propose another criterion based
on the so-called dissimilarity among products, i.e. a measure
of how different two products are. This criterion is based on
the assumption that the more different two products are the
higher is the feature coverage and the fault detection rate. The
proposed prioritization criteria are based on common metrics
of feature models extensively studied in the literature. This
allowed us to leverage the knowledge and tools for the analysis
of feature models making our approach fully automated. Also,
this makes our prioritization criteria complementary to the
numerous approaches for feature-based test case selection.

For the evaluation of our approach, we developed a pro-
totype implementation of the five prioritization criteria using
the SPLAR tool [18]. We selected a number of realistic
and randomly generated feature models and generated both
random and pairwise-based test suites. Then, we used our
fault generator based on the work of Bagheri et al. [2], [10]
to seed the features with faults. Finally, we reordered the
suite according to the five criteria and we measured how
fast the faults were detected by each ordering. The results
show that different orderings of the same SPL suite may lead
to significant differences in the rate of fault detection. More
importantly, the proposed criteria accelerated the detection of
faults of both random and pairwise-based SPL test suites in
all cases. These results support the applicability and potential
benefits of test case prioritization techniques in the context of
SPL. We trust that our work will be the first of a number of
contributions studying new prioritization goals and criteria as
well as new comparisons and evaluations.

The rest of the paper is structured as follows: Section
II presents some background about the analysis of feature
model, combinatorial SPL testing and test case prioritization.
In Section III we propose five prioritization criteria for SPLs.
The evaluation of our approach is described in Section IV.
Section V presents the threats to validity of our work. The
related works are presented and discussed in Section VI.
Finally, we summarize our conclusions and outline our future
work in Section VII.

II. PRELIMINARIES

A. Automated analysis of feature models

SPLs are often graphically represented using feature mod-
els. A feature model is a tree structure that captures the
information of all the possible products of an SPL in terms
of features and relationships among them. Figure 1 shows
a simplified feature model representing an e-commerce SPL
taken from the SPLOT repository [19]. The model depicts how
features are used to specify the commonalities and variabilities
of the on-line shopping systems that belong to the SPL.

The analysis of feature models consists on examining their
properties. This is performed in terms of analysis operations.
Among others, these operations allow finding out whether a
feature model is void (i.e. it represents no products) whether
it contains errors (e.g. dead features) or what is the number
of possible feature combinations in an SPL. Catalogues with
up to 30 different analysis operations on feature models have

E-Shop

Catalogue Security

StandardHigh

Payment

Bank Transfer Credit Card

Mandatory

Optional

Alternative

Or

Requires

Excludes

Search

Public report

Fig. 1: A sample feature model

been reported in the literature [4]. Some tools supporting the
analysis of feature models are AHEAD Tool Suite [1], FaMa
Framework [30] and SPLAR [18]. Next, we introduce some of
the operations that will be mentioned throughout this paper:

All products: This operation takes a feature model as input
and returns all the products represented by the model. For the
model in Figure 1, this operation returns the following list of
products:

P1 = {E-Shop,Catalogue,Payment,Bank Transfer,
Security,High}
P2 = {E-Shop,Catalogue,Payment,Bank Transfer,
Security,Standard}
P3 = {E-Shop,Catalogue,Payment,Credit Card,
Security,High}
P4 = {E-Shop,Catalogue,Payment,Bank Transfer,
Credit Card,Security,High}
P5 = {E-Shop,Catalogue,Payment,Bank Transfer,
Security,High,Search}
P6 = {E-Shop,Catalogue,Payment,Bank Transfer,
Security,Standard,Search}
P7 = {E-Shop,Catalogue,Payment,Bank Transfer,
Security,Standard,Search,Public report}
P8 = {E-Shop,Catalogue,Payment,Credit Card,
Security,High,Search}
P9 = {E-Shop,Catalogue,Payment,Credit Card,
Bank Transfer,Security,High,Search}

Commonality: This operation takes a feature model and a
feature as inputs and returns the commonality of the feature in
the SPL represented by the model. Commonality is a metric
that indicates the reuse ratio of a feature in an SPL, this is, the
percentage of products that include the feature. This operation
is calculated as follows:

Comm(f, fm) =
filter(fm, f)

#products(fm)
(1)

#products(fm) returns the number of products of an input
feature model, fm, and filter(fm, f) returns the number of
products in fm that contain the feature f . The result of this
operation is in the domain [0,1]. As an example, consider
the model in Figure 1 and the feature Credit Card. The
commonality of this feature is calculated as follows:

Comm(f, fm) = filter(fm,Credit Card)
#products(fm) = 4

9 = 0.45

The feature Credit Card is therefore included in 45% of



the products. A more generic definition of this operation is
presented in [4].

Cross-Tree-Constraints Ratio (CTCR): This operation takes
a feature model as input and returns the ratio of the number of
features (repeated features counted once) in the cross-tree con-
straints (that are typically inclusion or exclusion constraints)
to the total number of features in the model [3], [4], [17].
This metric is usually expressed as a percentage value. This
operation is calculated as follows:

CTCR(fm) =
#constraintsfeatures(fm)

#features(fm)
(2)

#constraintsfeatures(fm) is the number of features in-
volved in the cross-tree constraints and #features(fm) is
the total number of features of the model fm. The result of
this operation is in the domain [0,1]. For instance, the CTCR
of the model in Figure 1 is 3/10 = 0.3 (30%).

Coefficient of Connectivity-Density (CoC): In graph theory,
this metric represents how well the graph elements are con-
nected. Bagheri et al. [3] defined the CoC of a feature model as
the ratio of the number of edges (any connection between two
features, including constraints) over the number of features in
a feature model. This is calculated as follows:

CoC(fm) =
#edges(fm)

#features(fm)
(3)

#edges(fm) denotes the number of parent-child connections
plus the number of cross-tree constraints of an input model
fm and #features(fm) is the number of total features in the
model fm. For instance, the model in Figure 1 has 11 edges
(9 parent-child connections plus 2 constraints) and 10 features,
i.e. CoC(fm) = 11/10 = 1.1.

Cyclomatic Complexity (CC): The cyclomatic complexity of
a feature model can be described as the number of distinct
cycles that can be found in the model [3]. Since a feature model
is a tree, cycles can only be created by cross-tree constraints.
Hence, the cyclomatic complexity of a feature model is equal
to the number of cross-tree constraints of the model. In Figure
1, cc(fm) = 2.

Variability Coverage (VC): The variability coverage of a
feature model is the number of variation points of the model
[10]. A variation point is any feature that provides different
variants to create a product. Thus, the variation points of
a feature model are the optional features plus all non-leaf
features with one or more non-mandatory subfeatures. In
Figure 1, vc(fm) = 5 because features E-Shop, Payment,
Security, Search and Public report are variation points.

B. Combinatorial SPL testing

Testing an SPL is a challenging activity compared to testing
single systems. Although testing each SPL product individually
would be ideal, it is too expensive in practice. In fact, the
number of possible products derived from a feature model
usually increases exponentially when the number of features
grows, leading to thousand or even millions of different
products. In this context, there have been many attempts to
reduce the space of testing through test selection [7], [15], [20],
[22]. The goal of test selection approaches is to reduce the set
of feature combinations to a reasonable but representative set

of products achieving a high coverage of feature interactions
[7]. Most common test selection approaches are those based on
combinatorial testing [15], [20], [21], [22]. In these approaches
test cases are selected in a way that guarantees that all com-
binations of t features are tested, this is called t-wise testing
[22]. One of the best-known variants of combinatorial testing
is the 2-wise (or pairwise) testing approach [15]. This proposal
generates all possible combinations of pairs of features based
on the observation that most faults originate from a single
feature or by the interaction of two features [21]. As an
example, Table I depicts the set of products obtained when
applying 2-wise selection to the model in Figure 1. The rows
of the table represent features and the columns products. An
“X” means that the feature of the row is included in the product
of the column, and a gap means that the feature is not included.
The number of products to be tested is reduced from 9 to 6.
Oster et al. [20] achieved to reduce the number of products of
Electronic Shopping model [19] from 2.26·1049 to 62 products
using pairwise coverage.

Features/Products P1 P2 P3 P4 P5 P6

Bank Trasnsfer X X X X

Payment X X X X X X

Security X X X X X X

High X X X X

Catalogue X X X X X X

Public Report X

Credit Card X X X

E-Shop X X X X X X

Standard X X

Search X X X X

TABLE I: 2-wise coverage results for SPL in Figure 1

C. Test case prioritization

Running all the test cases in an existing test suite can
suppose a large amount of effort or even become infeasible due
to deadlines and cost constraints. Rothermel et al. [25] reported
about an industrial application of 20,000 lines of code whose
test suite required seven weeks to be run. For these reasons,
various techniques for reducing the cost of testing have been
proposed including test case prioritization techniques. Test case
prioritization techniques [5], [16], [24], [25] schedule test
cases for execution in an order that attempts to increase their
effectiveness at meeting some performance goal [25]. There
are many possible goals of prioritization [25]. For example,
testers may wish to order their test cases in order to reduce
the cost of testing (e.g. measuring the testing execution time)
or increase the rate of critical fault detection of test cases.
Furthermore, given a prioritization goal, various prioritization
criteria may be applied to a test suite with the aim of meeting
that goal. For instance, in an attempt to increase the rate of
fault detection, we could prioritize test cases in terms of the
complexity of the system giving priority to the test cases that
exercise the most complex components, e.g. those with the
higher cyclomatic complexity. Alternatively, we could order
test cases according to their coverage running first those test
cases that exercise a larger portion of the code.



Test%case%priori,za,on%for%SPLs%
Our%vision%

Test%case%
selec,on%

Test%case%
priori,za,on%

SPL%Test%
%Suite%

Priori,zed%
SPL%Test%Suite%

Selec,on%criteria% Priori,za,on%criteria%

Feature%
model%

Fig. 2: Overview of the SPL testing process

III. TEST CASE PRIORITIZATION CRITERIA FOR
SOFTWARE PRODUCT LINES

In this section, we propose the application of test case
prioritization techniques in the context of SPL. As a part of
the proposal we define and compare five test case prioritization
criteria to maximize the rate of early fault detection of a test
suite. This goal aims to achieve a sequence of test cases to
be run in a way that faults are detected as soon as possible.
This enables faster feedback about the system under test and
lets developers begin correcting faults earlier. Hence, it could
provide faster evidence that quality objectives were not met
and the assurance that those tests with greatest fault detection
ability will have been executed if testing is halted [26].

Figure 2 depicts a rough overview of the general SPL
testing process and how our prioritization approach fits on
it. First, the variability model (usually a feature model) is
inspected and the set of products to be tested is selected.
The selection could be done either manually (e.g. selecting
the product portfolio of the company) or automatically (e.g.
using t-wise). Once the suite is selected, specific test cases
should be designed for each product under test. Then, the
set of products to be tested could be prioritized according to
multiple criteria determining the execution order of the test
cases. Some of the criteria may need analyzing the feature
model or using feedback from previous test executions during
regression testing. A point to remark is that prioritization does
not require creating new test cases, just reordering the existing
ones. As a result, prioritization could be re-executed as many
times as needed with different criteria. For instance, during the
initial stages of development products could be reordered to
maximize feature coverage and during regression testing they
could be reordered to detect critical faults as soon as possible,
e.g. those causing failures in a higher number of products.
The prioritization criteria proposed are presented in the next
sections.

A. CTCR prioritization criterion

This criterion is based on the Cross-Tree-Constraints Ratio
(CTCR) defined in Section II-A. The CTCR metric has been
used to calculate the complexity of feature models and it is
correlated with the possibility and ease of change in a model
when modifications are necessary [3]. This metric inspired
us to define the CTCR prioritization criterion as a way to
identify the more complex products in terms of the degree of
involvement in the constraints of their features. We hypothesize
that this criterion can reduce testing effort while retaining a
good fault detection rate by testing earlier the more complex
products in terms of constraints.

Given a product p and a feature model fm, we define the

CTCR criterion as follows:

CTCR(p, fm) =
#constraintsfeatures(p, fm)

#features(p)
(4)

#constraintsfeatures(p, fm) denotes the number of dis-
tinct features in p involved in constraints and #features(p) is
the number of total features in product p. This formula returns
a value that indicates the complexity of product p in terms of
features involved in constraints.

As an example, the CTCR prioritization value of the
products P4 and P6 presented in Section II-A is calculated
as follows:

CTCR(P4, fm) = 2/7 = 0.29

CTCR(P6, fm) = 0

In P4, the Credit Card and High Security features share
an include constraint and also High Security feature has an
exclude constraint with Public report. However, the features
in P6 do not involve any constraints. Thus, product P4 will be
tested earlier than product P6 according to the CTCR values
i.e. CTCR(P4, fm) > CTCR(P6, fm).

B. CoC prioritization criterion

The Coefficient of Connectivity-Density (CoC) metric,
presented in Section II-A, was proposed to calculate the
complexity of a feature model in terms of the number of edges
and constraints of the model [3]. We propose to adapt this
metric for SPL products and use it as a test case prioritization
criterion. The goal is to measure the complexity of products
according to their CoC and give higher priority to those ones
with higher complexity.

Given a product p and a feature model fm, we define the
CoC of a product as shown below:

CoC(p, fm) =
#edges(p, fm)

#features(p)
(5)

#edges(p, fm) denotes the number of edges (parent-child
connections plus cross-tree constraints) among the features
in product p. This formula returns a value that indicates the
complexity of p based on the CoC metric.

As an example, the CoC value of the products P7 and P9
presented in Section II-A is calculated as follows:

CoC(P7, fm) = 8/8 = 1

CoC(P9, fm) = 9/8 = 1.13

In P7, the E-Shop feature is connected with edges to
four features (Catalogue, Payment, Security and Search). Also,
Payment is connected to the Bank Transfer feature, Security
to the Standard Security feature, Search to Public report and
Public report has an exclude constraint with High Security.
Note that the exclude constraint is considered because it is
being fulfilled by this product since it includes Public report
feature and not High Security feature. Thus, P9 has higher
priority than P7 and therefore it would be tested first.



C. VC&CC prioritization criterion

In [10], the authors presented a genetic algorithm for
the generation of SPL products with an acceptable tradeoff
between fault coverage and feature coverage. As part of their
algorithm, they proposed a fitness function to measure the
ability of a product to exercise features and reveal faults, i.e.
the higher the value of the function, the better the product.
This function is presented below:

V C&CC(p, fm) =
√
vc(p, fm)2 + cc(p, fm)2 (6)

vc(p, fm) calculates the variability coverage of a product p
of the model fm and cc(p, fm) represents the cyclomatic
complexity of p (c.f. Section II-A).

Since this function has been successfully applied to SPL
test case selection, we propose to explore its applicability
for test case prioritization. According to this criterion, those
products with higher values for the function are assumed to be
more effective in revealing faults and will be tested first.

As an example, the VC&CC value of the products P3 and
P6 presented in Section II-A is calculated as follows:

V C&CC(P3, fm) =
√
32 + 22 =

√
9 + 4 = 3.6

V C&CC(P6, fm) =
√
42 + 02 =

√
16 + 0 = 4

In product P3, E-Shop, Payment and Security features
are variation points. Also, P3 presents a require constraint
with Credit Card and High Security features and an exclude
constraint between High Security and Public report. According
to this criterion, product P6 would be tested earlier than
product P3, V C&CC(P6) > V C&CC(P3).

D. Commonality prioritization criterion

We define a commonality-based prioritization criterion
that calculates the degree of reusability of products features.
That is, the features that have higher commonality and the
products that contain them will be given priority to be tested.
This enables the early detection of faults in highly reused
features that affect to a high portion of the products providing
faster feedback and letting software engineers begin correcting
critical faults earlier.

Given a product p and a feature model fm, we define the
Commonality criterion as follow.

Comm(p, fm) =

#features(p)∑
i=1

(Comm(fi))/#features(p)

(7)
fi denotes a feature of product p. The range of this measure is
[0,1]. Roughly speaking, the priority of a product is calculated
by summing up the commonality of its features. The sum is
then normalized according to the number of product features.

As an example, the Commonality values of the products
P1 and P2 presented in Section II-A are calculated as follows:

Comm(P1, fm) = (Comm(EShop) + Comm(Catalogue)

+Comm(Payment) + Comm(Bank Transfer) + Comm(High)

+Comm(Security))/6 = ((9 + 9 + 9 + 7 + 9 + 6)/9)/6 = 0.91

Comm(P2, fm) = ((9 + 9 + 9 + 7 + 9 + 3)/9)/6 = 0.85

Based on these results, P1 would appear before than P2 in
the prioritized list of products and would be tested first.

E. Dissimilarity prioritization criterion

A (dis)similarity measure is used for comparing similarity
(diversity) between a pair of test cases. Hemmati et al. [11]
and Henard et al. [12] investigated ways to select an affordable
subset with maximum fault detection rate by maximizing
diversity among test cases using the dissimilarity measure. The
results obtained in those papers suggested that two dissimilar
test cases have a higher fault detection rate than similar
ones since the former ones are more likely to cover more
components than the latter.

In this context, we propose to prioritize the test cases based
on this dissimilarity metric, testing the most different products
first, assuring a higher feature coverage and a higher fault
detection rate. In order to measure the diversity between two
products, we use the Jaccard distance that compare similarity
of sample sets [29]. Jaccard distance is defined as the size of
the intersection divided by the size of the union of the sample
sets. In our context, each set represents a product containing a
set of features. Thus, we choose first the two more dissimilar
products (i.e. the products with the highest distance between
them) and we add them to a list. Then, we continue adding
the products with the highest distance between them until all
products have been added to the list. The resulting list of
products represents the order of products to be tested.

Given two products pa and pb, we define the Dissimilarity
formula as follows:

Dissimilarity(pa, pb) = 1− |pa
⋂
pb|

|pa
⋃

pb|
(8)

pa and pb represent different set of features (i.e. products). The
resulting distance varies between 0 and 1, where 0 denotes that
the products pa and pb are the same and 1 indicates that pa
and pb share no features.

The dissimilarity values of the products P1, P7 and P8
presented in Section II-A are calculated as follows:

Dissimilarity(P1, P7) = 1− 5/9 = 0.44

Dissimilarity(P7, P8) = 1− 5/10 = 0.5

For example, regarding to the distance between P1 and
P7, they have 5 features in common (E-Shop, Catalogue,
Payment, Bank Transfer and Security) out of 9 total features
(the previous five plus High, Standard, Search, Public report).
P7 and P8 present greater distance between them than P7 and
P1. Thus, P7 and P8 would be tested earlier than P1.

IV. EVALUATION

In this section, we present two experiments to answer the
following research questions:

RQ1: Is the order in which SPL products are tested relevant?
RQ2: Are the prioritization criteria presented in Section 2
effective at improving the rate of early fault detection of SPL
test suites?



RQ3: Can our prioritization approach improve the rate of early
fault detection of current test selection techniques based on
combinatorial testing?

We begin by describing our experimental settings and then
we explain the experimental results.

A. Experimental settings

In order to assess our approach, we developed a prototype
implementation for each prioritization criterion. Our prototype
takes an SPL test suite and a feature model as inputs and
generates an ordered set of test cases according to the prior-
itization criterion selected. We used the SPLAR tool [18] for
the analysis of feature models. All the performed experiments
were implemented using Java 1.6. We ran our tests on a Linux
CentOS release 6.3 machine equipped with an Intel Xeon
X5560@2.8Ghz microprocessor and 4 GB of RAM memory.

1) Models: For our experiments we randomly selected 7
feature models of various sizes from the SPLOT repository
[19]. Also, we generated 8 random models with up to 500
features using the BeTTy online feature model generator [27].
Table II lists the characteristics of the models. For each model,
the name, the number of features and products and the CTCR
are presented.

Name Features Products CTCR Faults

Web portal 43 2120800 25% 4

Video player 71 4, 5 · 1013 0% 4

Car selection 72 3 · 108 31% 4

Model transf. 88 1 · 1012 0% 8

Fm test 168 1, 9 · 1024 28% 16

Printers 172 1, 14 · 1027 0% 16

Electronic shop 290 4, 52 · 1049 11% 28

Random1 300 7, 65 · 1039 8% 28

Random2 300 1, 65 · 1032 5% 28

Random3 350 7, 41 · 1037 10% 32

Random4 400 3, 06 · 1044 10% 40

Random5 450 3, 80 · 1054 0% 44

Random6 450 1, 03 · 1048 5% 44

Random7 500 4, 97 · 1036 5% 48

Random8 500 2, 21 · 1058 5% 48

TABLE II: Feature models used in our experiments

2) Fault generator: To measure the effectiveness of our
proposal, we evaluated the ability of our test case prioritization
criteria to detect faults in the SPL under test. For this purpose,
we implemented a fault generator for feature models. This
generator is based on the fault simulator presented by Bagueri
et al. which has been used in several works to evaluate the fault
detection rate of SPL test suites [2], [10]. Our fault generator
simulates faults in n-tuples of features with n ∈ [1, 4] (where
n is a natural integer giving the number of features present
in the n-tuple). Faults in n-tuples simulate interaction faults
which require the presence of a set of features to be revealed.
Studies show that faults caused by the interaction of between

2 and 4 features are frequent in practice [6]. The number of
faults seeded on each model is equal to m/10 being m the
number of model features. This information is detailed in the
last column of Table II. Each type of fault was introduced in the
same proportion, i.e. 25% in single features, 25% in 2-tuples
of features, 25% in 3-tuples of features and 25% in 4-tuples of
features. Hence, our generator receives a feature model as input
and returns a random list of faulty feature sets as output. For
instance, for the model in Figure 1 the faults seeded could be
given as follows: {{High}{Credit Card,Search}} representing
a fault in the feature High Security and another fault caused by
the interaction between the Credit Card and Search features.

3) Evaluation metric: In order to evaluate how quickly
faults are detected during testing we used the Average Per-
centage of Faults Detected (APFD) metric [23], [25], [26],
[28]. The APFD metric measures the weighted average of the
percentage of faults detected during the execution of the test
suite. To formally illustrate APFD, let T be a test suite which
contains n test cases, and let F be a set of m faults revealed
by T. Let TFi be the position of the first test case in ordering
T’ of T which reveals the fault i. According to [8], the APFD
metric for the test suite T’ could be given by the equation:

APFD = 1− TF1+TF2+...+TFn

n×m + 1
2n

APFD value ranges from 0 to 1. A prioritized test suite
with higher APFD value has faster fault detection rates than
those with lower APFD values. For example, consider a
test suite of 4 test cases, T1 through T4, and 5 faults de-
tected by those test cases, as shown in Table III. Consider
two orderings of these test cases, ordering O1: T1,T2,T3,T4
and ordering O2: T3,T2,T4,T1. According to the previous
APFD equation, ordering O1 produces an APFD of 58%
(1 − 1+1+2+3+4

4×5 + 1
2×4 = 0.58) and ordering O2 an APFD

of 78% (1− 1+1+1+1+3
4×5 + 1

2×4 = 0.78), being O2 much faster
detecting faults than O1.

Tests/Faults F1 F2 F3 F4 F5

T1 X X

T2 X X

T3 X X X X

T4 X

TABLE III: Test suite and faults exposed

B. Experiment 1. Prioritizing SPL test suites

In order to answer RQ1 and RQ2, we checked the impact
on the rate of early fault detection of the prioritization criteria
defined in Section III. The experimental setup and the results
are next reported.

Experimental setup. For each model presented in Table II,
we performed several steps. First, we used our fault generator
to simulate faults in the SPL obtaining as a result a list of
faulty features sets. Then, we randomly generated a test suite
using SPLAR. The suite was composed of between 100 and
500 products depending on the size of the model. This step
simulates the manual tests selection of an SPL engineer who
could choose the products to be tested following multiple
criteria: cost, release plan, users requests, marketing strategy,



etc. For each fault in the model, we made sure that there was at
least one product in the suite detecting it, i.e. the suite detected
100% of the faults. Once generated, the suite was ordered
according to the prioritization criteria defined in Section III
resulting in six total test suites, one random suite and five
prioritized suites. Finally, we measured how fast the faults
were detected by each suite calculating their APFD values.
For the random suite the APFD was calculated as the average
of 10 random orderings to avoid the effects of chance.

Experimental results. Table IV depicts the size of the test
suites and the APFD values obtained by the random and
the five prioritized suites for each model. The best value on
each row is highlighted in boldface. Also, mean values are
shown in the final row. As illustrated, there are significant
differences on the APFD average values ranging from the
74.9% of the Commonality-ordered suite to the 96.5% reached
by the VC&CC-ordered suite. These differences are even more
noticeable in individual cases. For the model “Random3”, for
instance, the difference between the random and VC&CC-
ordered suite is 33.3 points, i.e. from 63.9% to 97.2%. The
best average results were obtained by the VC&CC criterion
with 96.5%, followed by CoC (90.6%), Dissimilarity (87.4%),
CTC (84.5%), random criterion (77.4%) and Commonality
(74.9%). Interestingly, the APFD values obtained by the ran-
dom suites in the models of lower size were remarkably high,
e.g. APFD(V ideoplayer) = 92.0%. We found that this was
due to the low number of faults seeded and to the size of
the models that made the faults easily detectable using just a
few tests. In the eight largest models, however, the difference
between the random suite APFDs (63.9%-77.5%) and the
ones of the prioritized suites (91.5%-98.2%) was noticeable.
This suggests that our approach is especially helpful in large
test spaces. Finally, we may remark that all the proposed
prioritization criteria except Commonality improved the mean
value obtained by the random ordering. In fact, for all models
at least several of the prioritized suites improved the random
APFD values.

Figure 3 shows the percentage of detected faults versus
the fraction of the test suite used for the model “Random3”.
Roughly speaking, the graphs show how the APFD value
evolves as the test suite is exercised. It is noteworthy that the
VC&CC-ordered suite, for instance, detected all the faults (32)
by using just 15% of the suite, i.e. 75 test cases out of 500
with the highest priority. Another example is the Dissimilarity-
ordered suite that detected all the faults by using only the 45%
of the suite. The random suite, however, required using 95% of
the test cases to detect exactly the same faults. This behaviour
was also observed in the rest of the models under study. In real
scenarios, with a higher number of faults and time-consuming
executions, this acceleration in the detection of faults could
imply important saving in terms of debugging efforts.

The results obtained answer positively to RQ1 and RQ2.
Regarding RQ1, the results show that the order in which tests
are run is definitely relevant and can have a clear impact
on the early fault detection rate of an SPL suite. Regarding
RQ2, the results suggest that the presented ordering criteria,
especially VC&CC, CoC and Dissimilarity could be effective
at improving the rate of early fault detection of SPL test suites.

FM Suite size APFD

Random CoC CTC Comm VC&CC Diss

Web p. 100 81.5 95.8 94.3 60.0 99.0 92.3

Car s. 100 83.6 96.5 94.8 92.5 97.8 90.5

Video p. 100 92.0 98.8 93.0 76.0 98.8 97.3

Model t. 100 83.3 94.8 75.5 79.9 95.4 91.5

Fm test 300 85.2 87.3 83.4 84.3 94.3 93.6

Printers 300 92.9 94.1 98.4 93.9 96.3 96.5

E. shop 300 90.2 93.4 92.1 87.6 96.3 97.0

Random1 300 64.7 92.6 84.2 60.1 97.9 89.1

Random2 300 73.1 87.9 78.6 77.5 98.2 80.4

Random3 500 63.9 79.6 70.7 80.7 97.2 85.2

Random4 500 69.7 93.9 92.2 53.8 97.8 65.8

Random5 500 77.5 91.6 78.4 73.7 91.5 89.1

Random6 500 69.5 83.5 73.6 43.8 95.1 88.8

Random7 500 66.3 90.4 81.6 72.6 95.7 87.0

Random8 500 67.3 79.3 76.3 86.3 95.9 67.0

Average 77.4 90.6 84.5 74.9 96.5 87.4

TABLE IV: APFD for random and prioritized suites

C. Experiment 2. Prioritization + combinatorial testing

In order to answer RQ3, we checked whether our prioriti-
zation criteria could be used to increase the rate of early fault
detection of test suites based on combinatorial selection. The
experimental setup and results are next reported.

Experimental setup. The experimental procedure was similar
to the one used in Experiment 1. Feature models were seeded
with the same faults used in our previous experiment. Then,
for each model, we generated a 2-wise test suite using the
SPLCAT tool presented by Johansen et al. [13]. As a result,
we obtained a list of products covering all the possible pairs
of features on each model. Then, we prioritized the list of
products according to our five prioritization criteria and we
calculated the APFD of the resulting six suites, 2-wise and
five prioritized suites. It is noteworthy that SPLCAT uses an
implicit prioritization criterion placing first in the list those
products that covers the most uncovered pairs of features.
This tends to place those products with more features at the
top of the list getting fast feature coverage. This approach
therefore is likely to increase the fault detection rate and thus
it is considered as an extra prioritization approach in our
comparison.

Experimental results. The results of this experiment are
presented in Table V. For each model, the size of the pairwise
test suite, the number of faults detected out of the total number
of seeded faults and the APFD values of each ordering are pre-
sented. Note that the generated pairwise suites did not detect
all the faults seeded on each model. As illustrated, the APFD
average values ranged from 55.0% to 90.7%. As expected, the
APFD average value of the pairwise suite (85.0%) was higher
than the one of the random suite (77.4%) in Experiment 1. This
was due to implicit prioritization criterion used by the SPLCAT
tool that places at the top of the list those products containing
a higher number of uncovered pairs of features, usually the
largest products. As in the previous experiment, the best APFD



(a) Random APFD (b) CoC APFD (c) CTC APFD

(d) Commonality APFD (e) VC&CC APFD (f) Dissimilarity APFD

Fig. 3: APFD metrics for Random3 model

average results were obtained by the VC&CC criterion with
90.7%, followed by CoC (88.0%) and Dissimilarity (86.9%).
The pairwise suite got the fourth best APFD average value
(85.0%). The CTC and Commonality prioritization criteria did
not get to improve the results of the original suite. In terms
of individual values, CoC got to improve the pairwise APFD
values in 13 out of 15 models, VC&CC in 12 out of 15
models and Dissimilarity in 11 out of 15. As in our previous
experiment, there was not a single model in which the pairwise
suite obtained a higher APFD value than all the rest prioritized
suites.

Figure 4 shows the percentage of detected faults versus the
fraction of suite used for the feature model “Random3”. In this
example, it is remarkable that VC&CC-ordered suite detected
all the faults with just 20% of the suite (i.e. 27 tests out of
135). Also, the CoC-ordered and the pairwise suites detected
the same faults with only 50% of the suite. However, the CoC-
ordered suite detected more faults earlier, i.e. the curve of CoC
is slightly steeper than the 2-wise curve. A similar behaviour
was observed in the rest of the models under study.

In response to RQ3, our results show that our prioritization
criteria can be helpful to increase the rate of early fault
detection of the current combinatorial testing techniques.

V. THREATS TO VALIDITY

In this section we discuss some of the potential threats to
the validity of our studies. In order to avoid any bias in the
implementation and make our work reproducible, we used a
number of validated and publicly available tools. In particular,
we used SPLAR [18] for the analysis of feature models, BeTTy
[27] for the generation of random feature models, SPLCAT
[13] for pairwise test selection and also we implemented a fault
generator based on the work of Bagheri et al. [10]. Due to the
lack of real SPLs with available test cases, we evaluated our
approach by simulating faults in a number of SPLs represented
by published and randomly generated models of different sizes.

This may be a threat to our conclusions. However, we may
remark that the evaluation of testing approaches using feature
models is extensively used in the literature [12], [13], [14]. The
use of a fault generator also implies several threats. The type,
number and distribution of generated faults could not be the
one found in real code. We may emphasize, however, that our
generator is based on the fault simulator presented by Bagheri
et al. [10] which has been validated in the evaluation of several
SPL test case selection approaches [2], [10]. Furthermore, we
remark that the characteristics and distribution of faults have
a limited impact in our work since we are not interested in
how many faults are detected but how fast they are revealed
by different orderings of the same test suite.

VI. RELATED WORK

Concerning the reduction of the number of test cases,
Sebastain Oster et al. [20] provided a methodology to apply
combinatorial testing to an SPL feature model combining
graph transformation and forward checking. In [15], the au-
thors implemented several combinatorial testing techniques
adapted to the SPL context. Additionally, Bagheri et al. [2] pro-
posed eight coverage criteria using a grammar-based method to
reduce the number of test cases to be tested. Ensan et al. [10]
presented a search-based approach using Genetic Algorithms
to generate reduced test suites with a high fault-detection
capability. As a special case of tests selection, we mention
the work performed by Henard et al. [12] that proposed t-
wise covering and prioritization to generate products based on
similarity heuristics. In contrast to previous works, we focus
on prioritization, not selection. That is, we focus on finding
efficient ways of exploring the test space rather than reducing
it. To that purpose, we propose a set of prioritization criteria
implemented with available tools for the automated analysis
of feature models. This makes our approach automated and
complementary to all previous works on feature-based test case
selection.

Respecting the contributions on test case prioritization,



FM Suite size Detected faults APFD

2wise CoC CTC Comm VC&CC Diss

Web p. 19 3/4 90.3 93.9 90.4 46.5 97.4 97.4

Car s. 24 4/4 81.2 90.6 90.6 51.0 80.2 71.9

Video p. 18 4/4 76.4 93.1 76.4 22.2 83.3 83.3

Model t. 28 7/8 78.8 88.0 78.8 49.2 85.5 80.9

FM test 43 15/16 85.0 68.8 55.3 53.6 93.9 75.4

Printers 129 13/16 96.2 97.1 96.2 58.0 89.5 96.8

E shop 24 24/28 81.7 82.6 79.7 55.6 78.8 85.2

Random1 124 23/28 81.1 83.4 83.6 61.7 96.6 92.2

Random2 105 25/28 86.2 91.6 90.1 52.3 94.8 90.0

Random3 135 28/32 84.7 87.4 84.7 68.8 97.1 89.9

Random4 178 34/40 86.9 88.8 87.8 62.9 95.7 90.7

Random5 126 38/44 86.9 94.9 86.9 61.3 94.6 80.6

Random6 157 39/44 85.1 86.1 82.0 48.7 92.4 88.3

Random7 253 37/48 84.9 84.2 79.2 63.1 85.8 91.8

Random8 216 40/48 89.2 90.4 86.1 70.8 95.1 88.3

Average 85.0 88.0 83.2 55.0 90.7 86.9

TABLE V: APDF for 2-wise and prioritized suites

(a) 2-wise APFD (b) CoC APFD (c) CTC APFD

(d) Commonality APFD (e) VC&CC APFD (f) Dissimilarity APFD

Fig. 4: APFD metrics for Random3 model

Rothermel et al. [25] proposed several prioritization techniques
for regression testing by using test execution information with
the aim of obtain cost-benefits tradeoffs. Zhang et al. [31] used
the total and additional prioritization strategies to prioritize
based on the total numbers of elements covered per test, and
the numbers of additional (not-yet-covered) elements covered
per test to increase the rate of fault detection. The work
presented in [9] proposed an approach to reduce the SPL
test space using a manual goal-oriented method to select and
prioritize the most desirable features from feature models.
Part of our work is also focused on reflecting the more
relevant features of an SPL, however, we propose different
prioritization criteria as the complexity of the features, the

degree of reusability or the dissimilarity among the products
features. These criteria are based on standard metrics for the
analysis of feature models and therefore are fully automated.

Another works about prioritization of configurable systems
are those presented in [23], [28]. In [23], Qu et al. examined
several Combinatorial Iteration Testing prioritization tech-
niques and compared them with a re-generation/prioritization
approach (i.e. approach that combined generation and prioriti-
zation). Srikanth et al. [28] studied the prioritization driven not
only by fault detection but also by the cost of configuration
and setup time. In our work, we also present an approach that
can combine combinatorial testing and different prioritization
criteria to detect faults faster. However, we work within the



realm of SPLs and in particular we adapt our approach to
feature models since they are widely used for variability
modelling in SPLs.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a test case prioritization ap-
proach for SPLs. In particular, we proposed five prioritization
criteria to schedule test execution in an order that attempt
to accelerate the detection of faults providing faster feedback
and reducing debugging efforts. These prioritization criteria
are based on standard techniques and metrics for the analysis
of feature models and therefore are fully automated. The
evaluation results show that there are significant differences
in the rate of early fault detection provided by different
prioritization criteria. Also, the results show that some of the
criteria proposed may contribute to accelerate the detection
of faults of both random and pairwise-based SPL test suites.
This suggests that our work could be a nice complement for
current techniques for test case selection. To the best of our
knowledge, our work is the first considering not only which
SPL products should be tested but how they should be tested.
The main conclusion of this work is that the order in which
SPL test cases are run does matter.

Many challenges remain for our future work. First and
foremost, we plan to further validate our approach on the
source code of real ecosystems such as FaMa and Eclipse.
Also, we plan to work on new prioritization criteria exploiting
the analysis of non-functional properties, e.g. order tests ac-
cording to their cost. Test case prioritization techniques have
shown to be especially helpful during regression testing. We
also intend to work on that direction by defining prioritization
criteria based on the feedback from previous tests.

MATERIAL

Our test case prioritization tool together with the feature
models and the seeded faults used in our evaluation are
available at www.isa.us.es/∼isaweb/anabsanchez/material.zip

VIII. ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission (FEDER), the Spanish and the Andalusian R&D&I
programmes (grants TIN2009-07366 (SETI), TIN2012-32273
(TAPAS), TIC-5906 (THEOS)).

REFERENCES

[1] AHEAD Tool Suite. http://www.cs.utexas.edu/users/schwartz/ATS.html,
accessed April 2013.

[2] E. Bagheri, F. Ensan, and D. Gasevic. Grammar-based test generation
for software product line feature models. In Conference of the Centre
for Advanced Studies on Collaborative Research, 2012.

[3] E. Bagheri and D. Gasevic. Assessing the maintainability of software
product line feature models using structural metrics. Software Quality
Control, 2011.

[4] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analyses of
feature models 20 years later: A literature review. Information Systems,
2010.

[5] C. Catal and D. Mishra. Test case prioritization: a systematic mapping
study. Software Quality Jorunal, 2012.

[6] D. R. W. D. Richard Kuhn and A. M. Gallo. Software fault interac-
tions and implications for software testing. Transactions on Software
Engineering, 30, 2004.

[7] I. do Carmo Machado, J. D. McGregor, and E. S. de Almeida. Strategies
for testing products in software product lines. SIGSOFT Software
Engineering, 2012.

[8] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky. Selecting
a cost-effective test case prioritization technique. Software Quality
Journal, 2004.

[9] A. Ensan, E. Bagheri, M. Asadi, D. Gasevic, and Y. Biletskiy. Goal-
oriented test case selection and prioritization for product line feature
models. In Conference Information Technology:New Generations, 2011.

[10] F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary search-based test
generation for software product line feature models. In Conference on
Advanced Information Systems Engineering (CAiSE’12), 2012.

[11] H. Hemmati and L. Briand. An industrial investigation of similarity
measures for model-based test case selection. In ISSRE, 2010.

[12] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L.
Traon. Bypassing the combinatorial explosion: Using similarity to
generate and prioritize t-wise test suites for large software product lines.
Technical report, 2012.

[13] M. F. Johansen, O. Haugen, and F. Fleurey. Properties of realistic
feature models make combinatorial testing of product lines feasible. In
MODELS, 2011.

[14] M. F. Johansen, O. Haugen, and F. Fleurey. An algorithm for generating
t-wise covering arrays from large feature models. In SPLC, 2012.

[15] B. P. Lamancha and M. P. Usaola. Testing product generation in soft-
ware product lines using pairwise for feature coverage. In International
conference on Testing Software and Systems, 2010.

[16] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression
test case prioritization. IEEE Transactions on Software Engineering,
2007.

[17] M. M., W. A., and C. K. Sat-based analysis of feature models is easy.
In Proceedings of the Sofware Product Line Conference, 2009.

[18] M. Mendonca. Efficient Reasoning Techniques for Large Scale Feature
Models. PhD thesis, University of Waterloo, 2009.

[19] M. Mendonca, M. Branco, and D. Cowan. S.p.l.o.t. - software product
lines online tools. In OOPSLA, 2009.

[20] S. Oster, F. Markert, and P. Ritter. Automated incremental pairwise
testing of software product lines. In SPLC, 2010.

[21] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Budry, and Y. le Traon. Pair-
wise testing for software product lines: comparison of two approaches.
Software Quality Journal, 2011.

[22] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. le Traon. Automated
and scalable t-wise test case generation strategies for software product
lines. In Conference Software Testing, Verification and Validation, 2010.

[23] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial interaction
regression testing: A study of test case generation and prioritization.
2007.

[24] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Test case prioritiza-
tion: An empirical study. In Conference Software Maintenance, 1999.

[25] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Prioritizing test cases
for regression testing. IEEE Trans. Software Eng, 27:929–948, 2001.

[26] A. G. M. Sebastian Elbaum and G. Rothermel. Test case prioritization:
A family of empirical studies. Transactions on Software Engineering,
2002.

[27] S. Segura, J. Galindo, D. Benavides, J. Parejo, and A. Ruiz-Cortés.
Betty: Benchmarking and testing on the automated analysis of fea-
ture models. In International Workshop on Variability Modelling of
Software-intensive Systems, 2012.

[28] H. Srikanth, M. B. Cohen, and X. Qu. Reducing field failures in system
configurable software: Cost-based prioritization. 2009.

[29] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison Wesley, 2006.

[30] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez.
Fama framework. In Software Product Line Conference, 2008.

[31] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei. Bridging the
gap between the total and additional test-case prioritization strategies.
In ICSE, 2013.


