
Huang, Rubing and Chen, Jinfu and Towey, Dave and
Chan, Alvin T.S. and Lu, Yansheng (2015) Aggregate-
strength interaction test suite prioritization. Journal of
Systems and Software, 99 . pp. 36-51. ISSN 0164-1212

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/51753/1/ASPS-revised-2014.07.29.Dave.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution Non-commercial No
Derivatives licence and may be reused according to the conditions of the licence. For more
details see: http://creativecommons.org/licenses/by-nc-nd/2.5/

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/157770310?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

Aggregate-Strength Interaction Test Suite Prioritization

Rubing Huanga,b,∗, Jinfu Chena, Dave Toweyc, Alvin T. S. Chand, Yansheng Lub

aSchool of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
bSchool of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China

cSchool of Computer Science, The University of Nottingham Ningbo China, Ningbo, Zhejiang 315100, P.R. China.
dDepartment of Computing, The Hong Kong Polytechnic University, Hong Kong, P.R. China

Abstract

Combinatorial interaction testing is a widely used approach. In testing, it is often assumed that all combinatorial test cases have
equal fault detection capability, however it has been shown that the execution order of an interaction test suite’s test cases may be
critical, especially when the testing resources are limited. To improve testing cost-effectiveness, test cases in the interaction test
suite can be prioritized, and one of the best-known categories of prioritization approaches is based on “fixed-strength prioritization”,
which prioritizes an interaction test suite by choosing new test cases which have the highest uncovered interaction coverage at a
fixed strength (level of interaction among parameters). A drawback of these approaches, however, is that, when selecting each
test case, they only consider a fixed strength, not multiple strengths. To overcome this, we propose a new “aggregate-strength
prioritization”, to combine interaction coverage at different strengths. Experimental results show that in most cases our method
performs better than the test-case-generation, reverse test-case-generation, and random prioritization techniques. The method also
usually outperforms “fixed-strength prioritization”, while maintaining a similar time cost.

Keywords:
Software testing, combinatorial interaction testing, test case prioritization, interaction coverage, fixed-strength prioritization,
aggregate-strength prioritization, algorithm

1. Introduction1

Combinatorial interaction testing [29], is a black-box2

testing method that has been well researched, and applied in3

the testing of practical systems [14, 24, 42]. It focuses on4

constructing an effective test suite (called an interaction test5

suite) in order to catch failures triggered by the interactions6

among k parameters of the software under test (SUT). Here,7

parameters may represent any factors that affect the running of8

the SUT, such as user inputs, configuration options, etc., and9

each parameter may have several valid values. In fact,10

combinatorial interaction testing provides a trade-off between11

testing effectiveness and efficiency, because it only requires12

coverage of certain key combinations, rather than of all13

possible combinations, of parametric values. For instance,14

τ-wise (1 ≤ τ ≤ k) combinatorial interaction testing, where τ is15

referred to as the level of interaction among parameters16

(named strength), constructs an interaction test suite to cover17

all possible τ-tuples of parameter values (referred to as τ-wise18

parameter value combinations).19

∗Corresponding author at: School of Computer Science and
Telecommunication Engineering, Jiangsu University, 301 Xuefu Road,
Zhenjiang, Jiangsu 212013, P.R. China.

Email addresses: rbhuang@mail.ujs.edu.cn, or
rbhuang@hust.edu.cn (Rubing Huang), jinfuchen@ujs.edu.cn (Jinfu
Chen), dave.towey@nottingham.edu.cn (Dave Towey),
cstschan@comp.polyu.edu.hk (Alvin T. S. Chan), lys@hust.edu.cn
(Yansheng Lu)

Due to limited testing resources in practical applications20

where combinatorial interaction testing is used, for example in21

combinatorial interaction regression testing [32], the execution22

order of combinatorial test cases can be critical, and therefore23

the potentially failure-revealing test cases in an interaction test24

suite should be executed as early as possible. In other words, a25

well-ordered test case execution may be able to detect failures26

earlier, and thus enable earlier fault characterization, diagnosis27

and correction [29]. To improve testing efficiency, interaction28

test suites can be prioritized [29].29

The prioritization of interaction test suites has been well30

studied [1, 2, 4–7, 18, 30–33, 37, 39, 40], with many31

techniques having been proposed, such as random32

prioritization [1] and branch-coverage-based prioritization33

[32]. A well-studied category of prioritization approaches for34

interaction test suites is “fixed-strength prioritization”, which35

prioritizes the interaction test suite by repeatedly choosing an36

unexecuted test case from candidates such that it covers the37

largest number of uncovered parameter value combinations at38

a fixed strength [1, 2, 4–7, 18, 30–33, 37, 39, 40]. However,39

when selecting each unexecuted test case, this strategy only40

considers interaction coverage of a fixed strength τ, rather than41

interaction coverage of multiple strengths: Although it focuses42

on τ-wise interaction coverage, it may neglect λ-wise43

(1 ≤ λ < τ)1 interaction coverage when choosing the next test44

1For ease of description, in this paper we assume τ is a constant, because τ
is obtained from an interaction test suite; while λ is a variable where 1 ≤ λ ≤ τ.

Preprint submitted to Journal of Systems and Software July 29, 2014

case. Consequently, “fixed-strength prioritization” may not use1

sufficient information to guide the prioritization of the2

interaction test suite — an example of this will be given in the3

following section.4

To evaluate the difference between a combinatorial test5

case and the already executed test cases, we propose a new6

dissimilarity measure which considers different interaction7

coverage at different strengths. Based on this, we present a8

heuristic algorithm which, given an interaction test suite T of9

strength τ, chooses an element from among candidates after10

comprehensively considering different interaction coverage at11

strengths from 1 to τ, and assigning each interaction coverage12

a weight. The method gives a priority of all strengths from 1 to13

τ, and balances λ-wise interaction coverage for λ = 1, 2, ..., τ.14

This proposed method has the advantage over existing15

prioritization methods by employing more information to16

guide the prioritization process. We refer to this method as17

“aggregate-strength prioritization”.18

In terms of the rates of covering parameter value19

combinations and fault detection, experimental results show20

that in most cases our method performs better than the21

test-case-generation, reverse test-case-generation, and random22

prioritizations; and also has better performance than the23

“fixed-strength prioritization,” while maintaining a similar24

time cost.25

This paper is organized as follows: Section 2 introduces26

some background information, including combinatorial27

interaction testing, and test case prioritization. Section 328

describes some related work. Section 4 introduces a29

motivating example, and then proposes a new prioritization30

strategy, with an analysis of its properties and time complexity.31

Section 5 presents some simulations and experiments with32

real-life programs related to the use of the proposed strategy,33

and finally, Section 6 presents the conclusions and discusses34

potential future work.35

2. Background36

In this section, some fundamental aspects of combinatorial37

interaction testing and test case prioritization are presented.38

2.1. Combinatorial interaction testing39

Combinatorial interaction testing is used to generate a test40

suite to detect faults triggered by interactions among41

parameters in the SUT. For convenience, in the remainder of42

this paper we will refer to a combination of parameters as a43

parameter combination, and a combination of parametric44

values or a parameter value combination as a value45

combination.46

Definition 1. A test profile, denoted as47

T P(k, |V1||V2| · · · |Vk |,D), has information about a48

combinatorial test space of the SUT, including k parameters,49

|Vi| (i = 1, 2, · · · , k) values for the i-th parameter, and50

constraints D on value combinations.51

Table 1: A Test Profile for a SUT
Parameter p1 p2 p3 p4

Value
0 3 6 8
1 4 7 9
2 5 - -

Table 1 gives an example of a SUT with D = ∅, in which52

there are four parameters, two of which have two values and53

another two of which have three values: the test profile can be54

written as T P(4, 2232, ∅).55

Definition 2. Given a test profile T P(k, |V1||V2| · · · |Vk |,D), a k-56

tuple (v1, v2, · · · , vk) is a combinatorial test case for the SUT,57

where vi ∈ Vi (i = 1, 2, · · · , k).58

For example, (0, 3, 6, 8) is a 4-tuple combinatorial test case59

for the SUT shown in Table 1.60

Definition 3. The number of parameters required to trigger a61

failure is referred to as the failure-triggering fault interaction62

(FTFI) number.63

The combinatorial input domain fault model assumes that64

failures are caused by parameter interactions. For example, if65

the SUT shown in Table 1 fails when both p2 is set to 5 and66

p3 is set to 6, this failure is caused by the parameter interaction67

(p2, p3), and therefore, the FTFI number is 2.68

In combinatorial interaction testing, a covering array is69

generally used to represent an interaction test suite.70

Definition 4. Given a T P(k, |V1||V2| · · · |Vk |,D), an N×k matrix71

is a τ-wise (1 ≤ τ ≤ k) covering array, denoted CA(N; τ, k, |V1|72

|V2| · · · |Vk |), which satisfies the following properties: (1) each73

column i (i = 1, 2, · · · , k) contains only elements from the set74

Vi; and (2) the rows of each N × τ sub-matrix cover all τ-wise75

value combinations from the τ columns at least once.76

Table 2 shows an example covering array for the SUT in77

Table 1. The covering array, denoted as CA(9; 2, 4, 2232), only78

requires a set of nine test cases in order to cover all 2-wise value79

combinations.80

Each column of a covering array represents a parameter of81

the SUT, while each row represents a combinatorial test case.82

Testing with a τ-wise covering array is called τ-wise83

Table 2: CA(9; 2, 4, 2232) for the T P(4, 2232, ∅) shown in Table 1
Test No. p1 p2 p3 p4

tc1 0 3 7 9
tc2 0 4 6 8
tc3 0 5 7 8
tc4 1 3 6 9
tc5 1 4 7 8
tc6 1 5 6 9
tc7 2 3 7 8
tc8 2 4 6 9
tc9 2 5 6 8

2

combinatorial interaction testing. In this paper, we focus on1

τ-wise covering arrays, rather than on other interaction test2

suites such as variable-strength covering array [9].3

In τ-wise combinatorial interaction testing, the uncovered4

λ-wise value combinations distance (UVCDλ) is a distance (or5

dissimilarity) measure often used to evaluate combinatorial test6

cases against an interaction test suite [20].7

Definition 5. Given an interaction test suite T , strength λ, and8

a combinatorial test case tc, the uncovered λ-wise value9

combinations distance (UVCDλ) of tc against T is defined as:10

UVCDλ(tc,T) = |CombSetλ(tc) \ CombSetλ(T)|, (1)

where CombSetλ(tc) is the set of all λ-wise value combinations11

covered by tc, and CombSetλ(T) is the set covered by all of T .12

More specifically, these can be respectively written as follows:13

CombSetλ(tc) = {(v j1 ,v j2 ,· · · ,v jλ)|1≤ j1< j2< · · ·< jλ≤k}, (2)
14

CombSetλ(T) =
⋃

tc∈T
CombSetλ(tc). (3)

In the past, minimization of the interaction test suite size15

has been emphasized in order to achieve the desired coverage,16

and although the problem of constructing interaction test suites17

(covering array and variable-strength covering array) is18

NP-Complete [35], many strategies for building them have19

been developed, including approaches employing greedy,20

recursive, heuristic search, and algebraic algorithms and21

methods (see [29] for more details).22

2.2. Test case prioritization23

Suppose T = {tc1, tc2, · · · , tcN} is a test suite containing N24

test cases, and S = ⟨s1, s2, · · · , sN⟩ is an ordered set of T ,25

called a test sequence, where si ∈ T and26

si ! s j (i, j = 1, 2, · · · ,N; i ! j). If S 1 = ⟨s1, s2, · · · , sm⟩ and27

S 2 = ⟨q1, q2, · · · , qn⟩ are two test sequences, we define S 1≻S 228

as ⟨s1, s2, · · · , sm, q1, q2, · · · , qn⟩; and T \ S as the maximal29

subset of T whose elements are not in S .30

Test case prioritization is used to schedule test cases in an31

order, so that, according to some criteria (e.g. condition32

coverage), test cases with higher priority are executed earlier33

in the testing process. A well-prioritized test sequence may34

improve the likelihood of detecting faults earlier, which may35

be especially important when testing with limited test36

resources. The problem of test case prioritization is defined as37

follows [34]:38

Definition 6. Given (T,Ω, g), where T is a test suite, Ω is the39

set of all possible test sequences obtained by ordering test cases40

of T , and g is a function from a given test sequence to an award41

value, the problem of test case prioritization is to find an S ∈ Ω42

such that:43

(∀S ′) (S ′ ∈ Ω) (S ′ ! S) [g(S) ≥ g(S ′)]. (4)

In Eq. (4), g is a function to evaluate a test sequence S by44

returning a real number. A well-known function is a weighted45

average of the percentage of faults detected (APFD) [13],46

which is a measure of how quickly a test sequence can detect47

faults during the execution (that is, the rate of fault detection).48

Let T be a test suite containing N test cases, and let F be a set49

of m faults revealed by T . Let SFi be the number of test cases50

in test sequence S of T that are executed until detecting fault i.51

The APFD for test sequence S is given by the following52

equation from [13]:53

APFD = 1 − SF1 + SF2 + · · · + SFm

N × m
+

1
2N
. (5)

The APFD metric, which has been used in practical54

testing, has a range of (0, 1), with higher values implying faster55

rates of fault detection. Two requirements of the APFD metric56

are that (1) all test cases in a test sequence should be executed;57

and (2) all faults should be detected. In practical testing58

applications, however, it may be that only part of the test59

sequence is run, and only some of the faults detected. In such60

cases, the APFD may not be an appropriate evaluation of the61

fault detection rate. To alleviate the difficulties associated with62

these two requirements, Qu et al. [32] have presented a new63

metric, Normalized APFD (NAPFD), as an enhancement of64

APFD, and defined it as follows:65

NAPFD = p − SF1 + SF2 + · · · + SFm

N′ × m
+

p
2N′
, (6)

where m and SFi (i = 1, 2, · · · ,m) have the same meaning as in66

APFD; p represents the ratio of the number of faults identified67

by selected test cases relative to the number of faults detected68

by the full test suite; and N′ is the number of the executed test69

cases. If a fault fi is never found, then SFi = 0. If all faults can70

be detected, and all test cases are executed, NAPFD and APFD71

are identical, with p = 1.0 and N′ = N.72

Many test case prioritization strategies have been73

proposed, such as fault severity based prioritization [12],74

source code based prioritization [34, 41], search based75

prioritization [26], integer linear programming based76

prioritization [44], XML-manipulating prioritization [28], risk77

exposure based prioritization [43], system-level test case78

prioritization [36], and history based prioritization [21]. Most79

prioritization strategies can be classified as either80

meta-heuristic search methods or greedy methods [40].81

3. Related Work82

According to Qu’s classification, the prioritization of83

interaction test suites can generally be divided into two84

categories: (1) pure prioritization: re-ordering test cases in the85

interaction test suite; and (2) re-generation prioritization:86

considering the prioritization principle during the process of87

interaction test suite generation, that is, generating (or88

constructing) an interaction test sequence [32]. The method89

proposed in this paper, as well as the methods used for90

comparison, belongs to the former category. However, if based91

on the same prioritization principle, pure prioritization works92

in a similar manner to re-generation prioritization. For93

3

example, when testers base prioritization on test case1

execution time, pure prioritization chooses an element from2

the given test suite such that it has the lowest execution time,3

and re-generation prioritization selects (or generates) such4

elements from the exhaustive test suite (or constructed5

candidates). In this section, therefore, we do not distinguish6

between pure and re-generation prioritization.7

Bryce and Colbourn [1, 2] initially used four test case8

weighting distributions to construct interaction test sequences9

with seeding and constraints, which belongs to the10

re-generation prioritization category. Bryce et al. [4, 5]11

proposed a pure prioritization method without considering any12

other factors (only considering 2-wise and 3-wise interaction13

coverage) for interaction test suites, and then applied it to the14

event-driven software. Similarly, Qu et al. [31–33] applied test15

case weight to the pure prioritization method, and applied this16

method to configurable systems. They also proposed other test17

case weighting distributions based on code coverage [32],18

specification [32], fault detection [31], and configuration19

change [31]. Additionally, Chen et al. [7] used an ant colony20

algorithm to generate prioritized interaction test suites which21

considered interaction coverage information.22

Srikanth et al. [37] took the cost of installing and building23

new configurations into consideration for helping prioritize24

interaction test suites. Bryce et al. [6] used the length of the25

test case to represent its cost, and combined it with pair-wise26

interaction coverage to guide the prioritization of interaction27

test suites. Wang et al. [40] combined test case cost with test28

case weight to prioritize interaction test suites, and also29

extended this method from lower to higher strengths, and30

proposed a series of metrics which have been widely used in31

the evaluation of interaction test sequences. Petke et al. [30]32

researched the efficiency and fault detection of the pure33

prioritization method proposed in [4, 5] with other (lower and34

higher) strengths. Recently, Huang et al. [18] investigated35

adaptive random test case prioritization for interaction test36

suites using interaction coverage, a method which, by37

replacing the prioritization method in [4, 5] attempts to reduce38

time costs, while maintaining effectiveness.39

Throughout the interaction test suite prioritization process,40

the strategies so far mentioned [1, 2, 4–7, 18, 30–33, 37, 40]41

do not vary the strength of interaction coverage. For example,42

given a strength τ for prioritization, these prioritization43

strategies only consider τ-wise interaction coverage to guide44

the test cases selection. These implementations of45

“fixed-strength prioritization” are also referred to as46

interaction coverage based prioritization (or ICBP). Previous47

studies also investigated incremental strengths to prioritize48

interaction test suites. For instance, Wang [39] used49

incremental strengths, and proposed a pure prioritization50

method named inCTPri used to prioritize covering arrays.51

More specifically, given a τ-wise covering array52

CA(N; τ, k, |V1||V2| · · · |Vk |), the inCTPri firstly uses interaction53

coverage at a low strength (such as λ where 1 < λ ≤ τ) to54

prioritize CA; when all λ-wise value combinations have been55

covered by selected test cases, the inCTPri increases λ to56

λ + 1, and then repeats the above process until λ > τ. In other57

words, inCTPri is actually ICBP using different strengths58

during the prioritization process. Huang et al. [19] proposed59

two pure prioritization methods for variable-strength covering60

arrays which exploit the main-strength and sub-strengths of61

variable-strength covering arrays to guide prioritization.62

To date, most interaction test suite prioritization strategies63

belong to the category of “fixed-strength prioritization”,64

because they only consider a fixed strength when selecting65

each combinatorial test case from candidates. Few studies66

have been conducted on the prioritization of interaction test67

suites using “aggregate-strength prioritization”, and our study68

is, to our best knowledge, the first to use multiple strengths69

when choosing each combinatorial test case from the candidate70

elements.71

4. Aggregate-Strength Interaction Test Suite Prioritization72

In this section, we present a motivating example to73

illustrate the shortcoming of “fixed-strength prioritization”,74

and then introduce a new dissimilarity measure for evaluating75

combinatorial test cases, the weighted aggregate-strength test76

case dissimilarity (WASD). We then introduce a heuristic77

algorithm for prioritizing an interaction test suite based on the78

WASD measure (“aggregate-strength prioritization” strategy),79

investigate some of its properties, and give a time complexity80

analysis.81

4.1. A motivating example82

Given covering array CA(9; 2, 4, 2232), shown in Table 2,83

“fixed-strength prioritization” generally uses strength τ = 2 to84

guide the prioritization. More specifically, this strategy85

chooses the next test case such that it covers the largest86

number of 2-wise value combinations that have not yet been87

covered by the already selected test cases (that is, UVCD2).88

We assume that “fixed-strength prioritization” is deterministic,89

e.g. the first candidate is selected as the next test case in90

situations with more than one best element, and therefore its91

generated interaction test sequence would be92

S 1 = ⟨tc1, tc2, tc6, tc5, tc7, tc8, tc3, tc4, tc9⟩. Intuitively93

speaking, S 1 would face a challenge when a fault f1 is94

triggered by “P1=2”, because it needs to run five test cases95

(5/9 = 55.56%) in order to detect this fault. However, if96

multiple strengths were used to prioritize this interaction test97

suite, e.g. strengths 1 and 2, both 1-wise and 2-wise value98

combinations would be considered, and therefore we would99

obtain the interaction test sequence100

S 2 = ⟨tc1, tc9, tc4, tc2, tc5, tc7, tc8, tc3, tc6⟩. S 2 would only101

require 2 test cases (2/9 = 22.22%) to be run to identify the102

fault f1, which means that S 2 has a faster fault detection than103

S 1.104

Motivated by this, it is reasonable to consider different105

strengths for prioritizing interaction test suites, which may106

provide better effectiveness (such as fault detection) than107

“fixed-strength prioritization”.108

4

4.2. Weighted aggregate-strength test case dissimilarity1

Given an interaction test suite T on2

T P(k, |V1||V2| · · · |Vk |,D), a combinatorial test case tc, and the3

strength τ, the weighted aggregate-strength test case4

dissimilarity (WASD) of tc against T is defined as follows:5

WASD(tc,T) =
τ∑

λ=1

(ωλ ×
|UVCDλ(tc,T)|

Cλk
), (7)

where 0 ≤ ωλ ≤ 1.0 (λ = 1, 2, · · · , τ), and
∑τ
λ=1 ωλ = 1.0.6

Intuitively speaking, WASD(tc, T) = 0, if and only if tc ∈ T ;7

WASD(tc,T) = 1.0, if and only if any 1-wise value combination8

covered by tc is not covered by T . Therefore, the WASD ranges9

from 0 to 1.0.10

Here, we present an example to briefly illustrate the WASD.11

Considering the combinatorial test cases in Table 2, suppose12

interaction test sequence S = {tc1}, strength τ = 2, two13

candidates tc2 and tc9, and ω1 = ω2 = · · · = ωτ = 1/τ, the14

WASD of tc2 against T is15

WASD(tc2, S) = 1
2 ×

UVCDλ=1(tc2,S)
C1

4
+ 1

2 ×
UVCDλ=2(tc2,S)

C2
4

=16

1
2 × 3

4 +
1
2 × 6

6 = 0.375 + 0.5 = 0.875; while the WASD of tc917

against S is18

WASD(tc9, S) = 1
2 ×

UVCDλ=1(tc9,S)
C1

4
+ 1

2 ×
UVCDλ=2(tc9,S)

C2
4

=19

1
2 × 4

4 +
1
2 × 6

6 = 0.5 + 0.5 = 1.0. In this case, it can be20

concluded that the test case tc9 would be a better next test case21

in S than tc2.22

4.3. Algorithm23

In this section, we introduce a new heuristic algorithm,24

namely “aggregate-strength prioritization” strategy (ASPS), to25

Algorithm 1 Aggregate-strength prioritization strategy (ASPS)
Input: Covering array CA(N; τ, k, |V1||V2| · · · |Vk |), denoted as

Tτ
Output: Interaction test sequence S

1: S ← ⟨ ⟩;
2: while (|S | ! N)
3: best distance← −1;
4: equalSet← { };
5: for (each element e ∈ Tτ)
6: Calculate distance← WASD(e, S);
7: if (distance > best distance)
8: equalSet← { };
9: best distance← distance;

10: best data← e;
11: else if (distance == best distance)
12: equalSet← equalSet

⋃{e};
13: end if
14: end for
15: best data← random(equalSet);
16: /* Randomly choose an element from equalSet */
17: Tτ ← Tτ \ {best data};
18: S ← S≻⟨best data⟩;
19: end while
20: return S .

prioritize interaction test suites using the WASD to evaluate26

combinatorial test cases.27

Given a covering array T = CA(N; τ, k, |V1||V2| · · · |Vk |), the28

element e′ is selected from T as the next test element in an29

interaction test sequence S when using the WASD, such that:30

(∀e) (e ∈ T) (e ! e′) [WASD(e′, S) ≥ WASD(e, S)]. (8)

This process is repeated until all candidates have been selected.31

The ASPS algorithm is described in Algorithm 1. In some32

cases, there may be more than one best test element, indicating33

that they have the same maximal WASD value. In such a34

situation, a best element is randomly selected.35

For ease of description, we use a term Tτ to represent a36

CA(N; τ, k, |V1||V2| · · · |Vk |), with the strength τ used in the37

WASD and Algorithm 1 often being provided by a CA rather38

than being assigned in advance.39

4.4. Properties40

Consider a Tτ and a pre-selected interaction test sequence41

S ⊆ Tτ prioritized by the ASPS algorithm, some properties of42

ASPS are discussed as follows.43

Theorem 1. Once S covers all possible (τ − 1)-wise value44

combinations where 2 ≤ τ ≤ k, the ASPS algorithm has the45

same mechanism as the “fixed-strength prioritization46

strategy”.47

Proof. When S covers all possible (τ − 1)-wise value48

combinations, it can be noted that49

CombSetτ−1(S) = CombSetτ−1(Tτ), which means that50

(∀tc) (tc ∈ (Tτ \ S)) [UVCDτ−1(tc, S) = 0]. (9)

Since51

CombSetτ−1(S) = CombSetτ−1(Tτ)
⇒ CombSetλ(CombSetτ−1(S)) = CombSetλ(CombSetτ−1(Tτ))
⇒ CombSetλ(S) = CombSetλ(Tτ), (10)

where 1 ≤ λ ≤ τ − 1. Therefore, we can obtain that52

(∀tc) (tc ∈ (Tτ \ S)) [UVCDλ(tc, S) = 0]. (11)

where λ = 1, 2, · · · , τ − 1. As a consequence,53

WASD(tc, S) = ωτ × UVCDτ(tc, S)
Cτk

. Since ωτ is a constant54

parameter, WASD(tc, S) is only related to UVCDτ(tc, S).55

Consequently, the ASPS algorithm only uses τ-wise56

interaction coverage to select the next test case, which means57

that it is “fixed-strength prioritization”. In summary, once S58

covers all possible (τ − 1)-wise value combinations, the ASPS59

algorithm becomes the same as “fixed-strength60

prioritization”.61

4.5. Complexity analysis62

In this section, we briefly analyze the complexity of the63

ASPS algorithm (Algorithm 1). Given a CA(N; τ, k, |V1||V2| · · ·64

|Vk |), denoted as Tτ, we define δ = max1≤i≤k{|Vi|}.65

5

We first analyze the time complexity of selecting the i-th1

(i = 1, 2, · · · ,N) combinatorial test case, which depends on2

two factors: (1) the number of candidates required for the3

calculation of WASD; and (2) the time complexity of4

calculating WASD for each candidate.5

For (1), (N− i)+1 test cases are required to compute WASD.6

For (2), according to Cl
k l-wise parameter combinations where7

1 ≤ l ≤ τ, we divide all l-wise value combinations that are8

derived from a T P(k, |V1||V2| · · · |Vk |,D) into Cl
k sets that form9

Πl = {πl|πl = {(vi1 , vi2 , · · · , vil)|vi j ∈ Vij , j = 1, 2, · · · , l},
1 ≤ i1 < i2 < · · · < il ≤ k}. (12)

Consequently, when using a binary search, the order of time10

complexity of (2) is O(
∑τ

l=1
∑
πl∈Πl log(|πl \ CombSetl(T)|)), wh-11

ich is equal to O(
∑τ

l=1
∑
πl∈Πl log(|πl|)).12

Therefore, the order of time complexity of algorithm ASPS13

can be described as follows:14

O(ASPS) = O((
N∑

i=1

(N − i + 1)) × (
τ∑

l=1

∑

πl∈Πl

log(|πl|)))

< O((
N∑

i=1

(N − i + 1)) ×
τ∑

l=1

(Cl
k × log(δl)))

= O(
N2 + N

2
×
τ∑

l=1

(Cl
k × log(δl))). (13)

There exists an integer η (1 ≤ η ≤ τ) such that2:15

(∀l) (1 ≤ l ≤ τ) (η ! l) [(Cηk × log(δη)) ≥ (Cl
k × log(δl))]. (14)

As a consequence,16

O(ASPS) < O(
N2 + N

2
×
τ∑

l=1

(Cηk × log(δη)))

= O(
N2 + N

2
× τ ×Cηk × log(δη)) (15)

Therefore, we can conclude that the order of time complexity17

of algorithm ASPS is O(N2 × τ ×Cηk × log(δη)).18

The value of τ is usually assigned in the range from 2 to 619

[23, 24], therefore, 1 ≤ τ < ⌈ k
2 ⌉, in general. If 1 ≤ τ < ⌈ k

2 ⌉,20

η = τ, then the order of time complexity of algorithm ASPS is21

O(τ × N2 × Cτk × log(δτ)). Since counting the number of value22

combinations at different strengths can be implemented in23

parallel, the order of time complexity of the ASPS algorithm24

can be reduced to O(N2 × Cτk × log(δτ)). As discussed in [40],25

the order of time complexity of the ICBP algorithm (an26

implementation of “fixed-strength prioritization”) is27

O(N2 × Cτk × log(δτ)). The order of time complexity of the28

inCTPri algorithm (another “fixed-strength prioritization”29

implementation) also equals to O(N2 × Cτk × log(δτ)) [39].30

Therefore, the order of time complexity of the ASPS algorithm31

is similar to that of both ICBP and inCTPri.32

2If 1 ≤ τ < ⌈ k
2 ⌉, η = τ; while if ⌈ k

2 ⌉ ≤ τ ≤ k, η = ⌈ k
2 ⌉.

5. Empirical Study33

In this section, some experimental results, including34

simulations and experiments involving real programs, are35

presented to analyze the effectiveness of the prioritization of36

interaction test suites by multiple interaction coverage37

(multiple strengths). We evaluate interaction test sequences38

prioritized by algorithm ASPS (denoted ASPS) by comparing39

them with those ordered by four other strategies: (1)40

test-case-generation prioritization (denoted Original), which41

is an interaction test sequence according to the covering array42

generation sequence; (2) reverse test-case-generation43

prioritization (denoted Reverse), which is the reversed order44

of the Original interaction test sequence; (3) random test45

sequence, whose ordering is prioritized in a random manner46

(denoted Random); and (4) two implementations of47

“fixed-strength prioritization” – the ICBP algorithm (denoted48

ICBP) [1, 2, 4–7, 18, 30–33, 37, 40]; and the inCTPri49

algorithm (denoted inCTPri) [39].50

In Algorithm 1, which uses WASD, it is necessary to assign51

a weight for each interaction coverage (Eq. (7)). The ideal52

weight assignment is in accordance with actual fault53

distribution in terms of the FTFI number. However, the actual54

fault distribution is unknown before testing. In this paper, we55

focus on three distribution styles: (1) equal weighting56

distribution – each interaction coverage has the same weight,57

that is, ω1 = ω2 = · · · = ωτ = 1
τ ; (2) random weighting58

distribution – the weight of each interaction coverage is59

randomly distributed; and (3) empirical FTFI percentage60

weighting distribution based on previous investigations61

[23, 24]: for example, in [24], several software projects were62

studied and the interaction faults reported to have 29% to 82%63

faults as 1-wise faults, 6% to 47% of faults as 2-wise faults,64

2% to 19% as 3-wise faults, 1% to 7% of faults as 4-wise65

faults, and even fewer faults beyond 4-wise interactions.66

Consequently, we arranged the weights as follows:67

ω1 = ω, ωi+1 =
1
2ωi, where i = 1, 2, · · · , τ − 1. For example, if68

τ = 2, we set ω1 = 0.67 and ω2 = 0.33; if τ = 3, ω1 = 0.57,69

ω2 = 0.29, and ω3 = 0.14. For clarity of description, we use70

ASPSe, ASPSr, and ASPSm to represent the ASPS algorithm71

with equal weighting distribution, random weighting72

distribution, and empirical FTFI percentage weighting73

distribution, respectively.74

The original covering arrays were generated using two75

popular tools: (1) Advanced Combinatorial Testing System76

(ACTS) [25, 38]; and (2) Pairwise Independent Combinatorial77

Testing (PICT) [10]. Both ACTS and PICT are supported by78

greedy algorithms, however, they are implemented by different79

strategies: ACTS is implemented by the In-Parameter-Order80

(IPO) method [38]; while PICT is implemented by the81

one-test-at-a-time approach [3]. We focused on covering82

arrays with strength τ = 2, 3, 4, 5. We designed simulations83

and experiments to answer the following research questions:84

RQ1: Do prioritized interaction test sequences generated85

by ASPS methods (ASPSe, ASPSr, and ASPSm) have better86

performance (e.g. fault detection) when compared with87

non-prioritized interaction test suites (Original)? The answer88

6

Table 3: Sizes of covering arrays for four test profiles.

Test Profile ACTS PICT
τ = 2 τ = 3 τ = 4 τ = 5 τ = 2 τ = 3 τ = 4 τ = 5

T P1(6, 56, ∅) 25 199 1058 4149 37 215 1072 4295
T P2(10, 23334351, ∅) 23 103 426 1559 23 109 411 1363
T P3(7, 243161161, ∅) 96 289 578 1728 96 293 744 1658
T P4(8, 2691101, ∅) 90 180 632 1080 90 192 592 1237

to this question will help us decide whether it would be1

necessary to prioritize interaction test suites using ASPS2

methods.3

RQ2: Are ASPS methods better than intuitive4

prioritization strategies such as the reverse prioritization5

(Reverse) and the random prioritization (Random)? The6

answer to this question will tell us whether or not it would be7

helpful to use ASPS methods rather than reverse or random8

ordering for prioritizing interaction test suites.9

RQ3: Do ASPS methods perform better than10

“fixed-strength prioritization” (ICBP and inCTPri)? The11

answer to this question will help us decide whether or not12

ASPS can be a promising technique for interaction test suite13

prioritization, especially if it could perform as effectively as14

the current best prioritization techniques (“fixed-strength15

prioritization”).16

RQ4: Which weighting distribution is more suitable for17

the ASPS method: equal weighting distribution, random18

weighting distribution, or empirical FTFI percentage19

weighting distribution? The answer to this question will help20

us decide which weighting distribution to use for the ASPS21

method.22

5.1. Simulation23

We ran a simulation to measure how quickly an interaction24

test sequence could cover value combinations of different25

strengths. The simulation details are presented in the26

following.27

5.1.1. Setup28

We designed four test profiles as four system models with29

details as shown in Table 3. The first two test profiles were30

T P1(6, 56, ∅) and T P2(10, 23334351, ∅), both of which have31

been used in previous studies [40]. The third and fourth test32

profiles (T P3(7, 243161161, ∅) and T P4(8, 2691101, ∅)) have33

previously been created [32, 33] to model real-world subjects34

– a module from a lexical analyzer system (flex), and a real35

configuration model for GNUzip (gzip)3.36

The sizes of the covering arrays generated by ACTS and37

PICT are given in Table 3, Since randomization is used in some38

test case prioritization techniques, we ran each test profile 10039

times and report the average of the results.40

3These two models are unconstrained and incomplete.

5.1.2. Metric41

The average percentage of combinatorial coverage42

(APCC) metric4 [40] is used to evaluate the rate of value43

combinations covered by an interaction test sequence. The44

APCC values range from 0% to 100%, with higher values45

meaning better rates of covering value combinations. Let an46

interaction test sequence S = ⟨s1, s2, · · · , sN⟩ be obtained by47

prioritizing a CA(N; τ, k, |V1||V2| · · · |Vk |), that is, Tτ, the48

formula to calculate APCC at strength λ (1 ≤ λ ≤ τ) is:49

APCCλ(S) =
∑N−1

i=1 |
⋃i

j=1 CombSetλ(s j)|
N × |CombSetλ(Tτ)|

× 100%. (16)

50

Additionally, since we consider λ = 1, 2, · · · , τ for an51

interaction test sequence S of a CA(N; τ, k, |V1||V2| · · · |Vk |), we52

could obtain τ APCC values (that is, APCC1(S), APCC2(S),53

· · · , APCCτ(S)). Therefore, in this simulation we also54

considered the average of the APCC values, which is defined55

as:56

Avg.(S) =
1
τ

τ∑

λ=1

APCCλ(S). (17)

5.1.3. Results and Discussion57

For covering arrays of strength τ (2 ≤ τ ≤ 5) on individual58

test profiles, we have the following observations based on the59

data in Tables 4 and 5, which are separated according to the60

four test profiles.61

1) According to the APCC metric, are prioritized62

interaction test suites by ASPS methods better than63

non-prioritized interaction test suites? In this part, we analyze64

the data to answer whether ASPS methods (ASPSe, ASPSr, and65

ASPSm) are more effective than Original.66

Since different weighting distributions in ASPS provide67

different APCC values, we compare the APCC values of each68

ASPS method with Original. In 98.21% (110/112),69

86.61% (97/112), and 98.21% (110/112) of cases, interaction70

test sequences prioritized by ASPSe, ASPSr, and ASPSm,71

4In [30], Petke et al. proposed a similar metric, namely the
average percentage of covering-array coverage metric (APCC). Both Wang’s
APCC [40] and Petke’s APCC [30] aim at measuring how quickly an interaction
test sequence achieves interaction coverage at a given strength. In fact, their
APCCs are equivalent: given two interaction test sequences, S 1 and S 2, if one
determines that the test sequence S 1 is better than S 2, then the other metric will
also have the same determination. The only difference between them is that they
use different plot curves to describe the rate of covered value combinations.
More specifically, Wang’s APCC [40] uses the ladder chart; while Petke’s
APCC [30] uses the line chart.

7

Ta
bl

e
4:

AP
C

C
λ

m
et

ric
(%

)f
or

di
ff

er
en

tp
rio

rit
iz

at
io

n
te

ch
ni

qu
es

fo
rT

P1
(6
,5

6 ,
∅)

an
d

T
P2

(1
0,

23 33 43 51 ,
∅)

.

M
et

ho
d

τ
=

2
τ
=

3
τ
=

4
τ
=

5
λ
=

1
λ
=

2
Av

g.
λ
=

1
λ
=

2
λ
=

3
Av

g.
λ
=

1
λ
=

2
λ
=

3
λ
=

4
Av

g.
λ
=

1
λ
=

2
λ
=

3
λ
=

4
λ
=

5
Av

g.

TP1−ACTS

O
r
i
g
i
n
a
l

82
.6

7
48

.0
0

65
.3

4
93

.8
0

85
.1

1
63

.4
7

80
.7

9
94

.9
3

89
.6

1
82

.6
8

63
.5

9
82

.7
0

93
.6

9
87

.3
7

80
.9

1
73

.1
8

57
.6

0
78

.5
5

R
e
v
e
r
s
e

82
.6

7
48

.0
0

65
.3

4
97

.9
1

88
.2

3
55

.6
1

80
.5

8
99

.5
0

97
.6

7
88

.7
4

57
.1

7
85

.7
7

98
.7

7
94

.8
8

87
.2

7
72

.5
3

49
.5

6
80

.6
0

R
a
n
d
o
m

82
.7

5
48

.0
0

65
.3

8
97

.5
4

80
.6

3
58

.6
2

78
.9

3
99

.5
3

97
.6

9
89

.2
0

59
.9

9
86

.6
0

99
.8

8
99

.4
0

97
.0

6
86

.4
9

54
.9

0
87

.5
5

I
C
B
P

82
.9

6
48

.0
0

65
.4

8
97

.7
1

89
.9

4
64

.3
1

83
.9

9
99

.5
4

97
.8

8
91

.3
6

65
.3

9
88

.5
4

99
.8

8
99

.4
2

97
.1

9
87

.9
8

60
.4

2
88

.9
9

i
n
C
T
P
r
i

82
.6

3
48

.0
0

65
.3

2
98

.2
1

92
.1

4
63

.5
9

84
.6

5
99

.6
6

98
.6

2
92

.5
3

64
.8

8
88

.9
2

99
.9

1
99

.6
6

98
.1

9
90

.6
7

60
.1

1
89

.7
1

A
S
P
S

e
85

.8
7

48
.0

0
66

.9
4

98
.4

5
91

.6
7

64
.1

3
84

.7
5

99
.7

1
98

.6
0

92
.4

0
65

.3
0

89
.0

0
99

.9
3

99
.6

5
98

.1
8

90
.7

5
60

.3
8

89
.7

8
A
S
P
S

r
83

.2
7

48
.0

0
65

.6
3

98
.3

1
90

.4
3

63
.2

2
83

.9
9

99
.7

0
98

.2
0

91
.0

9
64

.4
3

88
.3

5
99

.9
2

99
.5

5
97

.6
1

88
.4

9
59

.9
3

89
.1

0
A
S
P
S

m
85

.8
7

48
.0

0
66

.9
4

98
.4

5
92

.0
9

63
.8

8
84

.8
1

99
.7

1
98

.6
0

92
.5

6
65

.1
9

89
.0

2
99

.9
3

99
.6

5
98

.2
0

90
.7

3
60

.3
9

89
.7

8

TP1−PICT

O
r
i
g
i
n
a
l

90
.6

3
60

.2
7

75
.4

5
98

.1
6

92
.1

1
64

.4
0

84
.8

9
99

.5
9

97
.8

3
91

.4
1

64
.5

6
88

.3
5

99
.8

9
99

.4
0

97
.3

0
88

.4
9

59
.2

7
88

.8
7

R
e
v
e
r
s
e

89
.2

8
56

.3
7

72
.8

3
97

.8
5

89
.8

9
59

.8
7

82
.5

4
99

.5
9

97
.8

1
89

.6
8

59
.6

0
86

.6
7

99
.8

9
99

.4
0

97
.2

2
87

.1
8

54
.7

3
87

.6
8

R
a
n
d
o
m

87
.5

2
56

.3
5

71
.9

4
97

.7
0

89
.3

9
60

.2
6

82
.4

5
99

.5
3

97
.7

3
89

.3
7

60
.3

2
86

.7
4

99
.8

8
99

.4
2

97
.1

7
87

.1
2

55
.9

4
87

.9
1

I
C
B
P

89
.9

5
60

.2
7

75
.1

1
97

.9
1

91
.7

9
64

.5
8

84
.7

6
99

.5
5

97
.9

0
91

.5
3

65
.2

8
88

.5
7

99
.8

8
99

.4
2

97
.3

1
88

.5
9

60
.9

9
89

.2
4

i
n
C
T
P
r
i

89
.9

5
60

.2
7

75
.1

1
98

.3
4

92
.7

9
64

.2
9

85
.1

4
99

.6
6

98
.6

3
92

.6
6

64
.8

3
88

.9
5

99
.9

2
99

.6
7

98
.2

5
90

.9
9

60
.6

0
89

.8
9

A
S
P
S

e
91

.1
6

60
.1

1
75

.6
4

98
.5

6
92

.5
8

64
.5

8
85

.2
4

99
.7

2
98

.6
2

92
.5

3
65

.1
9

89
.0

2
99

.9
3

99
.6

7
98

.2
5

91
.0

9
60

.9
0

89
.9

7
A
S
P
S

r
90

.3
0

59
.4

4
74

.8
7

98
.4

4
91

.3
9

63
.7

5
84

.5
2

99
.7

0
98

.2
2

91
.2

6
64

.3
3

88
.3

8
99

.9
3

99
.5

7
97

.7
0

88
.9

9
60

.4
3

89
.3

2
A
S
P
S

m
91

.2
1

60
.1

2
75

.6
7

98
.5

7
92

.7
3

64
.4

7
85

.2
6

99
.7

2
98

.6
3

92
.6

9
65

.0
8

89
.0

3
99

.9
3

99
.6

7
98

.2
6

91
.0

6
60

.9
0

89
.9

7

TP2−ACTS

O
r
i
g
i
n
a
l

86
.1

4
66

.5
5

76
.3

5
92

.7
2

85
.3

3
72

.1
7

83
.4

1
97

.0
6

88
.6

6
82

.9
9

73
.8

2
85

.6
3

95
.3

1
91

.0
8

87
.1

3
83

.0
1

76
.1

1
86

.5
3

R
e
v
e
r
s
e

84
.9

2
60

.9
3

72
.9

2
96

.6
9

88
.7

8
69

.2
0

84
.8

9
99

.1
4

97
.3

6
90

.1
5

73
.1

4
89

.9
5

99
.6

1
98

.8
1

97
.1

9
91

.8
7

76
.4

9
92

.7
9

R
a
n
d
o
m

86
.1

5
62

.7
5

74
.4

5
96

.6
9

89
.5

2
70

.9
8

85
.7

3
99

.1
9

97
.2

8
91

.4
5

76
.1

1
91

.0
1

99
.7

7
99

.2
4

97
.5

4
92

.4
2

79
.0

0
93

.5
9

I
C
B
P

88
.6

0
67

.3
2

77
.9

6
97

.5
6

91
.8

5
74

.9
9

88
.1

3
99

.3
6

98
.0

3
93

.5
1

79
.9

8
92

.7
2

99
.8

1
99

.4
4

98
.2

0
94

.2
5

82
.8

2
94

.9
0

i
n
C
T
P
r
i

88
.6

0
67

.3
2

77
.9

6
97

.6
7

92
.2

3
74

.4
3

88
.1

1
99

.4
5

98
.1

8
93

.6
2

79
.3

7
92

.6
6

99
.8

5
99

.5
1

98
.3

0
94

.2
7

82
.1

8
94

.8
2

A
S
P
S

e
88

.8
9

67
.3

0
78

.1
0

97
.7

0
91

.8
6

74
.9

5
88

.1
7

99
.4

6
98

.0
4

93
.5

2
79

.9
7

92
.7

5
99

.8
6

99
.4

8
98

.2
4

94
.2

9
82

.8
3

94
.9

4
A
S
P
S

r
88

.3
5

66
.4

0
77

.3
8

97
.4

7
91

.2
4

73
.9

3
87

.5
4

99
.4

0
97

.7
8

92
.8

3
78

.9
8

92
.2

5
99

.8
4

99
.3

8
97

.9
5

93
.6

3
81

.8
1

94
.5

2
A
S
P
S

m
89

.3
1

67
.2

4
78

.2
8

97
.7

5
92

.1
4

74
.8

3
88

.2
4

99
.4

7
98

.1
4

93
.6

5
79

.8
9

92
.7

9
99

.8
6

99
.5

0
98

.3
1

94
.3

8
82

.7
7

94
.9

6

TP2−PICT

O
r
i
g
i
n
a
l

88
.1

8
66

.5
1

77
.3

5
97

.5
6

92
.2

1
76

.2
3

88
.6

7
99

.0
8

97
.4

4
92

.5
5

78
.5

6
91

.9
1

99
.7

8
99

.2
7

97
.6

5
92

.8
8

79
.8

3
93

.8
8

R
e
v
e
r
s
e

86
.6

8
63

.2
9

74
.9

9
97

.3
6

90
.4

1
71

.4
7

86
.4

1
99

.0
6

97
.2

5
91

.3
4

74
.8

3
90

.6
2

99
.7

2
99

.1
3

97
.3

6
91

.8
1

76
.7

1
92

.9
4

R
a
n
d
o
m

86
.1

6
63

.2
3

74
.7

0
96

.9
0

90
.0

5
72

.1
0

86
.3

5
99

.1
5

97
.1

8
91

.2
2

75
.4

5
90

.7
5

99
.7

5
99

.1
5

97
.2

1
91

.4
9

76
.8

6
92

.8
9

I
C
B
P

88
.6

4
66

.8
2

77
.7

3
97

.7
0

92
.3

2
76

.1
0

88
.7

1
99

.3
4

97
.9

5
93

.2
6

79
.1

7
92

.4
3

99
.7

8
99

.3
6

97
.9

3
93

.4
1

80
.3

9
94

.1
7

i
n
C
T
P
r
i

88
.6

4
66

.8
2

77
.7

3
97

.8
1

92
.6

8
75

.6
0

88
.7

0
99

.4
3

98
.1

1
93

.3
8

78
.5

3
92

.3
6

99
.8

3
99

.4
4

98
.0

5
93

.4
4

79
.6

6
94

.0
8

A
S
P
S

e
88

.8
5

66
.7

8
77

.8
2

97
.8

5
92

.3
2

76
.0

8
88

.7
5

99
.4

4
97

.9
6

93
.3

1
79

.1
5

92
.4

7
99

.8
3

99
.4

0
97

.9
7

93
.4

5
80

.3
6

94
.2

0
A
S
P
S

r
88

.1
7

65
.9

8
77

.0
7

97
.6

3
91

.6
8

75
.0

3
88

.1
1

99
.3

7
97

.7
1

92
.5

7
78

.1
0

91
.9

4
99

.8
1

99
.3

0
97

.6
6

92
.7

2
79

.3
1

93
.7

6
A
S
P
S

m
89

.1
8

66
.7

0
77

.9
4

97
.8

8
92

.6
0

75
.9

8
88

.8
2

99
.4

5
98

.0
8

93
.4

3
79

.0
8

92
.5

1
99

.8
3

99
.4

3
98

.0
6

93
.5

6
80

.2
8

94
.2

3

8

Ta
bl

e
5:

AP
C

C
λ

m
et

ric
(%

)f
or

di
ff

er
en

tp
rio

rit
iz

at
io

n
te

ch
ni

qu
es

fo
rT

P3
(7
,2

4 31 61 16
1 ,
∅)

an
d

T
P4

(8
,2

6 91 10
1 ,
∅)

.

M
et

ho
d

τ
=

2
τ
=

3
τ
=

4
τ
=

5
λ
=

1
λ
=

2
Av

g.
λ
=

1
λ
=

2
λ
=

3
Av

g.
λ
=

1
λ
=

2
λ
=

3
λ
=

4
Av

g.
λ
=

1
λ
=

2
λ
=

3
λ
=

4
λ
=

5
Av

g.

TP3−ACTS

O
r
i
g
i
n
a
l

75
.5

4
63

.4
0

69
.4

7
76

.4
6

65
.4

0
58

.6
5

66
.8

4
76

.6
5

65
.6

8
59

.5
0

55
.1

8
64

.2
5

84
.4

5
77

.1
1

73
.0

2
70

.4
1

66
.2

1
74

.2
4

R
e
v
e
r
s
e

75
.2

8
59

.7
6

67
.5

2
79

.0
1

66
.4

5
56

.4
9

67
.3

2
79

.1
8

67
.9

4
60

.3
6

52
.1

4
64

.9
1

95
.5

6
92

.8
6

90
.0

1
81

.3
7

63
.1

1
84

.5
8

R
a
n
d
o
m

91
.0

7
69

.8
2

80
.4

5
96

.8
5

87
.6

4
68

.3
2

84
.2

7
98

.3
8

93
.2

6
81

.9
8

61
.3

1
83

.7
3

99
.4

8
97

.6
1

92
.8

4
82

.8
9

65
.3

9
87

.6
4

I
C
B
P

93
.9

8
75

.7
7

84
.8

8
97

.7
9

90
.9

1
73

.8
2

87
.5

1
98

.6
6

94
.5

2
84

.1
2

64
.7

8
85

.5
2

99
.5

1
98

.1
0

94
.7

5
87

.2
2

71
.2

9
90

.1
7

i
n
C
T
P
r
i

93
.9

8
75

.7
7

84
.8

8
98

.0
9

92
.1

2
72

.5
7

87
.5

9
99

.0
5

96
.1

1
85

.6
4

62
.6

1
85

.8
5

99
.6

9
98

.7
1

95
.5

6
87

.2
8

70
.0

0
90

.2
5

A
S
P
S

e
94

.1
4

75
.7

1
84

.9
3

98
.0

4
91

.3
6

73
.8

5
87

.7
5

99
.0

6
95

.4
3

84
.5

7
64

.7
5

85
.9

5
99

.6
9

98
.5

9
95

.2
8

87
.6

7
71

.2
9

90
.5

0
A
S
P
S

r
94

.1
3

75
.3

8
84

.7
5

97
.8

2
90

.6
9

73
.2

6
87

.2
6

98
.8

2
94

.5
8

84
.0

2
64

.0
9

85
.3

8
99

.6
0

98
.1

4
94

.4
7

86
.4

5
70

.4
8

89
.8

3
A
S
P
S

m
94

.4
7

75
.6

9
85

.0
8

98
.1

7
92

.0
9

73
.6

0
87

.9
5

99
.0

8
96

.0
4

85
.8

4
64

.3
3

86
.3

2
99

.6
9

98
.7

1
95

.6
8

87
.8

9
71

.0
7

90
.6

1

TP3−PICT

O
r
i
g
i
n
a
l

92
.5

8
74

.5
2

83
.5

5
97

.2
5

88
.4

7
72

.2
8

86
.0

0
98

.7
0

94
.7

4
86

.5
7

70
.8

4
87

.7
1

99
.4

7
97

.5
0

93
.1

3
84

.6
0

68
.2

8
88

.6
0

R
e
v
e
r
s
e

91
.1

3
70

.5
6

80
.8

5
96

.9
4

87
.7

4
69

.2
0

84
.6

2
98

.7
7

94
.5

1
85

.6
3

67
.6

8
86

.6
4

99
.4

0
97

.5
4

92
.8

0
82

.7
2

64
.6

0
87

.4
1

R
a
n
d
o
m

91
.1

2
71

.0
4

81
.0

8
96

.8
9

87
.8

1
69

.8
0

84
.8

3
98

.7
2

94
.6

2
85

.0
5

67
.6

2
86

.5
0

99
.4

1
97

.5
0

92
.5

5
82

.3
1

64
.8

0
87

.3
1

I
C
B
P

94
.1

7
76

.2
7

85
.2

2
97

.9
0

91
.3

6
75

.0
2

88
.0

9
99

.0
5

96
.2

4
88

.8
7

72
.7

9
89

.2
4

99
.5

1
98

.0
1

94
.5

5
86

.6
5

70
.1

7
89

.7
8

i
n
C
T
P
r
i

94
.1

7
76

.2
7

85
.2

2
98

.1
4

92
.1

9
73

.9
6

88
.1

0
99

.2
6

97
.0

0
89

.3
1

71
.6

3
89

.3
0

99
.6

7
98

.6
6

95
.7

7
86

.7
9

68
.9

5
89

.9
7

A
S
P
S

e
94

.3
7

76
.2

6
85

.3
2

98
.1

1
91

.7
1

74
.9

8
88

.2
7

99
.2

7
96

.5
9

89
.1

5
72

.7
6

89
.4

4
99

.6
8

98
.4

9
95

.0
5

87
.1

4
70

.1
6

90
.1

0
A
S
P
S

r
94

.1
6

75
.9

3
85

.0
5

97
.8

5
90

.8
9

74
.4

8
87

.7
3

99
.1

0
95

.9
8

88
.2

4
71

.9
9

88
.8

3
99

.5
8

98
.0

7
94

.1
7

85
.7

6
69

.3
0

89
.3

8
A
S
P
S

m
94

.4
8

76
.2

4
85

.3
6

98
.1

9
92

.1
8

74
.8

8
88

.4
2

99
.2

9
96

.9
8

89
.5

2
72

.6
0

89
.6

0
99

.6
8

98
.6

5
95

.4
8

87
.3

6
69

.9
5

90
.2

2

TP4−ACTS

O
r
i
g
i
n
a
l

82
.8

7
69

.6
2

76
.2

5
83

.5
3

71
.7

7
62

.2
1

72
.5

0
90

.8
0

84
.1

7
79

.6
0

72
.1

1
81

.6
7

89
.3

4
81

.6
1

76
.5

6
72

.9
5

66
.2

8
77

.3
5

R
e
v
e
r
s
e

82
.5

8
68

.0
3

75
.3

0
83

.5
3

71
.4

1
54

.7
3

69
.8

9
98

.7
5

95
.3

8
87

.4
3

70
.2

4
87

.9
5

97
.3

1
94

.4
7

89
.9

4
80

.6
5

61
.1

9
84

.7
1

R
a
n
d
o
m

93
.2

6
76

.0
3

84
.8

3
96

.3
8

85
.7

5
64

.6
6

82
.2

6
98

.9
6

95
.1

4
86

.8
2

71
.3

2
88

.0
6

99
.3

8
96

.9
7

91
.7

1
81

.6
7

64
.6

2
86

.8
7

I
C
B
P

95
.5

8
79

.9
4

87
.7

6
97

.3
2

84
.4

9
69

.4
0

83
.7

4
99

.2
6

96
.5

0
90

.6
0

76
.6

5
90

.7
5

99
.5

2
97

.5
5

93
.2

9
85

.9
8

69
.9

6
89

.2
6

i
n
C
T
P
r
i

95
.5

8
79

.9
4

87
.7

6
97

.6
9

89
.7

5
66

.5
5

84
.6

6
99

.3
8

97
.1

5
90

.5
7

75
.3

2
90

.6
1

99
.6

4
98

.3
2

94
.6

9
85

.7
8

68
.2

2
89

.3
3

A
S
P
S

e
95

.7
2

79
.8

9
87

.8
1

97
.8

6
87

.1
5

69
.4

2
84

.8
1

99
.3

8
96

.7
0

90
.7

7
76

.6
9

90
.8

9
99

.6
5

98
.0

0
93

.9
3

86
.2

3
69

.6
3

89
.4

9
A
S
P
S

r
95

.5
8

79
.7

0
87

.6
4

97
.5

0
87

.0
1

68
.8

9
84

.4
7

99
.2

5
96

.3
8

89
.9

9
75

.9
4

90
.3

9
99

.5
6

97
.6

5
93

.2
7

84
.8

3
68

.9
7

88
.8

6
A
S
P
S

m
95

.7
6

79
.8

9
87

.8
3

97
.8

8
89

.1
4

68
.6

9
85

.2
4

99
.4

0
97

.1
1

91
.0

7
76

.5
7

91
.0

4
99

.6
5

98
.2

9
94

.8
4

86
.5

5
69

.2
7

89
.7

2

TP4−PICT

O
r
i
g
i
n
a
l

93
.9

4
78

.6
2

86
.2

8
97

.0
8

88
.3

2
71

.0
0

85
.4

7
98

.9
1

95
.3

7
88

.4
7

74
.2

8
89

.2
6

99
.5

4
97

.7
1

93
.7

1
86

.1
6

71
.5

6
89

.7
4

R
e
v
e
r
s
e

94
.0

5
75

.4
6

84
.7

6
96

.9
4

87
.8

3
69

.5
9

84
.7

9
98

.8
5

95
.0

6
87

.3
0

71
.1

8
88

.1
0

99
.4

8
97

.4
6

93
.1

2
84

.5
2

68
.1

6
88

.5
5

R
a
n
d
o
m

93
.1

7
75

.8
2

84
.5

0
96

.7
1

86
.4

5
66

.8
7

83
.3

4
98

.9
0

94
.8

4
86

.1
8

70
.8

7
87

.7
0

99
.4

4
97

.4
5

92
.7

7
83

.6
4

68
.0

8
88

.2
8

I
C
B
P

95
.5

1
79

.9
4

87
.7

3
97

.5
8

88
.8

8
72

.2
0

86
.2

2
99

.2
1

96
.4

0
89

.9
4

75
.4

3
90

.2
5

99
.5

7
98

.0
7

94
.6

7
87

.7
2

72
.9

5
90

.6
0

i
n
C
T
P
r
i

95
.5

1
79

.9
4

87
.7

3
97

.9
4

90
.0

0
70

.7
8

86
.2

4
99

.3
5

96
.9

8
89

.9
8

74
.4

9
90

.2
0

99
.6

9
98

.5
3

95
.3

2
87

.5
2

71
.8

1
90

.5
7

A
S
P
S

e
95

.7
3

79
.8

4
87

.7
9

97
.9

0
89

.7
6

72
.2

2
86

.6
3

99
.3

5
96

.5
2

90
.0

8
75

.4
5

90
.3

5
99

.6
9

98
.3

1
94

.9
5

87
.9

1
72

.9
4

90
.7

6
A
S
P
S

r
95

.6
0

79
.6

1
87

.6
1

97
.7

1
88

.8
9

71
.7

5
86

.1
2

99
.2

2
96

.1
2

89
.2

2
74

.6
6

89
.8

0
99

.6
2

97
.9

9
94

.2
5

86
.7

2
71

.9
4

90
.1

0
A
S
P
S

m
95

.7
6

79
.8

2
87

.7
9

98
.0

2
89

.9
9

72
.1

0
86

.7
0

99
.3

6
96

.9
5

90
.4

4
75

.3
9

90
.5

4
99

.6
9

98
.5

3
95

.5
1

88
.1

2
72

.7
1

90
.9

1

9

respectively, have greater APCC values than Original test1

sequences. Additionally, the average APCC values of ASPSe,2

ASPSr, and ASPSm are higher than those of Original, in3

100.00% (32/32), 84.38% (27/32), and 100.00% (32/32) of4

cases, respectively.5

As shown in Tables 4 and 5, it can be noted that different6

non-prioritized interaction test suites generated by different7

tools have different performances.8

For example, consider T P3(7, 243161161, ∅) at strength9

τ = 2: when non-prioritized covering arrays are constructed10

using ACTS, the difference between ASPSe and Original is11

18.60% for λ = 1, and 32.31% for λ = 2. However, when12

using PICT, the difference is 1.79% for λ = 1, and 1.74% for13

λ = 2. The main reason for this is related to the different14

mechanisms used in the ACTS and PICT tools [10, 25, 38].15

Specifically, without loss of generality, consider a test profile16

T P(k, |V1||V2| · · · |Vk |, ∅) with |V1| ≥ |V2| ≥ · · · ≥ |Vk |. When17

generating a τ-wise (1 ≤ τ ≤ k) covering array, the ACTS18

algorithm first uses horizontal growth [25, 38] to construct a19

τ-wise test set for the first τ parameters, which implies that it20

needs at least (1 + (|V1| − 1) ×∏τi=2 |Vi|) test cases to cover all21

possible 1-wise value combinations. However, the PICT22

algorithm chooses each next test case such that it covers the23

largest number of τ-wise value combinations that have not yet24

been covered – a mechanism similar to that of ICBP.25

In conclusion, the simulation indicates that the ASPS26

techniques do outperform Original in terms of the rate of27

covering value combinations, regardless of which construction28

tools are used (ACTS or PICT).29

2) Do ASPS methods have better APCC values than30

reverse or random ordering? In this part, we attempt to31

determine whether or not ASPS methods are more effective32

than two widely-used prioritization methods, Reverse and33

Random.34

In all cases, each ASPS method (regardless of ASPSe,35

ASPSr, and ASPSm) has higher APCC values than Reverse,36

and hence achieves higher average APCC values. Additionally,37

the performance of Reverse is correlated with the38

non-prioritized interaction test suite (that is, the ACTS and39

PICT tools).40

Compared with Random, the ASPS methods have higher41

APCC values in all cases, irrespective of the strength42

λ = 1, 2, · · · , τ and interaction test suite construction tool43

(ACTS or PICT). As a result, the ASPS methods have better44

performance according to the average APCC values at45

different strengths.46

In conclusion, in all cases our ASPS methods (regardless47

of the weighting distributions) do perform better than both the48

Reverse and Random prioritization strategies, according to the49

APCC values.50

3) Are ASPS methods better than “fixed-strength51

prioritization”? In this part, we would like to determine52

whether or not ASPS methods perform better than two53

implementations of “fixed-strength prioritization”, ICBP and54

inCTPri.55

Compared with ICBP, according to APCC values, ASPSe,56

ASPSr and ASPSm perform better in 79.46% (89/112),57

ASPSe: 33.63%

ASPSm: 65.77%

A
S

P
S

r:
 0

.6
%

Figure 1: Comparison of ASPSe, ASPSr , and ASPSm according to APCC.

36.61% (41/112), and 72.32% (81/112) of cases, respectively.58

Furthermore, according to the average of APCC values (Avg.),59

ASPSe, ASPSr, and ASPSm have better performances than ICBP60

in 100.00% (32/32), 18.75% (6/32), and 100.00% (32/32) of61

cases.62

Similarly, compared with inCTPri, ASPSe, ASPSr, and63

ASPSm have higher APCC values in 58.93% (66/112),64

21.43% (24/112), and 75.00% (84/112) of cases, respectively.65

Moreover, according to the average of APCC values, ASPSe,66

ASPSr, and ASPSm outperform inCTPri in 100.00% (32/32),67

3.13% (1/32), and 100.00% (32/32) of cases.68

In conclusion, the simulation results indicate that apart69

from ASPSr, in (58.93% ∼ 79.46%) of cases our ASPS70

methods (ASPSe and ASPSm) do perform better than ICBP and71

inCTPri, and also have higher averages of APCC values in all72

cases. Consequently, we conclude that our ASPS methods73

(except for ASPSr) do have better performance than74

“fixed-strength prioritization”.75

4) Among the three weighting distributions, which76

weighting distribution is used for the ASPS method? In this77

part, we are interested in which weighting distribution is more78

suitable for the ASPS method. As discussed before, there are79

three distributions used for the ASPS methods: equal, random,80

and empirical FTFI percentage weighting distributions.81

As discussed in the last part, among the three weight82

distributions for ASPS, ASPSr has the lowest APCCλ83

performance, irrespective of which λ value is used (1 ≤ λ ≤ τ).84

Additionally, when λ is high, ASPSe performs better than85

ASPSm, otherwise it performs worse. According to the average86

APCC values, however, ASPSm performs best, followed by87

ASPSe; while ASPSr has the worst performance. Figure 188

shows the comparison of ASPSe, ASPSr, and ASPSm according89

to the APCC metric. From this figure, it can be observed that90

in 65.77% (73.67/112) of cases ASPSm has the highest APCC91

values; in 33.63% (37.67/112) of cases, ASPSe does; and only92

in 0.60% (0.67/112) of cases is the highest values for ASPSr
5.93

In other words, among three weighting distributions, empirical94

FTFI percentage weighting distribution would be the best95

choice, followed by the equal weighting distribution,96

according to the APCC metric.97

5If there exist two or three ASPS strategies that have the same APCC value,
each strategy is assigned by 1/2 or 1/3.

10

Dave
Highlight

Dave
Sticky Note
delete "of"

Dave
Highlight

Dave
Sticky Note
delete "of"

Dave
Highlight

Dave
Sticky Note
delete (and)

Dave
Highlight

Dave
Sticky Note
average
delete "of"

Dave
Highlight
Do you really need this footnote? I think it could be deleted.

If you want to keep it, rephrase it as: "If two or three ASPS strategies have the same APCC value, then each strategy is assigned a $1/2$ or $1/3$, respectively."

BUT what does "assigned a 1/2" mean? Assigned 1/2 of what?

Dave
Highlight

Dave
Sticky Note
rephrase

Dave
Sticky Note

Table 6: Subject programs.
Subject Program Test Profile #uLOC #Seeded Faults #Detectable Faults #Used Faults

count T P(6, 2135, ∅) 42 15 12 12
nametbl T P(5, 213252, ∅) 329 51 44 43

flex T P(9, 263251,D), 9,581 ∼ 11,470 81 50 34
grep T P(9, 213342516181,D) 9,493 ∼ 10,173 57 12 10

In conclusion, the empirical FTFI percentage weighting1

distribution appears to be more suitable than the other2

weighting distributions for the ASPS method (ASPSm).3

5) Conclusion: Based on the above discussions, we find4

that given a covering array of strength τ, the ASPS strategies5

behave better than the Original, Reverse, and Random6

strategies (in 86.61% ∼ 100.00% of cases), and apart from7

ASPSr perform better than “fixed-strength prioritization”8

including ICBP and inCTPri implementations (in9

58.93% ∼ 79.46% of cases). Additionally, among the three10

weighting distributions, the empirical FTFI percentage is most11

suitable for use with the ASPS method, followed by the equal12

weighting distribution.13

5.2. Experiments14

An experimental study was also conducted to evaluate the15

ASPS techniques, the goal of which was to compare the fault16

detection rates of the ASPSe, ASPSr, and ASPSm techniques17

against those of other interaction test suite prioritization18

techniques, such as Original, Reverse, Random, ICBP, and19

inCTPri. In actual testing conditions, testing resources may20

be limited, and hence only part of an interaction test suite (or21

an interaction test sequence) may be executed. As a22

consequence, in this study we focused on different budgets by23

following the practice adopted in previous prioritization24

studies [30] of considering different percentages (p) of each25

interaction test sequence, e.g. p = 5%, 10%, 25%, 50%, 75%,26

and 100% of each interaction test sequence being executed.27

5.2.1. Setup28

For the study, we used two small-sized faulty C programs29

(count and nametbl)6, which had previously been used in30

research comparing defect revealing mechanisms [27],31

evaluating different combination strategies for test case32

selection [17], and fault diagnosis [16, 45]. Since these two33

programs are small, we also used another two medium-sized34

UNIX utility programs7, flex and grep, with real and seeded35

6From http://www.maultech.com/chrislott/work/exp/
7From http://sir.unl.edu

faults from the Software-artifact Infrastructure Repository36

(SIR) [11]. These two programs had also been widely used in37

prioritization research [22, 30, 32]. To determine the38

correctness of an executing test case, we created a fault-free39

version of each program (i.e. an oracle) by analyzing the40

corresponding fault description. These subject programs are41

described in Table 6, in which the Test Profile is the test profile42

of each subject program8; the #uLOC9 gives the number of43

lines of executable code in each program; the #Seeded Faults10
44

is the number of faults seeded in each program; the45

#Detectable Faults is the number of faults that could be46

detected from the accompanying test profiles, which are not47

guaranteed to be able to detect all faults; and the #Used Faults48

is the number of faults used in the experiment by removing49

some faults that could be triggered by nearly every50

combinatorial test case in the test suite, that is, faults could be51

removed such that they are identified by more than52

(78.00% ∼ 100.00%) test cases in the test suite.53

Similar to the simulation (Section 5.1), we also used ACTS54

and PICT to generate original interaction test sequences for55

each subject program. Additionally, we focused on covering56

arrays with strength τ = 2, 3, 4, 5. Table 7 gives the sizes of the57

original interaction test sequences obtained by ACTS and58

PICT. Because of the randomization in some of the59

prioritization techniques, we ran the experiment 100 times for60

each subject program and report the average.61

5.2.2. Metric62

The APFD metric [13] is a popular measure for evaluating63

fault detection rates of interaction test sequence. In this study,64

only part of the interaction test sequences could be run, and65

some faults might not have been triggered by a particular66

interaction test sequence. As discussed before, however,67

8The test profiles of two medium-sized programs, flex and grep, are from
Petke et al. [30].

9We used the line count tool named cloc, downloaded from
http://cloc.sourceforge.net, to count the number of code lines.

10Similar to [30], in this study we only used the faults provided with each of
subject programs, in order to avoid experiment bias and ensure repeatability.

Table 7: Sizes of original interaction test sequences for each subject program.

Subject Program ACTS PICT
τ = 2 τ = 3 τ = 4 τ = 5 τ = 2 τ = 3 τ = 4 τ = 5

count 15 41 108 243 14 43 116 259
nametbl 25 82 225 450 25 78 226 450

flex 27 66 130 238 26 65 129 219
grep 46 153 298 436 47 150 296 436

11

Dave
Highlight

Dave
Highlight

Dave
Sticky Note
Rephrase as:
"that is, faults were removed if they were identifiable by 78.00% ~ 100.00% of test cases in the test suite"

APFD has two requirements which may cause APFD to fail.1

Consequently, it was not possible to use APFD to investigate2

the fault detection rates of the different prioritization strategies,3

and so we used an enhanced version of APFD, NAPFD [32],4

as an alternative evaluation metric.5

5.2.3. Results and Discussions6

The experimental results from executing all prioritization7

techniques to test count, nametbl, flex, and grep are8

summarized in Tables 8 ∼ 11, based on which we can have the9

following observations. It should be noted that the data in bold10

in the tables is the largest in each sub-column.11

1) Does the ASPS method have faster fault detection rates12

than the Original method? In this part, we analyze the13

experimental data to answer the research question of whether14

or not the ASPS method is better than Original according to15

fault detection rates.16

As shown in Tables 8 ∼ 11, in 96.84% (184/190),17

97.37% (185/190), and 96.84% (184/190) of cases, ASPSe,18

ASPSr, and ASPSm, respectively, obtain interaction test19

sequences with higher fault detection rates than Original.20

The fault detection improvement of ASPS over Original for21

ACTS is larger than that for PICT: as was the case in the22

simulation, the main reason for this is the different methods23

used to construct ACTS and PICT interaction test suites.24

Additionally, as the proportion of the interaction test25

sequence executed (p) increases, the NAPFD improvement of26

ASPS over Original generally becomes smaller. For27

example, consider subject program nametbl for ACTS with28

τ = 5, when p = 5%, 10%, 25%, 50%, 75%, and 100%, the29

corresponding NAPFD improvements of ASPSe over30

Original are 58.92%, 42.87%, 27.78%, 14.54%, 9.71%, and31

7.27%, respectively.32

In conclusion, in (97.37% ∼ 96.84%) of cases, the ASPS33

method has higher rates of fault detection compared with34

Original. Furthermore, the ASPS method favors the cases35

where smaller percentages of interaction test sequence are36

executed, compared with Original.37

Table 8: The NAPFD metric (%) for different prioritization techniques for subject program count when executing the percentage of interaction test sequence.

Method Strength p of ACTS Interaction Test Sequence Executed p of PICT Interaction Test Sequence Executed
5% 10% 25% 50% 75% 100% 5% 10% 25% 50% 75% 100%

Original

τ = 2

– 0 0 25.00 48.11 59.72 – 0 33.33 69.05 78.33 84.52
Reverse – 0 30.56 62.50 73.11 78.06 – 25.00 43.06 51.79 60.00 71.43
Random – 15.38 37.75 60.08 70.76 76.31 – 17.71 44.18 68.19 76.71 83.21
ICBP – 16.29 40.56 61.98 72.05 77.27 – 17.96 46.67 72.69 80.82 86.30

inCTPri – 16.29 40.56 61.98 72.05 77.27 – 17.96 46.67 72.69 80.82 86.30
ASPSe – 15.21 38.81 62.32 72.09 77.29 – 19.04 50.68 75.45 82.82 87.73
ASPSr – 17.83 42.69 63.86 73.18 78.10 – 17.08 47.72 72.81 80.62 86.15
ASPSm – 13.58 39.10 62.90 72.32 77.45 – 17.13 47.24 73.99 81.79 86.99

Original

τ = 3

0 0 1.25 31.04 53.33 65.85 12.50 34.38 65.00 83.33 89.06 91.86
Reverse 39.58 48.96 58.75 74.58 83.06 87.60 0 21.88 55.83 78.97 86.20 89.73
Random 30.40 47.89 71.23 84.03 89.08 91.98 29.96 46.75 71.65 85.79 90.67 93.06
ICBP 29.06 48.25 73.25 86.03 90.64 93.15 27.25 48.43 75.91 88.49 92.45 94.38

inCTPri 31.71 51.96 75.85 87.05 91.34 93.66 32.98 54.44 78.45 89.68 93.23 94.96
ASPSe 32.63 54.40 75.98 86.83 91.16 93.53 30.92 54.42 78.92 89.90 93.37 95.07
ASPSr 33.21 53.60 75.45 86.68 91.09 93.48 34.42 53.15 77.06 88.74 92.61 94.50
ASPSm 35.00 55.78 76.39 86.94 91.23 93.58 30.90 54.75 78.74 89.85 93.34 95.04

Original

τ = 4

0 0 0 28.86 51.03 63.27 60.83 80.30 92.53 96.26 97.51 98.13
Reverse 65.00 82.50 93.52 96.76 97.84 98.38 74.17 87.12 95.11 97.56 98.37 98.78
Random 57.02 73.14 89.02 94.48 96.32 97.24 52.12 72.47 88.98 94.49 96.33 97.25
ICBP 56.04 74.30 90.15 95.08 96.72 97.54 52.76 74.07 89.96 94.98 96.65 97.49

inCTPri 60.20 77.81 91.52 95.76 97.17 97.88 59.88 79.42 92.04 96.02 97.35 98.01
ASPSe 61.80 78.25 91.78 95.89 97.26 97.95 60.28 79.11 91.94 95.97 97.31 97.99
ASPSr 60.67 77.70 91.40 95.69 97.13 97.85 60.85 78.61 91.41 95.71 97.14 97.85
ASPSm 61.63 78.34 91.64 95.82 97.21 97.91 60.39 79.32 91.94 95.97 97.31 97.98

Original

τ = 5

0 0 0 16.53 35.92 51.75 70.14 85.67 94.40 97.22 98.15 98.62
Reverse 78.47 82.81 88.13 92.63 95.10 96.33 80.56 90.67 96.35 98.19 98.80 99.10
Random 74.65 86.21 94.37 97.21 98.14 98.61 74.84 86.84 94.77 97.41 98.28 98.71
ICBP 76.34 87.46 94.97 97.50 98.34 98.76 76.84 88.17 95.34 97.69 98.46 98.85

inCTPri 80.51 90.08 96.03 98.03 98.69 99.02 81.19 90.77 96.40 98.21 98.81 99.11
ASPSe 80.76 90.27 96.11 98.07 98.72 99.04 80.39 90.41 96.25 98.14 98.76 99.07
ASPSr 79.89 89.48 95.79 97.91 98.61 98.96 80.34 90.27 96.20 98.11 98.75 99.06
ASPSm 81.45 90.65 96.26 98.15 98.77 99.08 81.41 90.88 96.44 98.23 98.82 99.12

12

Dave
Highlight

Dave
Sticky Note
remove (and)

Table 9: The NAPFD metric (%) for different prioritization techniques for subject program nametbl when executing the percentage of interaction test sequence.

Method Strength p of ACTS Interaction Test Sequence Executed p of PICT Interaction Test Sequence Executed
5% 10% 25% 50% 75% 100% 5% 10% 25% 50% 75% 100%

Original

τ = 2

0 15.70 55.04 75.87 83.91 88.42 11.63 27.33 58.72 72.97 81.98 87.02
Reverse 37.21 57.56 81.78 90.02 93.35 95.21 11.63 23.84 61.43 79.36 86.24 90.09
Random 18.22 32.92 62.85 79.31 86.15 90.03 19.13 33.58 61.53 77.54 84.65 88.91
ICBP 19.15 34.49 68.01 83.55 89.04 92.11 18.92 33.98 65.27 80.48 86.90 90.57

inCTPri 19.15 34.49 68.01 83.55 89.04 92.11 18.92 33.98 65.27 80.48 86.90 90.57
ASPSe 19.38 35.81 69.56 84.33 89.55 92.48 19.21 34.52 66.05 81.31 87.50 91.00
ASPSr 18.21 34.21 67.28 83.06 88.71 91.87 19.23 34.35 64.69 80.26 86.72 90.44
ASPSm 19.57 35.80 68.70 83.89 89.26 92.27 18.99 35.07 67.22 82.28 88.14 91.46

Original

τ = 3

27.03 48.55 69.19 84.37 89.50 92.19 40.31 64.12 85.37 92.87 95.21 96.44
Reverse 72.38 82.99 91.63 95.77 97.16 97.89 18.60 53.16 82.19 91.32 94.17 95.66
Random 53.44 71.53 87.80 94.04 96.00 97.02 43.26 66.39 85.87 93.06 95.34 96.53
ICBP 53.77 72.93 88.91 94.59 96.36 97.29 46.24 69.31 88.11 94.21 96.10 97.10

inCTPri 60.26 78.46 91.32 95.77 97.16 97.88 48.86 71.82 89.26 94.77 96.48 97.38
ASPSe 60.53 78.59 91.35 95.78 97.16 97.89 47.54 72.83 89.68 94.97 96.62 97.48
ASPSr 58.32 76.43 90.37 95.30 96.84 97.65 47.21 71.03 88.35 94.25 96.14 97.13
ASPSm 57.75 77.18 90.83 95.53 96.99 97.76 46.28 71.78 89.13 94.70 96.43 97.35

Original

τ = 4

32.03 51.64 70.14 84.35 89.57 92.21 72.09 85.68 94.37 97.21 98.14 98.61
Reverse 81.18 87.47 92.69 95.63 97.09 97.82 74.84 86.63 94.75 97.40 98.26 98.70
Random 77.58 88.29 95.39 97.69 98.46 98.85 78.14 88.57 95.49 97.76 98.50 98.88
ICBP 77.56 88.47 95.47 97.74 98.49 98.87 77.94 88.71 95.56 97.80 98.53 98.90

inCTPri 82.07 90.98 96.46 98.23 98.82 99.12 81.48 90.72 96.35 98.19 98.79 99.10
ASPSe 83.20 91.56 96.68 98.34 98.89 99.17 82.51 91.21 96.55 98.29 98.86 99.14
ASPSr 81.79 90.74 96.36 98.18 98.79 99.09 82.46 91.14 96.52 98.27 98.85 99.14
ASPSm 82.92 91.40 96.62 98.31 98.87 99.16 82.40 91.14 96.52 98.28 98.85 99.14

Original

τ = 5

32.19 52.79 70.47 84.59 89.71 92.30 88.85 94.55 97.81 98.91 99.27 99.45
Reverse 83.30 88.71 93.13 95.87 97.24 97.94 89.38 94.81 97.91 98.96 99.31 99.48
Random 88.02 94.10 97.63 98.82 99.21 99.41 87.77 93.99 97.58 98.80 99.20 99.40
ICBP 88.37 94.28 97.70 98.86 99.24 99.43 88.77 94.50 97.79 98.90 99.27 99.45

inCTPri 90.47 95.34 98.13 99.07 99.38 99.53 90.69 95.44 98.17 99.09 99.39 99.54
ASPSe 91.11 95.66 98.25 99.13 99.42 99.57 91.16 95.68 98.26 99.14 99.42 99.57
ASPSr 90.04 95.13 98.04 99.03 99.35 99.51 90.69 95.45 98.17 99.09 99.39 99.54
ASPSm 90.97 95.59 98.23 99.12 99.41 99.56 90.73 95.47 98.18 99.09 99.39 99.55

2) Does the ASPS method lead to higher fault detection1

rates than intuitive prioritization methods such as reverse2

prioritization and random prioritization? In this part, we3

compare the ASPS method with Reverse and Random, in4

terms of fault detection rate.5

As shown in the tables, ASPSe, ASPSr, and ASPSm have6

higher NAPFD values than Reverse in 76.32% (145/190),7

76.84% (146/190), and 78.42% (149/190) of cases,8

respectively. Furthermore, these three ASPS methods9

outperform Random in 97.37% (185/190), 95.79% (182/190),10

and 94.74% (180/190) of cases, respectively. Also, as the11

values of p increase, the improvement of the ASPS method12

over Reverse or Random decreases.13

However, there are cases where either Reverse or Random14

obtain interaction test sequences with the highest NAPFD15

values. For instance, for subject program count with τ = 4,16

Reverse performs best among all prioritization strategies,17

regardless of p value or interaction test suite construction tool18

(ACTS or PICT); likewise, for subject program flex with19

ACTS at τ = 2, when p = 75% or 100%, Random obtains20

interaction test sequences with the highest NAPFD values.21

In conclusion, in 76.32% ∼ 97.37% of cases, the ASPS22

method performs better than the two intuitive prioritization23

methods Reverse and Random, according to NAPFD.24

Furthermore, similar to Original, the ASPS method favors25

the cases where smaller percentages of interaction test26

sequence are executed, compared with Reverse and Random.27

3) Is the ASPS method better than “fixed-strength28

prioritization” in terms of fault detection rates? In this part,29

we compare fault detection rates of interaction test sequences30

prioritized by the ASPS method against two implementations31

of “fixed-strength prioritization”, ICBP and inCTPri.32

For subject program flex at strength τ = 2, ICBP performs33

better than the ASPS method for some p values; otherwise, the34

ASPS method has higher NAPFD values, regardless of p35

value. More specifically, ASPSe, ASPSr, and ASPSm have higher36

rates of fault detection than ICBP in 85.79% (163/190),37

71.58% (136/190), and 86.31% (164/190) of cases,38

13

respectively. The main reason for this phenomenon is that1

ICBP is an implementation of “fixed-strength prioritization”,2

which means that each selected element is evaluated according3

to a fixed strength τ. In addition, ICBP does not actually4

change the prioritization strength value throughout the5

prioritization process, and may consequently detect faults with6

the FTFI number = τ more quickly than ASPS, and faults with7

the FTFI number < τ more slowly, because the ASPS method8

focuses on aggregate strengths.9

According to the NAPFD values shown in tables, ASPSe,10

ASPSr, and ASPSm have better performances than inCTPri, in11

70.00% (133/190), 43.16% (82/190), and 70.53% (134/190)12

of cases, respectively. The improvements of the ASPS13

methods over inCTPri in medium-sized programs (flex and14

grep) are larger than those in small-sized programs (count and15

nametbl). Additionally, as the values of p increase, the16

improvement of the ASPS method against inCTPri generally17

decreases. Similar to ICBP, inCTPri is an implementation of18

“fixed-strength prioritization”, which means that it also19

prioritizes each test case using a fixed strength. However, they20

have different performances, something which can be21

explained as follows: ICBP uses a fixed strength τ throughout22

the prioritization process, but inCTPri uses different strengths23

(2, 3, · · · , and τ) to guide the interaction test suite24

prioritization.25

Both ICBP and inCTPri use only one strength to prioritize26

each combinatorial test case, while ASPS uses different27

strengths when choosing each, which could explain why it28

performs better in most cases. On the other hand, although29

neither ICBP nor inCTPri consider different strengths to guide30

the selection of each test case, the selected best candidate tc31

also involves additional information on interaction coverage at32

higher strengths. For example, suppose that tc covers a number33

of uncovered λ-wise value combinations, then according to the34

proof of Theorem 1, it can be concluded that tc also covers a35

number of uncovered value combinations at strengths higher36

than λ. Furthermore, since the fault distribution of each subject37

program (the FTFI number) is unknown before testing, it is38

Table 10: The NAPFD metric (%) for different prioritization techniques for subject program flex when executing the percentage of interaction test sequence.

Method Strength p of ACTS Interaction Test Sequence Executed p of PICT Interaction Test Sequence Executed
5% 10% 25% 50% 75% 100% 5% 10% 25% 50% 75% 100%

Original

τ = 2

5.88 12.50 34.56 44.11 55.88 64.27 8.82 16.91 53.92 72.40 77.63 81.28
Reverse 13.24 27.94 48.53 64.82 72.94 76.91 7.35 16.91 48.53 66.74 72.45 76.75
Random 15.68 27.39 51.69 67.61 74.18 77.69 15.03 27.48 53.25 69.58 75.82 79.87
ICBP 15.12 31.10 62.96 76.10 80.29 82.35 14.94 29.69 61.31 75.12 79.62 82.66

inCTPri 15.12 31.10 62.96 76.10 80.29 82.35 14.94 29.69 61.31 75.12 79.62 82.66
ASPSe 16.41 32.28 63.19 75.96 80.19 82.27 16.59 28.25 60.11 74.82 79.60 82.67
ASPSr 15.41 30.31 62.24 75.37 79.75 81.94 17.35 30.57 59.81 75.05 79.93 82.94
ASPSm 15.44 31.32 62.60 75.73 80.05 82.17 14.41 29.26 61.29 75.31 79.79 82.77

Original

τ = 3

26.96 45.83 66.82 77.27 81.00 83.96 22.55 46.81 72.61 80.42 83.03 85.00
Reverse 29.41 42.89 56.34 71.88 79.11 82.98 42.65 58.09 75.83 83.50 86.06 87.40
Random 36.35 52.77 72.59 81.51 84.92 87.10 36.17 51.43 71.02 79.99 83.36 85.29
ICBP 43.57 62.09 77.66 83.66 85.97 87.88 41.41 60.42 76.65 82.44 84.65 86.18

inCTPri 41.88 61.30 77.33 83.40 85.80 87.82 40.35 59.89 76.63 82.61 84.83 86.32
ASPSe 44.54 62.55 77.61 83.62 85.92 87.84 38.26 60.39 77.43 82.84 85.04 86.52
ASPSr 42.21 60.68 77.35 83.59 86.01 87.85 40.40 59.23 76.43 82.68 84.91 86.39
ASPSm 43.50 62.33 77.96 83.91 86.18 88.10 42.09 61.44 77.21 82.77 84.81 86.23

Original

τ = 4

32.11 51.70 68.20 78.28 83.79 87.90 41.67 49.88 72.43 80.33 83.79 86.43
Reverse 50.25 59.62 64.38 76.79 84.17 88.19 58.09 70.10 79.60 85.98 88.69 90.08
Random 51.75 68.36 81.31 87.77 90.74 92.85 52.52 67.10 80.16 85.49 87.88 89.36
ICBP 59.98 74.36 83.96 88.33 90.54 92.72 61.04 73.40 82.97 86.72 88.86 90.10

inCTPri 61.67 75.46 84.01 88.32 90.66 92.82 61.82 74.21 83.37 86.93 88.67 89.83
ASPSe 62.11 75.83 84.50 88.44 90.50 92.69 60.63 73.66 83.00 86.41 88.44 89.68
ASPSr 59.90 73.92 83.48 88.36 90.72 92.80 59.25 72.25 82.41 86.50 88.51 89.78
ASPSm 62.85 76.07 84.29 88.30 90.31 92.52 62.19 74.29 83.26 86.60 88.67 89.94

Original

τ = 5

35.96 57.54 74.23 82.64 87.48 90.63 55.15 71.15 82.30 89.06 91.80 93.86
Reverse 52.81 60.55 64.88 71.81 81.03 85.81 59.71 71.57 81.13 87.56 89.76 92.13
Random 65.23 77.11 86.13 90.77 93.09 94.72 61.14 74.23 84.26 89.01 91.52 93.36
ICBP 71.39 80.69 87.50 91.03 93.02 94.67 69.31 79.40 86.58 90.49 92.95 94.71

inCTPri 73.23 81.27 86.97 90.45 92.81 94.54 71.92 80.55 86.20 89.69 92.33 94.23
ASPSe 73.36 81.71 87.54 91.02 93.09 94.76 70.84 80.52 86.98 90.59 93.05 94.77
ASPSr 70.62 79.95 87.30 91.06 92.97 94.61 69.31 79.15 86.54 90.32 92.51 94.30
ASPSm 73.91 81.73 87.02 90.48 92.74 94.44 72.34 80.69 86.53 90.27 92.66 94.49

14

Table 11: The NAPFD metric (%) for different prioritization techniques for subject program grep when executing the percentage of interaction test sequence.

Method Strength p of ACTS Interaction Test Sequence Executed p of PICT Interaction Test Sequence Executed
5% 10% 25% 50% 75% 100% 5% 10% 25% 50% 75% 100%

Original

τ = 2

25.00 32.50 37.27 41.96 51.18 60.54 25.00 32.50 41.82 66.74 74.71 78.62
Reverse 30.00 35.00 45.45 59.35 69.26 74.67 30.00 38.75 54.09 68.48 75.86 79.47
Random 33.03 44.30 60.15 70.35 75.34 78.75 32.78 45.09 62.85 74.23 79.33 82.04
ICBP 31.13 42.74 61.80 72.36 76.10 78.69 30.65 42.30 61.42 74.29 79.58 82.24

inCTPri 31.13 42.74 61.80 72.36 76.10 78.69 30.65 42.30 61.42 74.29 79.58 82.24
ASPSe 36.55 49.55 66.35 75.35 78.66 80.90 31.05 44.35 64.70 76.23 80.89 83.22
ASPSr 31.70 44.30 63.07 72.89 76.67 79.43 34.05 46.48 64.53 75.79 80.55 82.97
ASPSm 33.15 46.25 64.97 74.03 77.57 80.05 33.45 45.73 64.94 76.39 80.99 83.29

Original

τ = 3

37.86 44.33 61.58 76.84 84.56 88.50 50.00 62.00 77.43 86.00 90.63 93.00
Reverse 47.86 64.00 74.60 82.30 85.44 89.15 58.57 70.00 79.86 87.87 91.88 93.93
Random 57.17 67.65 78.22 84.87 88.47 90.99 58.11 69.50 80.58 87.28 90.93 93.18
ICBP 56.44 69.51 79.94 86.27 89.92 92.48 58.69 71.53 80.69 87.56 91.34 93.53

inCTPri 55.94 69.84 80.68 87.42 91.10 93.37 58.67 71.57 81.51 88.20 91.81 93.88
ASPSe 59.30 71.21 80.81 86.65 90.45 92.88 58.33 72.07 82.67 88.88 92.36 94.29
ASPSr 60.17 72.20 81.09 86.01 89.06 91.80 60.17 72.39 82.14 89.05 92.33 94.25
ASPSm 59.57 72.23 81.40 86.51 89.98 92.52 58.12 71.65 81.88 88.62 92.13 94.12

Original

τ = 4

43.93 55.86 70.54 82.89 88.57 91.44 61.07 68.62 78.72 84.36 86.24 89.53
Reverse 63.93 67.24 75.88 82.99 86.05 89.56 51.79 64.31 79.93 89.80 93.20 94.90
Random 65.96 75.25 84.43 89.89 92.65 94.45 66.06 75.33 85.23 90.82 93.42 95.01
ICBP 67.97 77.58 86.44 92.38 94.91 96.19 70.94 78.59 86.22 92.36 94.90 96.18

inCTPri 71.02 79.43 87.07 92.85 95.22 96.42 71.22 79.44 87.74 93.13 95.42 96.57
ASPSe 70.64 78.17 86.24 92.26 94.83 96.13 71.59 78.98 86.81 92.59 95.06 96.30
ASPSr 71.44 79.62 87.94 93.39 95.58 96.69 70.09 79.74 87.62 92.91 95.28 96.46
ASPSm 70.24 78.49 86.96 92.75 95.15 96.37 70.98 79.13 86.48 92.40 94.93 96.20

Original

τ = 5

45.95 48.02 49.22 59.43 71.96 78.97 66.19 78.26 87.98 93.99 95.99 97.00
Reverse 64.29 72.33 77.11 86.10 90.73 93.05 79.76 85.00 94.04 97.02 98.01 98.51
Random 70.05 77.18 85.43 90.72 93.50 95.11 70.05 77.18 85.43 90.72 93.50 95.11
ICBP 72.32 80.33 88.88 94.36 96.24 97.18 72.32 80.33 88.88 94.36 96.24 97.18

inCTPri 74.00 81.41 88.95 94.44 96.29 97.22 74.52 82.47 90.57 95.28 96.85 97.64
ASPSe 76.98 82.92 90.33 95.10 96.73 97.55 75.89 81.84 89.18 94.43 96.29 97.22
ASPSr 76.60 82.61 89.07 94.16 96.10 97.08 75.30 81.78 89.52 94.50 96.34 97.25
ASPSm 76.49 83.69 91.09 95.47 96.98 97.73 76.49 83.69 91.09 95.47 96.98 97.73

reasonable that ICBP and inCTPri occasionally have better1

fault detection rates than ASPS (especially ASPSr, as its2

weighting distribution is assigned in a random manner).3

In conclusion, according to the fault detection rates (the4

NAPFD values), ASPS performs better than both5

“fixed-strength prioritization” implementations, that is, ICBP6

(in 71.58% ∼ 86.32% of cases) and inCTPri (in about 70.00%7

of cases for ASPSe and ASPSm; and in 43.16% of cases for8

ASPSr).9

4) Which weighting distribution for the ASPS method gives10

the best fault detection rates? In this part, we study the fault11

detection rate of the ASPS method with three weighting12

distributions, so as to determine which weighting distribution13

is best.14

From the experimental data, no weighting distribution is15

always best, because each weighting distribution performs best16

for some cases, but worst for others. Consider subject program17

grep (Table 8), for example: (a) ASPS with equal weighting18

distribution (ASPSe) has the best NAPFD values for ACTS at19

strength τ = 2; (b) ASPS with random weighting distribution20

(ASPSr) performs best for ACTS at strength τ = 4; and (c)21

ASPS with empirical FTFI percentage weighting distribution22

(ASPSm) has the best fault detection at strength τ = 5, for both23

ACTS and PICT.24

On the whole, however, equal and empirical FTFI25

percentage weighting distributions have better rates of fault26

detection than random weighting distributions. As shown in27

Fig. 2, ASPSe achieves the best NAPFD values in28

48.33% (91.83/190) of cases, followed by ASPSm in29

34.65% (65.83/190) of cases. In other words, for the ASPS30

method, equal and empirical FTFI percentage weighting31

distributions would be the better choice in practical testing.32

In conclusion, although each weighting distribution can33

perform best in some cases, the equal and empirical FTFI34

percentage weighting distributions perform better than random35

weighting distribution.36

5) Time-cost analysis: In this part, we further investigate37

15

ASPSm: 34.65%

ASPSe: 48.33%

ASPSr: 17.02%

Figure 2: Comparison of ASPSe, ASPSr , and ASPSm according to NAPFD.

the time cost of the ICBP, inCTPri, and ASPS11 methods, to1

help guide practical use.2

Table 12 presents the time cost (in seconds) for different3

prioritization techniques of interaction test suites on different4

subject programs. From the experimental data, we can observe5

that our method ASPS has very similar time cost to ICBP. It6

can also be observed that when the strength τ = 2, the time7

cost of ASPS is similar to that of inCTPri; but as the strength8

τ increases (τ = 3, 4, 5), the time cost of ASPS differs from9

that of inCTPri. More specifically, for the two small-sized10

programs (count and nametbl), ASPS requires less time, but11

for the medium-sized programs (flex and grep), inCTPri has12

lower time costs.13

According to the fault detection rates, ASPS generally has14

better performance than ICBP and inCTPri, especially when15

the percentage of interaction test sequence executed (p) is16

lower, in which case, the prioritization time cost of ASPS is17

also lower. In other words, when testing resources are limited,18

ASPS should be chosen as the prioritization method; however,19

when testing resources are less constrained, inCTPri would20

11We do not consider Original, Reverse, and Random, because the cost of
these methods should be much less than that of the methods which make use of
some additional information (ICBP, inCTPri, and ASPS). Furthermore, since
the three implementations of ASPS (ASPSe, ASPSr , and ASPSm) have similar
prioritization time, we use ASPS to represent all three.

be a better choice because it requires less prioritization time21

for medium-sized programs.22

6) Conclusion: The experimental study using real23

programs shows that although each method may sometimes24

obtain the highest NAPFD values, the ASPS method25

(regardless of ASPSe, ASPSr, and ASPSm) performs better than26

Original, Reverse, Random, and ICBP in at least 70% of27

cases. Furthermore, the ASPS method (except for ASPSr) also28

has better fault detection rates than inCTPri in about 70% of29

cases. Additionally, equal and empirical FTFI percentage30

weighting distributions give better performance for ASPS than31

random weighting distribution. With regard to the time cost for32

different prioritization strategies, the ASPS method has similar33

performance to ICBP, and higher costs than inCTPri for some34

subject programs but lower for others.35

5.3. Threats to validity36

In spite of our best efforts, our experiments may face three37

threats to validity:38

(1) The experimental setup: The experimental programs are39

well-coded and tested. We have tried to manually cross-validate40

our analyzed programs on small examples, and we are confident41

of the correctness of the experimental and simulation set-up.42

(2) The selection of experimental data: Two43

commonly-used tools (ACTS and PICT) were used for44

generating different covering arrays at different strength45

values. Although they are used in the field of combinatorial46

interaction testing, both of them use greedy algorithms. Only47

four test profiles were used for the simulations, which,48

although representative, were limited. For the real-life49

experiments, we examined only four subject programs, two of50

which were of a relatively small size. To address these51

potential threats, additional studies will be conducted in the52

future using many other test profiles, a greater number of53

subject programs, and different algorithms for covering array54

construction such as simulated annealing based55

algorithms [8, 15].56

(3) The evaluation of experimental results: In order to57

objectively evaluate the effectiveness of the proposed method,58

Table 12: Time comparisons (in seconds) of different prioritization techniques of interaction test suites.

Subject Program Prioritization Strategy ACTS PICT
τ = 2 τ = 3 τ = 4 τ = 5 τ = 2 τ = 3 τ = 4 τ = 5

count
ICBP 0.04 0.25 1.30 3.11 0.04 0.26 1.47 3.49

inCTPri 0.04 0.22 1.34 5.48 0.04 0.24 1.59 6.15
ASPS 0.04 0.25 1.30 3.12 0.04 0.26 1.47 3.51

nametbl
ICBP 0.07 0.49 2.27 3.65 0.07 0.44 2.35 3.65

inCTPri 0.07 0.45 2.74 8.36 0.07 0.45 2.88 8.71
ASPS 0.07 0.49 2.27 3.66 0.07 0.44 2.35 3.66

flex
ICBP 0.13 1.57 10.42 38.64 0.12 1.50 10.72 34.61

inCTPri 0.13 1.00 5.86 27.10 0.12 1.11 6.55 22.26
ASPS 0.13 1.57 10.53 38.94 0.12 1.50 10.81 34.97

grep
ICBP 0.31 8.13 57.63 190.59 0.37 7.89 54.85 195.70

inCTPri 0.31 5.54 31.80 92.27 0.37 5.25 32.81 99.66
ASPS 0.31 8.19 58.32 191.87 0.37 7.89 55.40 196.94

16

the covering value combinations and the fault detection were1

measured with the APCC and NAPFD metrics, which are2

commonly used in the study of test case prioritization.3

Additionally, we only presented the averages for each4

prioritization strategy rather than a full statistical analysis,5

which is something we will prepare in the future.6

6. Conclusion and Future Work7

Combinatorial interaction testing [29] is a well-accepted8

testing technique, but due to often limited testing resources,9

prioritization of interaction test suites in combinatorial10

interaction testing has become very important. A dissimilarity11

measure to evaluate combinatorial test cases is introduced in12

this paper, based on which, a new pure prioritization strategy13

for interaction test suites is proposed, “aggregate-strength14

prioritization”. Compared with traditional interaction15

coverage based test prioritization (“fixed-strength16

prioritization”) [1, 2, 4–7, 18, 30–33, 37, 39, 40], the proposed17

method uses more information to guide prioritization of test18

suites. From the perspective of covering value combinations19

and fault detection, experimental results demonstrate that in20

most cases our method outperforms the test-case-generation21

prioritization, the reverse test-case-generation prioritization,22

and the random prioritization. Additionally, in most cases, our23

method has better performance than two implementations of24

“fixed-strength prioritization” while maintaining a similar time25

cost.26

Similar to “fixed-strength prioritization”, our prioritization27

strategy is not limited to conventional software. For example,28

event-driven software is a widely used category of software29

that takes sequences of events as input, alters state, and outputs30

new event sequences [4, 5]. It would be interesting to apply31

our strategy to different software including event-driven32

software in the future. Additionally, since the challenges of33

which weighting to be used and of whether to use34

fixed-strength or aggregate-strength prioritization strategy may35

depend on characteristics of the system under test, it would be36

useful, but challenging, to investigate the application scope of37

each prioritization strategy (including different weighting38

distributions).39

The interaction test suite construction tool in our study,40

PICT [10], uses a greedy algorithm to generate (select)41

combinatorial test cases: it selects an element as the next test42

cases such that it covers the largest number of value43

combinations at a given strength τ (the largest UVCDτ). Since44

PICT considers UVCDτ as the benefit for each combinatorial45

test case, PICT actually considers the prioritization during its46

the process of combinatorial test case generation. According to47

Qu’s classification [32], therefore, PICT belongs to the48

category of re-generation prioritization. Although the49

simulation results (Section 5.1) indicate that the differences50

between PICT and other prioritization methods are small in51

terms of the APCC metric, the experimental results against52

real-life programs (Section 5.2) show that other prioritization53

methods can obtain higher fault detection rates than PICT,54

according to the NAPFD metric. In the future, it will be55

important and interesting for us to solve the problem: do56

interaction test sequences obtained by re-generation57

prioritization need to be further ordered by the pure58

prioritization category?59

Acknowledgements60

The authors would like to thank Christopher M. Lott for61

providing us the source code and failure reports for count and62

nametbl, and the Software-artifact Infrastructure Repository63

(SIR) [11] for providing the source code and fault data for flex64

and grep. We would also like to thank D. Richard Kuhn for65

providing us the ACTS tool, and Justyna Petke for helping in66

the experimental setup. Additionally, we would like to67

acknowledge T. Y. Chen for the many helpful discussions and68

comments. This work is partly supported by the National69

Natural Science Foundation of China (Grant No. 61202110),70

the Natural Science Foundation of Jiangsu Province (Grant71

No. BK2012284), and the Senior Personnel Scientific72

Research Foundation of Jiangsu University (Grant No.73

14JDG039).74

References75

[1] Bryce, R. C., Colbourn, C. J., 2005. Test prioritization for pairwise76

interaction coverage. In: Proceedings of the 1st International Workshop77

on Advances in Model-based Testing (A-MOST’05). pp. 1–7.78

[2] Bryce, R. C., Colbourn, C. J., 2006. Prioritized interaction testing for79

pairwise coverage with seeding and contraints. Information and Software80

Technology 48 (10), 960–970.81

[3] Bryce, R. C., Colbourn, C. J., Cohen, M. B., 2005. A framework of greedy82

methods for constructing interaction test suites. In: Proceedings of the83

27th International Conference on Software Engineering (ICSE’05). pp.84

146–155.85

[4] Bryce, R. C., Memon, A. M., 2007. Test suite prioritization by86

interaction coverage. In: Proceedings of the Workshop on Domain87

Specific Approaches to Software Test Automation (DoSTA’07). pp. 1–7.88

[5] Bryce, R. C., Sampath, S., Memon, A. M., 2011. Developing a single89

model and test prioritization strategies for event-driven software. IEEE90

Transactions on Software Engineering 37 (1), 48–64.91

[6] Bryce, R. C., Sampath, S., Pedersen, J. B., Manchester, S.,92

2011. Test suite prioritization by cost-based combinatorial interaction93

coverage. International Journal of Systems Assurance Engineering and94

Management 2 (2), 126–134.95

[7] Chen, X., Gu, Q., Zhang, X., Chen, D., 2009. Building prioritized96

pairwise interaction test suites with ant colony optimization. In:97

Proceedings of the 9th International Conference on Quality Software98

(QSIC’09). pp. 347–352.99

[8] Cohen, M. B., Gibbons, P. B., Mugridge, W. B., Colbourn, C. J., 2003.100

Constructing test suites for interaction testing. In: Proceedings of the 25th101

International Conference on Software Engineering (ICSE ’03). pp. 38–48.102

[9] Cohen, M. B., Gibbons, P. B., Mugridge, W. B., Colbourn, C. J.,103

Collofello, J. S., 2003. Variable strength interaction testing of104

components. In: Proceedings of the 27th Annual International Conference105

on Computer Software and Applications (COMPSAC’03). pp. 413–418.106

[10] Czerwonka, J., 2006. Pairwise testing in real world: Practical extensions107

to test case generators. In: Proceedings of the 24th Pacific Northwest108

Software Quality Conference (PNSQC’06). pp. 419–430.109

[11] Do, H., Elbaum, S. G., Rothermel, G., 2005. Supporting controlled110

experimentation with testing techniques: An infrastructure and its111

potential impact. Empirical Software Engineering 10 (4), 405–435.112

[12] Elbaum, S., Malishevsky, A., Rothermel, G., 2001. Incorporating varying113

test costs and fault severities into test case prioritization. In: Proceedings114

of the 23rd International Conference on Software Engineering (ICSE’01).115

pp. 329–338.116

17

Dave
Highlight

Dave
Sticky Note
rephrase to "use"

[13] Elbaum, S., Malishevsky, A. G., Rothermel, G., 2002. Test case1

prioritization: A family of empirical studies. IEEE Transaction on2

Software Engineering 28 (2), 159–182.3

[14] Fouché, S., Cohen, M. B., Porter, A., 2009. Incremental covering array4

failure characterization in large configuration spaces. In: Proceedings5

of the 18th International Symposium on Software Testing and Analysis6

(ISSTA’09). pp. 177–188.7

[15] Garvin, B. J., Cohen, M. B., Dwyer, M. B., February 2011. Evaluating8

improvements to a meta-heuristic search for constrained interaction9

testing. Empirical Software Engineering 16 (1), 61–102.10

[16] Ghandehari, L. S. G., Lei, Y., Xie, T., Kuhn, R., Kacker, R., 2012.11

Identifying failure-inducing combinations in a combinatorial test set. In:12

Proceedings of the 5th International Conference on Software Testing,13

Verification and Validation (ICST’12). pp. 370–379.14

[17] Grindal, M., Lindström, B., Offutt, J., Andler, S. F., 2006. An evaluation15

of combination strategies for test case selection. Empirical Software16

Engineering 11 (4), 583–611.17

[18] Huang, R., Chen, J., Li, Z., Wang, R., Lu, Y., 2014. Adaptive random18

prioritization for interaction test suites. In: Proceedings of the 29th19

Symposium On Applied Computing (SAC’14), To appear.20

[19] Huang, R., Chen, J., Zhang, T., Wang, R., Lu, Y., 2013. Prioritizing21

variable-strength covering array. In: Proceedings of the IEEE 37th Annual22

Computer Software and Applications Conference (COMPSAC’13). pp.23

502–511.24

[20] Huang, R., Xie, X., Chen, T. Y., Lu, Y., 2012. Adaptive random25

test case generation for combinatorial testing. In: Proceedings of the26

IEEE 36th Annual Computer Software and Applications Conference27

(COMPSAC’12). pp. 52–61.28

[21] Huang, Y.-C., Peng, K.-L., Huang, C.-Y., 2012. A history-based cost-29

cognizant test case prioritization technique in regression testing. Journal30

of Systems and Software 85 (3), 626–637.31

[22] Jiang, B., Zhang, Z., Chan, W. K., Tse, T. H., 2009. Adaptive random test32

case prioritization. In: Proceedings of the 24th IEEE/ACM International33

Conference on Automated Software Engineering (ASE’09). pp. 233–244.34

[23] Kuhn, D. R., Reilly, M. J., 2002. An investigation of the applicability of35

design of experiments to software testing. In: Proceedings of the 27th36

Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-37

27’02). pp. 91–95.38

[24] Kuhn, D. R., Wallace, D. R., Gallo, A. M., 2004. Software fault39

interactions and implications for software testing. IEEE Transaction on40

Software Engineering 30 (6), 418–421.41

[25] Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., 2008. Ipog/ipod: Efficient test42

generation for multi-way software testing. Software Testing, Verification,43

and Reliability 18 (3), 125–148.44

[26] Li, Z., Harman, M., Hierons, R., 2007. Search algorithms for regression45

test case prioritization. IEEE Transactions on Software Engineering46

33 (4), 225–237.47

[27] Lott, C., Rombach, H., 1996. Repeatable software engineering48

experiments for comparing defect-detection techniques. Empirical49

Software Engineering 1 (3), 241–277.50

[28] Mei, L., Chan, W. K., Tse, T. H., Merkel, R. G., 2011. Xml-manipulating51

test case prioritization for xml-manipulating services. Journal of Systems52

and Software 84 (4), 603–619.53

[29] Nie, C., Leung, H., 2011. A survey of combinatorial testing. ACM54

Computer Survey 43 (2), 11:1–11:29.55

[30] Petke, J., Yoo, S., Cohen, M. B., Harman, M., 2013. Efficiency and early56

fault detection with lower and higher strength combinatorial interaction57

testing. In: Proceedings of the 12th Joint Meeting on European Software58

Engineering Conference and the ACM SIGSOFT Symposium on the59

Foundations of Software Engineering (ESEC/FSE’13). pp. 26–36.60

[31] Qu, X., Cohen, M. B., Rothermel, G., 2008. Configuration-aware61

regression testing: an empirical study of sampling and prioritization. In:62

Proceedings of the 17th International Symposium on Software Testing63

and Analysis (ISSTA’08). pp. 75–86.64

[32] Qu, X., Cohen, M. B., Woolf, K. M., 2007. Combinatorial interaction65

regression testing: A study of test case generation and prioritization.66

In: Proceedings of the IEEE International Conference on Software67

Maintenance (ICSM’07). pp. 255–264.68

[33] Qu, X., Cohen, M. B., Woolf, K. M., 2013. A study in prioritization69

for higher strength combinatorial testing. In: Proceedings of the 2nd70

International Workshop on Combinatorial Testing, (IWCT’13). pp. 285–71

294.72

[34] Rothermel, G., Untch, R. H., Chu, C., Harrold, M. J., 2001. Prioritizing73

test cases for regression testing. IEEE Transactions on Software74

Engineering 27 (10), 929–948.75

[35] Seroussi, G., Bshouty, N. H., 1988. Vector sets for exhaustive testing of76

logic circuits. IEEE Transactions on Information Theory 34 (3), 513–522.77

[36] Srikanth, H., Banerjee, S., 2012. Improving test efficiency through system78

test prioritization. Journal of Systems and Software 85 (5), 1176–1187.79

[37] Srikanth, H., Cohen, M. B., Qu, X., 2009. Reducing field failures in80

system configurable software: Cost-based prioritization. In: Proceedings81

of the 20th International Symposium on Software Reliability Engineering82

(ISSRE’09). pp. 61–70.83

[38] Tai, K. C., Lei, Y., 2002. A test generation strategy for pairwise testing.84

IEEE Transaction on Software Engineering 28 (1), 109–111.85

[39] Wang, Z., 2009. Test case generation and prioritization for combinatorial86

testing. Ph.D. thesis, Southeast University, Nanjing, Jiangsu, China.87

[40] Wang, Z., Chen, L., Xu, B., Huang, Y., 2011. Cost-cognizant88

combinatorial test case prioritization. International Journal of Software89

Engineering and Knowledge Engineering 21 (6), 829–854.90

[41] Wong, W. E., Horgan, J. R., London, S., Bellcore, H. A., 1997. A91

study of effective regression testing in practice. In: Proceedings of92

the 8th International Symposium on Software Reliability Engineering93

(ISSRE’97). pp. 264–274.94

[42] Yilmaz, C., Cohen, M. B., Porter, A. A., 2006. Covering arrays for95

efficient fault characterization in complex configuration spaces. IEEE96

Transactions on Software Engineering 32 (1), 20–34.97

[43] Yoon, H., Choi, B., 2011. A test case prioritization based on degree of98

risk exposure and its empirical study. International Journal of Software99

Engineering and Knowledge Engineering 21 (02), 191–209.100

[44] Zhang, L., Hou, S.-S., Guo, C., Xie, T., Mei, H., 2009. Time-aware101

test-case prioritization using integer linear programming. In: Proceedings102

of the 18th International Symposium on Software Testing and Analysis103

(ISSTA’09). pp. 213–224.104

[45] Zhang, Z., Zhang, J., 2011. Characterizing failure-causing parameter105

interactions by adaptive testing. In: Proceedings of the 20th International106

Symposium on Software Testing and Analysis (ISSTA’11). pp. 331–341.107

18

