
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

9-2006

On the Use of Mutation Faults in Empirical
Assessments of Test Case Prioritization Techniques
Hyunsook Do
University of Nebraska-Lincoln, dohy@cse.unl.edu

Gregg Rothermel
University of Nebraska-Lincoln, grothermel2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Do, Hyunsook and Rothermel, Gregg, "On the Use of Mutation Faults in Empirical Assessments of Test Case Prioritization
Techniques" (2006). CSE Journal Articles. 5.
http://digitalcommons.unl.edu/csearticles/5

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/5?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

On the Use of Mutation Faults
in Empirical Assessments of

Test Case Prioritization Techniques
Hyunsook Do, Student Member, IEEE, and Gregg Rothermel, Member, IEEE

Abstract—Regression testing is an important activity in the software life cycle, but it can also be very expensive. To reduce the cost of

regression testing, software testers may prioritize their test cases so that those which are more important, by some measure, are run

earlier in the regression testing process. One potential goal of test case prioritization techniques is to increase a test suite’s rate of fault

detection (how quickly, in a run of its test cases, that test suite can detect faults). Previous work has shown that prioritization can

improve a test suite’s rate of fault detection, but the assessment of prioritization techniques has been limited primarily to hand-seeded

faults, largely due to the belief that such faults are more realistic than automatically generated (mutation) faults. A recent empirical

study, however, suggests that mutation faults can be representative of real faults and that the use of hand-seeded faults can be

problematic for the validity of empirical results focusing on fault detection. We have therefore designed and performed two controlled

experiments assessing the ability of prioritization techniques to improve the rate of fault detection of test case prioritization techniques,

measured relative to mutation faults. Our results show that prioritization can be effective relative to the faults considered, and they

expose ways in which that effectiveness can vary with characteristics of faults and test suites. More importantly, a comparison of our

results with those collected using hand-seeded faults reveals several implications for researchers performing empirical studies of test

case prioritization techniques in particular and testing techniques in general.

Index Terms—Regression testing, test case prioritization, program mutation, empirical studies.

Ç

1 INTRODUCTION

AS engineers maintain software systems, they periodi-
cally regression test them to detect whether new faults

have been introduced into previously tested code and
whether newly added code functions according to specifi-
cation. Regression testing is an important activity in the
software life cycle, but it can also be very expensive and can
account for a large proportion of the software maintenance
budget [31]. To assist with regression testing, engineers may
prioritize their test cases so that those that are more
important are run earlier in the regression testing process.

Test case prioritization techniques (hereafter referred to
simply as “prioritization techniques”) schedule test cases
for regression testing in an order that attempts to maximize
some objective function, such as achieving code coverage
quickly or improving rate of fault detection. Many prior-
itization techniques have been described in the research
literature, and they have been evaluated through various
empirical studies [9], [10], [12], [13], [14], [33], [36], [38], [40].

Typically, empirical evaluations of prioritization tech-
niques have focused on assessing a prioritized test suite’s
rate of detection of regression faults. Regression faults are
faults created in a system version as a result of code
modifications and enhancements, and rate of fault detection

is a measure of how quickly a test suite detects faults during
the testing process. An improved rate of fault detection can
provide earlier feedback on the system under test, enable
earlier debugging, and increase the likelihood that, if testing
is prematurely halted, those test cases that offer the greatest
fault detection ability in the available testing time will have
been executed.

When experimenting with prioritization techniques,
regression faults can be obtained in two ways: by locating
naturally occurring faults and by seeding faults. Naturally
occurring faults offer external validity, but they are costly to
locate and often cannot be found in numbers sufficient to
support controlled experimentation. In contrast, seeded
faults, which are typically produced through hand-seeding
or program mutation, can be provided in larger numbers,
allowing more data to be gathered than would otherwise be
possible.

For these reasons, researchers to date have tended to
evaluate prioritization techniques using seeded faults rather
than naturally occurring faults. Furthermore, researchers
have typically used hand-seeded faults because, despite the
fact that hand-seeding, too, is costly, hand-seeded faults
have been seen as more realistic than mutation faults [17]. A
recent study by Andrews et al. [1], however, suggests that
mutation faults can in fact be representative of real faults,
and that the use of hand-seeded faults can be problematic for
the validity of empirical results focusing on fault detection.
Their study considered only C programs and measured only
the relative fault detection effectiveness of test suites; it did
not consider the effects of fault type on evaluations of client
testing techniques such as prioritization. If these results

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006 733

. The authors are with the Department of Computer Science and
Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0115.
E-mail: {dohy, grother}@cse.unl.edu.

Manuscript received 15 Dec. 2005; revised 14 Mar. 2006; accepted 23 Mar.
2006; published online 27 Sept. 2006.
Recommended for acceptance by T. Gyimothy and V. Rajlich.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0333-1205.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

generalize, however, then we may be able to improve and
extend the validity of experimental results on prioritiza-
tion by using mutation and, also, to substantially reduce
the cost of experimentation, facilitating faster empirical
progress.

We have therefore performed two controlled experi-
ments assessing prioritization techniques using mutation
faults. In the first experiment, we examine the abilities of
several prioritization techniques to improve the rate of fault
detection of JUnit test suites on four open-source Java
systems, while also varying other factors that affect
prioritization effectiveness. In the second experiment, we
replicate the first, but we consider a pair of Java programs
provided with system, rather than JUnit, test suites.

Our analyses show that test case prioritization can
improve the rate of fault detection of test suites, assessed
relative to mutation faults, and they expose ways in which
that effectiveness can vary with characteristics of faults and
test suites, and with classes of prioritization techniques.
More important, our empirical results are largely consistent
with those of Andrews et al., suggesting that the large
number of faults that can be obtained through mutation can
result in data sets on which statistically significant conclu-
sions can be obtained, with prospects for assessing causal
relationships, and with a lower cost compared to that of
using hand-seeded faults. The results do also suggest,
however, that assessments of prioritization techniques
could be biased by the use of overly limited numbers of
mutants.

In the next section of this paper, we describe prior work
on prioritization and provide background on program
mutation. Section 3 examines the current empirical under-
standing of prioritization as reflected in the literature.
Section 4 describes the specific mutation operators that we
used in our studies and our mutant generation process.
Sections 5 and 6 present our experiments, including design,
results, and analysis. Section 7 discusses our results and
considers results across the experiments, and Section 8
presents conclusions and future work.

2 BACKGROUND AND RELATED WORK

2.1 Test Case Prioritization

As mentioned in Section 1, test case prioritization tech-
niques [14], [36], [40] schedule test cases so that those with
the highest priority, according to some criterion, are
executed earlier in the regression testing process than lower
priority test cases. An advantage of prioritization tech-
niques is that, unlike many other techniques for assisting
regression testing, such as regression test selection [35], they
do not discard test cases.

Various prioritization techniques have been proposed
[11], [14], [36], [38], [40], but the techniques most prevalent
in the literature and in practice involve those that utilize
simple code coverage information. In particular, techniques
that focus on ordering test cases in terms of code not yet
covered by test cases run so far have been shown to be
typically most cost-effective, and one such approach has
been utilized successfully on extremely large systems at
Microsoft [38]. In general, however, the relative cost-

effectiveness of these techniques has been shown to vary
with several factors. We describe several specific prioritiza-
tion techniques (those that we study in our experiments) in
Section 5.2.1.

Most prioritization techniques proposed to date focus on
increasing the rate of fault detection of a prioritized test
suite. To measure rate of fault detection, a metric called
APFD (Average Percentage Faults Detected) has been
introduced [14], [36]. This metric measures the weighted
average of the percentage of faults detected over the life of a
test suite. Section 5.2.2 describes the APFD metric in detail.

Note that, to date, most prioritization techniques con-
sidered in the literature have focused only on existing test
suites and on obtaining better orderings of the test cases in
those suites. A drawback of this focus is that it does not
consider the need to add new test cases to test suites
following modifications; thus, prioritization of existing test
cases should be understood to be only one component of a
thorough regression testing process.

2.2 Test Case Prioritization Studies

Early studies of test case prioritization examined the cost-
effectiveness of techniques and approaches for estimating
technique performance, or compared techniques [14], [36],
[40], focusing on C programs. More recent studies have
investigated the factors affecting prioritization effectiveness
[10], [21], [34], also focusing on C. Collectively, these studies
have shown that various techniques can be cost-effective
and suggested several trade-offs among them.

More recently, Do et al. [9] investigated the effectiveness
of prioritization techniques on Java programs tested using
JUnit test cases. The results of this study showed that test
case prioritization can significantly improve the rate of fault
detection of JUnit test suites, but also revealed differences
with respect to previous studies that appear to be related to
the language and testing paradigm.

With the exception of one particular C program, a
6 KLOC program from the European Space Agency referred
to in the literature as “space,” all of the object programs
used in the foregoing empirical work (12 C and 4 Java
programs) contained only a single type of faults: hand-
seeded faults. In contrast, the studies we present here assess
prioritization techniques using mutation faults and examine
whether the results are consistent with those of the previous
study [9] of Java systems tested by JUnit tests, which used
hand-seeded faults.

Beyond these studies, two other studies have considered
prioritization relative to actual, non-hand-seeded faults [26],
[38]. The study in [26] considers prioritization based on the
distribution of tests’ execution profiles on three large
programs, compares results with coverage-based prioritiza-
tion results, and finds that the two techniques are
complementary in terms of fault detection abilities. The
study in [38] considers coverage-based prioritization on a
large commercial office automation system and shows how
efficiently the prioritization tool works for that system in
terms of the time required to prioritize test cases and the
speed with which the prioritized test suite can detect faults.

In Section 3, we analyze prior empirical research on
prioritization techniques to investigate the relationships
that have been seen to exist between the objects used in

734 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

experiments and prioritization results. We include the

studies from [26], [38] in this analysis to help broaden our

findings. Results from these two studies, however, are not

directly comparable to results obtained in other studies,

because the prioritization techniques they use are different

and, in the case of the second study, because a different

metric is used to measure the effectiveness of prioritization.

Thus, we consider their results qualitatively.

2.3 Program Mutation

The notion of mutation faults grew out of the notion of

mutation testing, a testing technique that evaluates the

adequacy of a test suite for a program [5], [7], [16] by

inserting simple syntactic code changes into the program

and checking whether the test suite can detect these

changes. The potential effectiveness of mutation testing

has been suggested through many empirical studies (e.g.,

[15], [30]) focusing on procedural languages.
Recently, researchers have begun to investigate mutation

testing of object-oriented programs written in Java [4], [23],

[24], [28]. While most of this work has focused on

implementing object-oriented specific mutant generators,

Kim et al. [24] apply mutation faults to several testing

strategies for object-oriented software and assess them in

terms of the effectiveness of those strategies.
Most recently, as mentioned in Section 1, Andrews et al.

[1] investigated the representativeness of mutation faults by

comparing the fault detection ability of test suites on hand-

seeded, mutation, and real faults, focusing on C systems,

with results favorable to mutation faults and problematic

for hand-seeded faults. Coupled with the fact that mutation

faults are much less expensive to produce than hand-

seeded faults, mutation faults may provide an appropriate

alternative for researchers when their experiments require

programs with faults. Additional studies are needed,

however, to further generalize this conclusion.
In this study, we further investigate findings of Andrews

et al. in the context of test case prioritization using Java

programs and JUnit test suites, considering mutation faults
and hand-seeded faults.

3 THE STATE OF THE EMPIRICAL UNDERSTANDING

OF PRIORITIZATION TO DATE

Since we are investigating issues related to the types of
faults used in experimentation with prioritization tech-
niques, we here analyze prior research that has involved
similar experimentation to provide insights into the
relationships that exist between the objects used in
experiments and prioritization results.

There have been no prior studies conducted of prior-
itization using different types of faults over the same
programs. Thus, we are not able to directly compare prior
empirical results to see whether or not the types of faults
utilized could affect results for the same programs;
however, we can obtain some general ideas by comparing
prioritization results across studies qualitatively. As shown
in Section 2, many such studies have been conducted; for
this analysis, we chose five ([11], [9], [14], [26], [38]) that
involve different object programs and types of faults.

Table 1 summarizes characteristics of the object pro-
grams used in the five studies we consider. Five of the
programs (javac, ant, jmeter, xml-security, and jtopas) are
written in Java, and the rest are written in C/C++. Program
size varies from 138 LOC to 1.8 million LOC. Six programs
(OA, GCC, Jikes, javac, space, and QTB) have real faults, and
the others have hand-seeded faults. As a general trend
observed in the table, the number of real faults is larger than
the number of hand-seeded faults on all programs except
bash and some of the Siemens programs. The number of
faults for OA was not provided in [38].

Table 2 shows prioritization results measured using the
APFD metric, for all programs except OA, and for four
prioritization techniques and one control technique (ran-
dom ordering) investigated in the papers. The result for OA
presents the percentage of faults in the program detected by
the first test sequence in the prioritized order. (A test

DO AND ROTHERMEL: ON THE USE OF MUTATION FAULTS IN EMPIRICAL ASSESSMENTS OF TEST CASE PRIORITIZATION TECHNIQUES 735

TABLE 1
Object Programs Used in Prioritization Studies

sequence as defined in [38] is a list of test cases that achieves
maximal coverage of the program, relative to the coverage
achieved by the test suite being prioritized.) In the
experiment described in [38], the first sequence contained
four test cases, and the entry in Table 2 indicates that those
four test cases detected 85 percent of the faults in the
program. For GCC, Jikes, and javac, a prioritization
technique (comb) that combines test execution profile
distribution and coverage information was applied. For
the other programs, two coverage-based prioritization
techniques, total and addtl, which order test cases in terms
of their total coverage of program components (functions,
methods, or statements), or their coverage of program
components not yet covered by test cases already ordered,
were applied. As a control technique, a random ordering of
test cases was used in all studies other than the one
involving OA.

Examining the data in Tables 1 and 2, we observed that
the results vary across programs and, thus, we further
analyzed the data to see what attributes might have affected
these results if any, considering several attributes:

. Program size. To investigate whether program size
affected the results, we compared results consider-
ing three different classes of program size that are
applicable to the programs we consider: small
(smaller than 10K LOC)—Siemens, space, grep, flex,
gzip, and jtopas, medium (larger than 10K LOC and
smaller than 100K LOC)—Jikes, javac, bash, ant,
jmeter, and xml-security, and large (larger than
100K LOC)—OA, GCC, and QTB. While large
programs are associated with moderate fault detec-
tion rates and with prioritization techniques out-
performing random ordering, small and medium
sized programs do not show any specific trends.

. Test case source. The test cases used in the five studies
were obtained from one of two different sources:

provided with the programs by developers or
generated by researchers. Table 3 shows prioritiza-
tion results grouped by test case source, considering
the types of test cases involved (traditional and
JUnit) separately. For traditional test suites, prior-
itization techniques reveal different trends across the
two groups: For the provided group, prioritization
techniques are always better than random ordering.
In particular, bash displays relatively high fault
detection rates.

For the generated group, we can classify pro-

grams into two groups relative to results: 1) Siemens

and space, and 2) grep, flex, and gzip. The results on

Siemens and space show that prioritization techniques

outperform random ordering. Results on the other

three programs, however, differ: On these, the total

coverage technique does not improve the rate of

fault detection, but the additional coverage techni-

que performs well. One possible reason for this

difference is that test cases for Siemens and space

were created to rigorously achieve complete code

coverage of branches and statements. The test cases

for the other three programs, in contrast, were

created primarily based on the program’s function-

ality and do not possess strong code coverage.
For JUnit test suites, all of which came with the

programs, the results vary depending on program,

and it is difficult to see any general trends in these

results. In general, however, since JUnit test cases do

not focus on code coverage, varying results are not

surprising.
. Number of faults. On all artifacts equipped with JUnit

test suites, as well as on grep, flex, and gzip, the
number of faults per version is relatively small
compared to on other programs. This, too, may be

736 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

TABLE 2
Results of Prior Prioritization Studies: Measured Using the APFD Metric, for All Programs Except OA

TABLE 3
Prioritization Results Grouped by Test Case Source: Measured Using the APFD Metric, for All Programs Except OA

To facilitate Interpretation, the last row indicates the average number of faults per version.

responsible for the greater variance in prioritization
results on the associated programs.

. Type of faults. Considering hand-seeded versus real
faults, results using real faults show that prioritiza-
tion techniques always outperform random order-
ing, but fault detection rates varied across programs.
For example, while fault detection rates on space are
very high, fault detection rates on QTB, Jikes, and
javac are relatively low. The study of OA does not
use the APFD metric, but from the high fault
detection percentage (85 percent) obtained by the
first prioritized test sequence derived for OA and the
APFD metric calculation method (see Section 5.2.2),
we can infer that the prioritization technique for OA
also yields high fault detection rates.

For programs using hand-seeded faults, results

vary across programs. For Siemens, bash, xml-security,

and jtopas, prioritization techniques outperform

random ordering. For grep, flex, gzip, ant, and jmeter,

the total coverage technique is not better than

random ordering, while the additional coverage

technique performs better than random ordering.
. Other attributes. We also considered two other

attributes that might have affected the results: the
type of language used and the type of testing
being performed (JUnit versus functional), but we
can observe no specific trends regarding these
attributes.

From the foregoing analysis, we conclude that at least

three specific attributes could have affected prioritization

results: the type of faults, the number of faults, and the

source of test cases. The fact that the type and number of

faults could affect prioritization results provides further

motivation toward the investigation of the usefulness of

mutation faults in empirical investigations of prioritization.

Further, this provides motivation for considering evalua-

tions of client testing techniques and for using different

types of faults in relation to the Andrews et al. study. Since

the source of test cases could affect prioritization results,

some consideration of this factor may also be worthwhile.

4 MUTATION APPROACH

To conduct our investigation, we required a tool for

generating program mutants for systems written in Java.

The mutation testing techniques described in the previous

section use source-code-based mutant generators, but for

this study, we implemented a mutation tool that generates

mutants for Java bytecode. There are benefits associated

with this approach. First, it is easier to generate mutants for

bytecode than for source code because this does not require

the parsing of source code. Instead, we manipulate Java

bytecode using predefined libraries contained in BCEL

(Byte Code Engineering Library) [3], which provides

convenient facilities for analyzing, creating, and manipulat-

ing Java class files. Second, because Java is a platform-

independent language, vendors or programmers might

choose to provide just class files for system components,

and bytecode mutation lets us handle these files. Third,

working at the bytecode level means that we do not need to

recompile Java programs after we generate mutants.

4.1 Mutation Operators

To create reasonable mutants for Java programs, we

surveyed papers that consider mutation testing techniques

for object-oriented programs [4], [23], [28]. There are many

mutation operators suggested in these papers that handle

aspects of object orientation such as inheritance and

polymorphism. From among these operators, we selected

the following mutation operators that are applicable to Java

bytecode (Table 4 summarizes):

. Arithmetic OPerator change (AOP). The AOP
operator replaces an arithmetic operator with other
arithmetic operators. For example, the addition (+)
operator is replaced with a subtraction, multiplica-
tion, or division operator.

. Logical Connector Change (LCC). The LCC opera-
tor replaces a logical connector with other logical
connectors. For example, the AND connector is
replaced with an OR or XOR connector.

. Relational Operator Change (ROC). The ROC
operator replaces a relational operator with other
relational operators. For example, the greater-than-
or-equal-to operator is replaced with a less-than-or-
equal-to, equal-to, or not-equal-to operator.

. Access Flag Change (AFC). The AFC operator
replaces an access flag with other flags. For example,
this operator changes a private access flag to a public
access flag.

. Overriding Variable Deletion (OVD). The OVD
operator deletes a declaration of overriding vari-
ables. This change makes a child class attempt to
reference the variable as defined in the parent class.

. Overriding Variable Insertion (OVI). The OVI
operator causes behavior opposite to that of OVD.
The OVI operator inserts variables from a parent
class into the child class.

. Overriding Method Deletion (OMD). The OMD
operator deletes a declaration of an overriding
method in a subclass so that the overridden method
is referenced.

. Argument Order Change (AOC). The AOC operator
changes the order of arguments in a method
invocation, if there is more than one argument. The
change is applied only if arguments have the
appropriate type.

DO AND ROTHERMEL: ON THE USE OF MUTATION FAULTS IN EMPIRICAL ASSESSMENTS OF TEST CASE PRIORITIZATION TECHNIQUES 737

TABLE 4
Mutation Operators for Java Bytecode

The first three of these operators are also typical
mutation operators for procedural languages, and the other
operators are object-oriented specific.

4.2 Mutation Sets for Regression Testing

Because this paper focuses on regression faults, we needed
to generate mutants that involve only code modified in
transforming one version of a system to a subsequent
version. To do this, we built a tool that generates a list of the
names of Java methods, in a version of program P , that
differ from those in a previous version of P . Our mutant
generator generates mutants using this information. We
refer to this mutant generator as a selective mutant generator.

Fig. 1 illustrates the selective mutant generation process.
A differencing tool reads two consecutive versions of a Java
source program, P and P 0, and generates a list of names
(diff_method_name) of methods that are modified in P 0

with respect to P , or newly added to P 0. The selective
mutant generator reads diff_method_name and Java class
files for P 0 and generates mutants (Mutant_1, Mutant_2, ...,
Mutant_k) only in the listed (modified) methods.1

We then compared outputs from program runs in which
these mutants were enabled (one by one) with outputs from
a run of the original program, and we retained mutants
only if their outputs were different. This process is reason-
able because we are interested only in mutants that can be
revealed by our test cases—since prioritization affects only
the rate at which faults that can be revealed by a test suite
are detected in a use of that suite. We also discarded
mutants that caused verification errors2 during execution,
because these represent errors that would be revealed by
any simple execution of the program.

5 EXPERIMENT 1

Our primary goal is to replicate prior experiments with
prioritization using a new population of faults—mutation

faults—in order to consider whether prioritization results
obtained with mutation faults differ from those obtained
with hand-seeded faults and, if there are differences,
explore what factors might be involved in those differences
and what implications this may have for empirical studies
of prioritization. In doing this, we also gain the opportunity
to generalize our empirical knowledge about prioritization
techniques, taking into account new study settings.

We begin with a controlled experiment utilizing the
same object programs and versions used in an earlier study
[9] in which only hand-seeded faults were considered. Our
experimental design replicates that of [9]. The following
sections present, for this experiment, our objects of analysis,
independent variables, dependent variables and measures,
experiment setup and design, threats to validity, and data
and analysis.

5.1 Objects of Analysis

We used four Java programs with JUnit test cases as objects
of analysis: ant, xml-security, jmeter, and jtopas. Ant is a Java-
based build tool [2]; it is similar to make, but instead of
being extended with shell-based commands, it is extended
using Java classes. Jmeter is a Java desktop application
designed to load test functional behavior and measure
performance [18]. Xml-security implements security stan-
dards for XML [41]. Jtopas is a Java library used for parsing
text data [19].

These four programs are all provided with hand-seeded
faults, previously placed in the programs following the
procedure described in [9]. Two graduate students per-
formed this fault seeding; they were instructed to insert
faults that were as realistic as possible based on their
experience with real programs, and that involved code
inserted into, or modified in, each of the versions.

All of these programs, along with all artifacts used in the
experiment reported here, are publicly available as part of
an infrastructure supporting experimentation [8].

Table 5 lists, for each of our objects, the following data:

. No. of versions. The number of versions of the
program that we utilized.

. No. of classes. The total number of class files in the
latest version of that program.

. No. of test cases (test-class level). The numbers of
distinct test cases in the JUnit suites for the programs
following a test-class level view of testing; this is
explained further in Section 5.2.1.

. No. of test cases (test-method level). The numbers of
distinct test cases in the JUnit suites for the programs
following a test-method level view of testing; this is
explained further in Section 5.2.1.

. No. of faults. The total number of hand-seeded faults
available (summed across all versions) for each of
the objects.

. No. of mutants. The total number of mutants
generated (summed across all versions) for each of
the objects.

. No. of mutant groups. The total number of sets of
mutants that were formed randomly for each of the
objects for use in experimentation (summed across
all versions); this is explained further in Section 5.3.

738 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

1. The selective mutant generator generates mutants that occur in both
the changed code and its neighborhood, where the neighborhood is the
enclosing function, and this process matches our hand-seeding process.

2. As part of the class loading process, a thorough verification of the
bytecode in the file being loaded takes place to ensure that the file holds a
valid Java class and does not break any of the rules for class behavior [27].

Fig. 1. Selective mutant generation process.

5.2 Variables and Measures

5.2.1 Independent Variables

The experiment manipulated two independent variables:
prioritization technique and test suite granularity.

Variable 1: Prioritization Technique. We consider seven
different test case prioritization techniques, which we
classify into three groups; this matches the earlier study
on prioritization that we are replicating [9]. The three
groups include one control group, as well as two treatment
groups that are differentiated by instrumentation levels:
block (fine) and method (coarse) levels. Table 6 summarizes
these groups and techniques.

The first group is the control group, containing three
“orderings” that serve as experimental controls. (We use the
term “ordering” here to denote that the control group does
not involve any practical prioritization techniques; rather, it
involves various test case orderings against which prior-
itization techniques can be compared.) The untreated
ordering is the ordering in which test cases were originally
provided with the object. The optimal ordering represents
an upper bound on prioritization technique performance
and is obtained by greedily selecting a next test case in
terms of its exposure of faults not yet exposed by test cases
already ordered. This process is repeated until all test cases
are ordered. Ties are broken randomly. (Note that, as such,
the technique only approximates an optimal ordering.) The
random ordering randomly places test cases in order. (To
obtain unbiased results for randomly ordered test suites,
when obtaining data, we apply 20 independent random
orderings for each instance considered and average their
results.)

The second group of techniques that we consider is the
block level group, containing two techniques: block-total
and block-addtl. By instrumenting a program, we can
determine, for any test case, the number of basic blocks
(maximal single-entry, single-exit sequences of statements)
in that program that are exercised by that test case. The
block-total technique prioritizes test cases according to the
total number of blocks they cover simply by sorting them in

terms of that number. The block-addtl technique prioritizes
test cases in terms of the numbers of additional (not-yet-
covered) blocks test cases cover by greedily selecting the
test case that covers the most as-yet-uncovered blocks until
all blocks are covered, then repeating this process until all
test cases have been placed in order.

The third group of techniques that we consider is the
method level group, containing two techniques: method-
total and method-addtl. These techniques are exactly the
same as the corresponding block level techniques just
described, except that they rely on coverage measured in
terms of numbers of methods entered, rather than numbers
of blocks covered.

In the remainder of this article, to distinguish the four
prioritization techniques in these last two groups from
orderings in our control group, we refer to them as
“noncontrol techniques” or “heuristics.”

When considering prioritization heuristics such as the
four being used here, following prior research [9], [14],
techniques can be classified along two orthogonal dimen-
sions. First, techniques are classified in terms of information
type, where this refers to the type of code coverage
information the techniques use. In this study, two informa-
tion types are considered: method level code coverage
information and block level code coverage information.
Second, techniques are classified as incorporating feedback
when, in the course of prioritizing, they use information
about test cases already chosen to select appropriate
subsequent test cases. The block-addtl and method-addtl
techniques incorporate feedback, whereas the block-total
and method-total techniques do not.

Variable 2: Test Suite Granularity. Test suite granularity
measures the number and size of the test cases making up a
test suite [34] and can affect the cost of running JUnit test
cases and the results of prioritizing them. Following [9], we
investigate the relationship between this factor and prior-
itization technique effectiveness. JUnit test cases are Java
classes that contain one or more test methods and that are
grouped into test suites, and this provides a natural

DO AND ROTHERMEL: ON THE USE OF MUTATION FAULTS IN EMPIRICAL ASSESSMENTS OF TEST CASE PRIORITIZATION TECHNIQUES 739

TABLE 5
Experiment Objects and Associated Data

TABLE 6
Test Case Prioritization Techniques

approach to investigating test suite granularity by consider-
ing JUnit test cases at the test-class level and the test-
method level. The test-class level treats each JUnit TestCase
class as a single test case and the test-method level treats
individual test methods within a JUnit TestCase class as test
cases. Note that, by construction, a given test-method level
test case is smaller than the test-class level test case of which
it is a part.

In the normal JUnit framework, the test-class is a
minimal unit of test code that can be specified for execution
and provides coarse granularity testing, but by modifying
the JUnit framework [20] to be able to specify each test
method individually for execution, we can investigate the
test-method level of granularity.

5.2.2 Dependent Variables and Measures

Rate of Fault Detection. To investigate our research
questions, we need to measure the benefits of the various
prioritization techniques in terms of rate of fault detection.
To measure the rate of fault detection, we use a metric
mentioned in Section 2 called APFD (Average Percentage
Faults Detected) [14], [36] that measures the weighted
average of the percentage of faults detected over the life of a
test suite. APFD values range from 0 to 100; higher numbers
imply faster (better) fault detection rates. More formally, let
T be a test suite containing n test cases, and let F be a set of
m faults revealed by T. Let TFi be the first test case in
ordering T0 of T which reveals fault i. The APFD for test
suite T0 is given by the equation

APFD ¼ 1� TF1 þ TF2 þ � � � þ TFm
nm

þ 1

2n
:

To obtain an intuition for this metric, consider an
example program with 10 faults and a test suite of 5 test
cases, A through E, with fault detecting abilities as shown in
Fig. 2a. Suppose we place the test cases in order A-B-C-D-E
to form prioritized test suite T1. Fig. 2b shows the
percentage of detected faults versus the fraction of T1
used. After running test case A, two of the 10 faults are
detected; thus 20 percent of the faults have been detected
after 0.2 of T1 has been used. After running test case B,
two more faults are detected and, thus, 40 percent of the
faults have been detected after 0.4 of T1 has been used. The
area under the curve represents the weighted average of the

percentage of faults detected over the life of the test suite.
This area is the prioritized test suite’s average percentage
faults detected metric (APFD); the APFD is 50 percent in
this example.

Fig. 2c reflects what happens when the order of test cases
is changed to E-D-C-B-A, yielding a “faster detecting” suite
than T1 with APFD 64 percent. Fig. 2d shows the effects of
using a prioritized test suite T3 for which the test case order
is C-E-B-A-D. By inspection, it is clear that this order results
in the earliest detection of the most faults and illustrates an
optimal order, with APFD 84 percent.

5.3 Experiment Setup

To assess test case prioritization relative to mutation faults,
we needed to generate mutants. As described in Section 4,
we considered mutants created, selectively, in locations in
which code modifications occurred in a program version,
relative to the previous version.

The foregoing process created mutant pools; one for each
version of each object after the first (base) version. The
numbers of mutants contained in the mutant pools for our
object programs (summed across versions) are shown in
Table 5. These mutant pools provide universes of potential
program faults. In actual testing scenarios, however,
programs do not typically contain faults in numbers as
large as the size of these pools. To simulate more realistic
testing scenarios, we randomly selected smaller sets of
mutants, mutant groups, from the mutant pools for each
program version. Each mutant group thus selected varied
randomly in size between one and five mutants, and no
mutant was used in more than one mutant group. We
limited the number of mutant groups to 30 per program
version, but many versions did not have enough mutants to
allow formation of this many groups, so, in these cases, we
stopped generating mutant groups for each object when no
additional unique groups could be created. This resulted in
several cases in which mutant groups are smaller than 30;
for example, jtopas has only seven mutant groups across its
three versions.

Given these mutant groups, our experiment then
required application of prioritization techniques over each
mutant group. The rest of our experiment process is
summarized in Fig. 3, and proceeded as follows.

740 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

Fig. 2. Examples illustrating the APFD metric. (a) Test suite and faults exposed. (b) APFD for prioritized suite T1. (c) APFD for prioritized suite T2.

(d) APFD for prioritized suite T3.

First, to support test case prioritization, we needed to
collect test coverage information. We obtained coverage
information by running test cases over instrumented objects
using the Sofya system [25] for analysis of Java bytecode in
conjunction with a special JUnit adaptor, considering the
two different instrumentation levels needed by our techni-
ques: all basic blocks and all method entry blocks (blocks
prior to the first instruction of the method). This informa-
tion tracks which test cases exercised which blocks and
methods; a previous version’s coverage information is used
to prioritize the set of test cases for a particular version.

Second, we needed to create fault matrices. Fault-
matrices list which test cases detect which mutants and,
following approaches used in prior studies [22], [34], were
created by running all test cases against each mutant
individually.3

Third, each prioritization technique was run on each
version of each program, with each of that version’s test
suites. In this step, each coverage-based prioritization
heuristic uses coverage data to prioritize test suites based
on its analysis. Since the optimal technique requires
information on which test cases expose which mutants in
advance to determine an optimal ordering of test cases, it
uses mutation-fault-matrices. The untreated and random
orderings do not require any information to be collected.

Finally, fault matrices are also used in APFD computa-
tion to measure the rate of fault detection for each
prioritized test suite for each mutant group on each version.
The collected scores are analyzed to determine whether
techniques improved the rate of fault detection.

5.4 Threats to Validity

Any controlled experiment is subject to threats to validity,
and these must be considered in order to assess the
meaning and impact of results (see [39] for a general

discussion of validity evaluation and a threats classifica-
tion). In this section, we describe the internal, external, and
construct threats to the validity of these experiments, and
the approaches we used to limit their impact.

External Validity. Two issues affect the generalization of
our results. The first issue is the quantity and quality of
programs studied. Our objects are of small and medium
size. Complex industrial programs with different character-
istics may be subject to different cost-benefit trade-offs.
Also, using only four such programs limits the external
validity of the results, but the cases in which results are
relatively consistent across programs may be places where
results generalize. Further, we are able to study a relatively
large number of actual, sequential releases of these
programs. Nevertheless, replication of these studies on
other programs could increase the confidence in our results
and help us investigate other factors. Such a replication is
provided by the second experiment described in this article.

The second limiting factor is test process representative-
ness. We have considered only JUnit test suites provided
with the objects studied. Complementing these controlled
experiments with additional studies using other types of
test suites will be necessary. The second experiment
described in this article also begins this process.

Internal Validity. To conduct our experiment, we
required several processes and tools. Some of these
processes (e.g., fault seeding) involved programmers and
some of the tools were specifically developed for the
experiments, all of which could have added variability to
our results increasing threats to internal validity. We used
several procedures to control these sources of variation. For
example, the fault seeding process was performed follow-
ing a specification so that each programmer operated in a
similar way. Also, we validated new tools by testing them
on small sample programs and test suites, refining them as
we targeted the larger programs.

Construct Validity. The dependent measure that we
have considered, APFD, is not the only possible measure of
prioritization effectiveness and has some limitations. For
example, APFD assigns no value to subsequent test cases
that detect a fault already detected; such inputs may,

DO AND ROTHERMEL: ON THE USE OF MUTATION FAULTS IN EMPIRICAL ASSESSMENTS OF TEST CASE PRIORITIZATION TECHNIQUES 741

3. As detailed in [22], [34], this approach can under- or overestimate the
faults detected by test cases in practice when those faults are simulta-
neously present in a program because multiple faults can interact or mask
one another. However, it is not computationally feasible to examine all
combinations of faults. Fortunately, masking effects have been seen to be
limited in prior experiments similar to this one [34].

Fig. 3. Overview of experiment process.

however, help debuggers isolate the fault, and for that
reason, might be worth measuring. Also, APFD does not
account for the possibility that faults and test cases may
have different costs. Future studies will need to consider
other measures of effectiveness.

Another limiting factor involves our approach to con-
sidering test suite granularity. As mentioned in Section 5.2.1,
investigating two different test suite granularities (test-class
and test-method levels) is a natural approach to use for
JUnit test suites, but this is not the only way to consider the
sizes of test suites. Future studies will consider alternatives
for test suite size as investigated in [34].

5.5 Data and Analysis

To provide an overview of the collected data, we present
box plots in Fig. 4. The plots on the left side of the figure
present results from test case prioritization applied to the
test-class level test cases, and the plots on the right side
present results from test case prioritization applied to the
test-method level test cases. Each row presents results for
one object program. Each plot contains a box for each of the
seven prioritization techniques, showing the distribution of
APFD scores for that technique across all of the mutant
groups used for all of the versions of that object program.
See Table 6 for a legend of the techniques.

Examining the box plots for each object program, we
observe that the results vary substantially across programs.
For example, while the box plots for xml-security indicate

that the spread of results among noncontrol techniques was
very small for both test suite levels and all noncontrol
techniques improved fault detection rate with respect to
randomly ordered and untreated test suites, the box plots
for jtopas show various spreads across techniques and some
cases in which heuristics were no better than randomly
ordered or untreated test suites. For this reason, we analyze
the data for each program separately. For each program,
following the procedure used in [9], we first consider the
data descriptively, and we then statistically analyze the data
to 1) compare the heuristics to randomly ordered and
untreated test suites, 2) consider the effects of information
types on the performance of heuristics, and 3) consider the
effects of feedback on the performance of heuristics.

For our statistical analyses, we used the Kruskal-Wallis
nonparametric one-way analysis of variance followed (in
cases where the Kruskal-Wallis showed significance) by
Bonferroni’s test for multiple comparisons. (We used the
Kruskal-Wallis test because our data did not meet the
assumptions necessary for using ANOVA: Our data sets do
not have equal variance, and some data sets have severe
outliers. For multiple comparisons, we used the Bonferroni
method for its conservatism and generality.) We used the
Splus statistics package [37] to perform the analyses. For
each program, we performed two sets of analyses, con-
sidering both test suite levels: untreated versus noncontrol
and random versus noncontrol. Table 7 presents the results
of the Kruskal-Wallis tests, for a significance level of 0.05,

742 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

Fig. 4. APFD box plots, all programs, all techniques. The horizontal axes list techniques, and the vertical axes denote APFD scores. The plots on the

left present results for test-class level test cases and the plots on the right present results for test-method level test cases. See Table 6 for a legend

of the techniques.

and Tables 8 and 9 present the results of the Bonferroni tests

at the test-class level and test-method level, respectively. In

the two Bonferroni tables, cases in which the differences

between techniques compared were statistically significant

are marked by “****” (which indicates confidence intervals

that do not include zero). Cases in which Bonferroni tests

were not performed are marked by the “-” symbol.

5.5.1 Analysis of Results for ant

The box plots for ant suggest that noncontrol techniques

yielded improvements over random and untreated order-

ings at both test suite levels. As shown in Table 7, the

Kruskal-Wallis test reports that there is a significant

difference between techniques for both test suite levels.

Thus, we performed multiple pairwise comparisons on the

data using the Bonferroni procedure for both test suite

levels. The results in Tables 8 and 9 confirm that noncontrol

techniques improved the rate of fault detection compared to

both randomly ordered and untreated test suites (as shown
in the first eight rows in Tables 8 and 9).

Regarding the effects of information types on prioritiza-
tion, comparing the box plots of block-total (T4) to method-
total (T6) and block-addtl (T5) to method-addtl (T7), it
appears that the level of coverage information utilized
(block versus method) had no effect on the techniques’ rate
of fault detection at the test-method and test-class levels. In
contrast, comparing the results of block-total to block-addtl
and method-total to method-addtl at the test-method level,
it appears that techniques using feedback did yield
improvement over those not using feedback. The Bonferroni
analyses in Tables 8 and 9 confirm these impressions.

5.5.2 Analysis of Results for jmeter

The box plots for jmeter suggest that noncontrol techniques
improved the rate of fault detection with respect to
randomly ordered and untreated test suites at the test-class
level but display fewer differences at the test-method level.

DO AND ROTHERMEL: ON THE USE OF MUTATION FAULTS IN EMPIRICAL ASSESSMENTS OF TEST CASE PRIORITIZATION TECHNIQUES 743

TABLE 7
Experiment 1: Kruskal-Wallis Test Results, per Program

TABLE 8
Experiment 2: Bonferroni Analysis, All Programs, Test-Class Level Granularity

The Kruskal-Wallis test reports that there is a significant
difference between techniques at both test suite levels with
respect to untreated suites, but the analysis for random
orderings reveals differences between techniques only at
the test-class level. Thus, we conducted multiple pairwise
comparisons using the Bonferroni procedure at both test
suite levels in the analysis with untreated suites and at just
the test-class level in the analysis with random orderings.
The results show that noncontrol techniques significantly
improved the rate of fault detection compared to random
and untreated orderings in all cases other than the one
involving random orderings at the test-method level.

Regarding the effects of information types and feed-
back, in the box plots, we observe no visible differences
between techniques. The Bonferroni analyses confirm that
there are no significant differences at either test suite
level between block-level and method-level coverage or
between techniques that do and do not use feedback.

5.5.3 Analysis of Results for xml-security

The box plots for xml-security suggest that noncontrol
techniques were close to optimal with the exception of the
presence of outliers. Similar to the results on ant, the
Kruskal-Wallis test reports that there are significant
differences between techniques at both test suite levels.
Thus, we conducted multiple pairwise comparisons using
Bonferroni in all cases; the results show that noncontrol
techniques improved the rate of fault detection compared to
both randomly ordered and untreated test suites.

Regarding the effects of information types and feedback,
the results of all techniques are very similar, so it is difficult
to observe any differences. Similar to results observed on

jmeter, the Bonferroni analyses revealed no significant

differences between block-level and method-level coverage

at either test suite level or between techniques that use and

do not use feedback.

5.5.4 Analysis of Results for jtopas

The box plots for jtopas are very different from those for the

other three programs. It appears from these plots that some

noncontrol techniques at the test-method level are better

than random and untreated orderings, but other techniques

are no better than these orderings. No noncontrol prior-

itization technique produces results better than random

orderings at the test-class level. From the Kruskal-Wallis

test, for a comparison with random orderings, there is a

significant difference between techniques at the test-method

level but only suggestive evidence of differences between

techniques at the test-class level ðp-value ¼ 0:0492Þ.
The Bonferroni results with both untreated and random

orderings at the test-class level show that there was no

significant difference between pairs of techniques. The

multiple comparisons at the test-method level, however,

show that some noncontrol techniques improved the rate of

fault detection compared to untreated orderings.
Regarding the effects of information types and feedback

on prioritization, the multiple comparisons among heuristic

techniques report that there is no difference between block-

level and method-level coverage at either test suite level.

Further, techniques using feedback information did out-

perform those without feedback at the test-method level.

744 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

TABLE 9
Experiment 2: Bonferroni Analysis, All Programs, Test-Method Level Granularity

6 EXPERIMENT 2

To investigate our research questions further, we replicated
Experiment 1 using two additional Java programs with
different types of test suites.

6.1 Objects of Analysis

As objects of analysis, we selected two Java programs that
are equipped with specification-based test suites con-
structed using the category-partition method and TSL (Test
Specification Language) presented in [32]: galileo and
nanoxml. Galileo is a Java bytecode analyzer, and nanoxml
is a small XML parser for Java. Galileo was developed by a
group of graduate students who created its TSL test suite
during its development. Nanoxml was obtained from public
domain software and it was not equipped with test cases, so
graduate students created TSL test cases for the program
based on its specification and focusing on its functionality.
Both of these programs, along with all artifacts used in the
experiment reported here, are publicly available [8].

To obtain seeded faults for these programs, we followed
the same procedure used originally to seed faults in the Java
objects used in Experiment 1, summarized in Section 5.1,
and reported in [9].

Table 10 lists, for each of these objects, data similar to
that provided for the objects in our first experiment (see
Section 5.1); the only exception being that the test suites
used for these objects are all system level and, thus, the
distinction between test-class and test-method levels does
not apply here.

6.2 Variables and Measures

This experiment manipulated just one independent vari-
able, prioritization technique. We consider the same set of
prioritization techniques used in Experiment 1 and de-
scribed in Section 5.2.1. Similarly, as our dependent
variable, we use the same metric, APFD, described in
Section 5.2.2.

6.3 Experiment Setup

This experiment used the same setup as Experiment 1 (see
Section 5.3), but, in addition to the steps detailed for that
experiment, we also needed to gather prioritization data
using our seeded faults since that data was not available
from the previous study [9]. We did this following the same
procedure given in Section 5.3.

6.4 Threats to Validity

This experiment shares most of the threats to validity
detailed for Experiment 1 in Section 5.4, together with
additional questions involving the representativeness of the
TSL test cases created for the subjects. On the other hand, by
considering additional objects of study, and a new type of

test suites, this experiment helps to generalize those results,
reducing threats to external validity.

6.5 Data and Analysis

To provide an overview of the collected data, we present
box plots in Fig. 5. Figs. 5a and 5c present results from test
case prioritization applied to galileo, and Figs. 5b and 5d
present results from test case prioritization applied to
nanoxml. Figs. 5a and 5b present results for mutation faults,
and Figs. 5c and 5d present results for hand-seeded faults.
(We postpone discussion of results for hand-seeded faults
until Section 7, but we include them in this figure to
facilitate comparison at that time.) Each plot contains a box
for each of the seven prioritization techniques, showing the
distribution of APFD scores for that technique across each
of the versions of the object program. See Table 6 for a
legend of the techniques.

Examining the box plots for each object program, we
observe that results on the two programs display several
similar trends: All prioritization heuristics outperform
untreated test suites, but some heuristics are no better than
randomly ordered test suites. Results on galileo, however,
display more outliers than do results on nanoxml, and the
variance and skewness in APFD values achieved by
corresponding techniques across the two programs differ.
For example, APFD values for randomly ordered test suites
(T2) show different variance across the programs, and the
APFD values from block-total (T4) for galileo appear to form
a normal distribution, while they are more skewed for
nanoxml. For this reason, we analyzed the data for each
program separately. For statistical analysis, for reasons
similar to those used in Experiment 1, we used a Kruskal-
Wallis nonparametric one-way analysis of variance fol-
lowed by Bonferroni’s test for multiple comparisons. Again,
we compared the heuristics to randomly ordered and
untreated test suites, in turn, and also considered the effects
of information types and feedback on the performance of
heuristics. Table 11 presents the results of the Kruskal-
Wallis tests, and Table 12 presents the results of the
Bonferroni tests.

6.5.1 Analysis of Results for galileo

The box plots for galileo suggest that noncontrol techniques
yielded improvement over untreated test suites, and some
noncontrol techniques were slightly better than randomly
ordered test suites. The Kruskal-Wallis test (Table 11)
reports that there is a significant difference between
techniques with respect to untreated and randomly ordered
test suites. Thus, we performed multiple pairwise compar-
isons on the data using the Bonferroni procedure. The
results (Table 12) confirm that noncontrol techniques
improved the rate of fault detection compared to untreated
test suites. No noncontrol techniques produced results

DO AND ROTHERMEL: ON THE USE OF MUTATION FAULTS IN EMPIRICAL ASSESSMENTS OF TEST CASE PRIORITIZATION TECHNIQUES 745

TABLE 10
Experiment Objects and Associated Data

better than random orderings; however, random orderings

outperformed both total techniques overall. (Note, how-

ever, that random orderings can often yield worse

performance in specific individual runs due to its random

nature. The box plots for random orderings show APFD

values that are averages of 20 runs for each instance, but

individual runs exhibit large variance in APFD values. We

discuss this further in Section 7.)

Regarding the effects of information types and their use in

prioritization, comparing the box plots of block-total (T4) to

method-total (T6) and block-addtl (T5) to method-addtl (T7),

it appears that the level of coverage information utilized

(block versus method) had an effect on techniques’ rate of

fault detection for total coverage techniques, but not for

additional coverage techniques. Comparing the results of

block-total to block-addtl and method-total to method-addtl,

746 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

Fig. 5. APFD box plots, all techniques for (a) and (c) galileo and (b) and (d) nanoxml. The horizontal axes list techniques, and the vertical axes list

APFD scores. (a) and (b) Results for mutation faults. (c) and (d) Results for hand-seeded faults. See Table 6 for a legend of the techniques.

TABLE 11
Experiment 2: Kruskal-Wallis Test Results, per Program

TABLE 12
Experiment 2: Bonferroni Analysis, per Program

it appears that techniques using feedback do yield
improvements over those not using feedback. The Bonfer-
roni analyses (Table 12) confirm these impressions.

6.5.2 Analysis of Results for nanoxml

Similar to results on galileo, the box plots for nanoxml
suggest that noncontrol techniques improved the rate of
fault detection with respect to untreated test suites.
Comparing results from randomly ordered test suites,
however, techniques using feedback information appear
to improve rate of fault detection, but techniques using total
coverage information appear to be worse than randomly
ordered test suites. The Kruskal-Wallis test reports that
there is a significant difference between techniques with
respect to untreated and randomly ordered test suites.
Thus, we conducted multiple pairwise comparisons using
the Bonferroni procedure. The results show that all
noncontrol techniques significantly improved the rate of
fault detection compared to untreated test suites, whereas
the only significant difference involving randomly ordered
test suites was an improvement associated with block-addtl.

Regarding the effects of information types and feedback
and their use in prioritization, the results are the same as
those seen on galileo, except for one case (block-total (T4)
versus method-total (T6)). The Bonferroni analyses confirm
these observations.

7 DISCUSSION

To further explore the results of our experiments, we
consider four topics:

1. a summary of the prioritization results obtained in
these experiments and prior studies,

2. an analysis of the differences between mutation and
hand-seeded faults with respect to prioritization
results,

3. an analysis (replicating the analysis performed by
Andrews et al. [1]) of the differences between
mutation and hand-seeded faults with respect to
fault detection ability, and

4. a discussion of the practical implications of our
results.

7.1 Prioritization Results

Results from this study show that noncontrol prioritization
techniques outperformed both untreated and randomly
ordered test suites in all but a few cases for JUnit object
programs and outperformed untreated test suites for TSL
object programs. The level of coverage information utilized
(block versus method) had no effect on techniques’ rate of
fault detection with one exception on galileo (block-total
versus method-total). The effects of feedback information
varied across programs: Results on ant and jtopas at the test-
method level and on galileo and nanoxml were cases in
which techniques using feedback produced improvements
over those not using feedback.

Results from our previous prioritization study [9] that
used the same set of JUnit programs as those used in
Experiment 1 (with hand-seeded faults) also showed that
the noncontrol prioritization techniques we examined

outperformed both untreated and randomly ordered test
suites, as a whole, at the test-method level. Overall, at the
test-class level, noncontrol prioritization techniques did not
improve effectiveness compared to untreated or randomly
ordered test suites, but individual comparisons indicated
that techniques using additional coverage information did
improve the rate of fault detection.

Results from previous studies of C programs [12], [14],
[33], [36] showed that noncontrol prioritization techniques
improved the rate of fault detection compared to both
random and untreated orderings. Those studies found that
techniques using additional coverage information were
usually better than other techniques, for both fine and
coarse granularity test cases. They also showed that
statement-level techniques as a whole were better than
function-level techniques.

Interestingly, the results of this study exhibit trends
similar to those seen in studies of prioritization applied to
the Siemens programs and space [14], with the exception of
results for jtopas. Our results include some outliers, bu,t
overall, the data distribution patterns for both studies
appear similar, with results on jmeter being most similar to
results on the Siemens programs. The results for xml-
security are more comparable to those for space, showing a
small spread of data and high APFD values across all
noncontrol techniques.

7.2 Mutation versus Hand-Seeded Faults:
Prioritization Effects

We next consider the implications, for experimentation on
prioritization, of using mutation versus hand-seeded faults.

Our results from Experiment 1 show that noncontrol test
case prioritization techniques (assessed using mutation
faults) outperformed both untreated and randomly ordered
test suites in all but a few cases. Comparing these results
with those observed in the earlier study of test case
prioritization using hand-seeded faults (reproduced from
[9] in Fig. 6) on the same object programs and test suites, we
observe both similarities and dissimilarities.

First, on all programs, results of Experiment 1 often show
less spread of data than do results from the study with
hand-seeded faults. In particular, the total techniques (T4
and T6) on ant and jtopas, and all noncontrol techniques at
the test-class level on jmeter, exhibit large differences. We
believe that this result is primarily due to the fact that the
number of mutants placed in the programs is much larger
than the number of seeded faults, which implies that
findings from studies with hand-seeded faults might be
biased compared to studies with mutation faults due to
larger sampling errors.

Second, results on jtopas differ from results for the other
three programs. On jtopas, total coverage techniques are no
better than random orderings for both test suite levels, and
the data spread among techniques is not consistent,
showing some similarities with results of the study with
hand-seeded faults. We believe that this result is due to the
small number of mutants that were placed in jtopas. In fact,
the total number of mutants for jtopas, 8, is much less than
the numbers of mutants placed in other programs, which
varied from 127 to 2,907, and is in fact close to the number
of hand-seeded faults for the program, 5.

DO AND ROTHERMEL: ON THE USE OF MUTATION FAULTS IN EMPIRICAL ASSESSMENTS OF TEST CASE PRIORITIZATION TECHNIQUES 747

Similar to the results of Experiment 1, results of
Experiment 2 show that noncontrol test case prioritization
techniques (assessed using mutation faults) outperformed
untreated test suites, and some noncontrol techniques were
better than randomly ordered test suites. Comparing these
results with those using hand-seeded faults (see Fig. 5) on
the same object programs and test suites, we also observe
both similarities and dissimilarities, and these observations
are somewhat different from the observations drawn above.

First, unlike observations drawn from Experiment 1,
both results using mutation and hand-seeded faults show
similar trends and distribution patterns: All noncontrol
techniques are better than the untreated technique, total
coverage techniques are worse than randomly ordered test
suites, and the variance between corresponding techniques
is not much different. This observation also supports our
conjecture regarding the relationship between numbers of
faults and prioritization results. Galileo and nanoxml have
larger numbers of hand-seeded faults, 35 and 33, respec-
tively, than the object programs used in Experiment 1.
When we consider the number of hand-seeded faults per
version, the difference between two groups of programs
persists: While galileo and nanoxml have 3.9 and 5.5 faults
per version on average, respectively, the JUnit object
programs have 2.3, 1.5, 1.5, and 1.4 faults on average per
version, respectively.

Overall, results with mutation faults reveal higher fault
detection rates and more outliers than those with hand-
seeded faults. In particular, the total techniques using

mutation faults show more visible differences: For galileo,
these techniques yield much higher fault detection rates and
less spread of data with outliers; for nanoxml, they yield
higher fault detection rates, but more spread of data.

The total techniques are worse than randomly ordered
test suites for results using both mutation and hand-seeded
faults, and this trend is more apparent with hand-seeded
faults. One possible reason for this trend is the location of
faults in the program and the code coverage ability of test
suites that reveal those faults. For example, some faults in
nanoxml cause exception handling errors and, thus, test
cases that reveal those faults tend to have small amounts of
code coverage because, once a test case reaches the location
that causes an exception handling error, the program
execution is terminated with a small portion of code
exercised.

From these observations, we infer that studies of
prioritization techniques using small numbers of faults
may lead to inappropriate assessments of those techniques.
Small data sets, and possibly biased results due to large
sampling errors, could significantly affect the legitimacy of
findings from such studies.

7.3 Mutation versus Hand-Seeded Faults: Fault
Detection Ability

To further understand the results just described, we consider
a view of the data similar to that considered by Andrews et
al. [1] when comparing mutation to hand-seeded faults,

748 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

Fig. 6. APFD box plots, all programs, for results with handed-seeded faults (replicated from [9]). The horizontal axes list techniques, and the vertical

axes list fault detection rate.

comparing the fault detection abilities of test suites on

mutation faults and hand-seeded faults, and noting how

our findings differ from those of Andrews et al. [1].

To obtain this view of the data, we measured fault

detection rates for our six object programs following the

experimental procedure used by Andrews et al. In their

study, for each program, 5,000 test suites of size 100 were

formed by randomly sampling the available test pool.4 In

our case, since the numbers of test cases for our object

programs are relatively small compared to those available

for the Siemens programs and space, we randomly selected

between 20 and 100 test suites5 of size 10 for each version of

each program.
Fig. 7 shows the fault detection abilities of the test

suites created by our sampling process, measured on our

mutation and hand-seeded faults. The upper row presents

mutation fault detection rates for the four programs used

in Experiment 1,6 where JUnit test suites were employed,

and the lower row presents results of mutation (left side)

and hand-seeded (right side) fault detection rates for the

programs used in Experiment 2, where TSL test suites

were employed. The vertical axes indicate fault detection

ratios, which are calculated for each test suite S on each

program version V by the equation DmðSÞ=NmðV Þ,
where DmðSÞ is the number of mutants detected by S,

and NmðV Þ is the total number of mutants in V .

Unlike the results of the Andrews et al. study, our results
vary widely across and between programs with different
types of test suites. The result for ant shows relatively low
fault detection ability, which means that mutants in ant
were relatively difficult to detect, and this might be caused
by any of several factors. As two possibilities, test cases for
ant do not have strong coverage of the program, and the
subsets of these test cases that we randomly grouped have
relatively little overlapping coverage. We speculate that the
latter effect is a more plausible cause of differences since the
ant test suite taken as a whole can detect all mutants. In
other words, the test suite for ant may have fewer coverage-
redundant test cases compared to the test suites for the
Siemens programs and space.

Results for xml-security are more similar to those of the
Andrews et al. study (mean for space: 0.75) than those of
other programs; the fault detection rates (APFD metric) for
xml-security are similar to those for space (means for func-
total and func-addtl are 94 and 96, respectively). As
mentioned in the discussion of results for ant, the test suite
for xml-security might contain many redundant test cases, or
each group of test cases might cover more functionality in
the program than the test cases for ant. To further consider
this point, we compared the ratio of the number of test cases
for ant (at the test-method level) to the number of class files
(the size of the program) for ant and xml-security. The last
version of ant has 877 test cases and 627 class files (ratio:
877=627 ¼ 1:39), and the last version of xml-security has
83 test cases and 143 class files (83=143 ¼ 0:58).7 This means

DO AND ROTHERMEL: ON THE USE OF MUTATION FAULTS IN EMPIRICAL ASSESSMENTS OF TEST CASE PRIORITIZATION TECHNIQUES 749

4. The authors experimented using various test suite sizes (10, 20, 50, and
100), but these other sizes obtained similar results.

5. The number of test suites selected varied depending on the number of
test cases available in the pools for the programs.

6. Since the results of hand-seeded fault detection rates for all four
programs are similar to the result for jtopas, we omitted them.

Fig. 7. Fault detection ability box plots for selected small test suites across all program versions. The horizontal axes list techniques, and the vertical
axes list fault (or mutant) detection ratios.

7. We also measured the ratio using the number of lines of code instead
of the number of class files and found results consistent with these: For ant,
877=80:4KLOCs ¼ 10:9 test cases per 1KLOCs; for xml-security ,
83=16:3KLOCs ¼ 5 test cases per 1KLOCs.

that, proportionally, xml-security has a smaller number of
test cases relative to program size than ant, favoring the
suggestion that each group of test cases might cover more
functionality as a reason for its higher fault detection ratio.

Fault detection values for jtopas have a large spread; this
result is also due to the small number of mutants in the
program. The first version has only one mutant, so the fault
detection ratio for this version can be just two distinct
numbers, 0 or 1. The fault detection ratio for jmeter also
appears to be low, but it does have a normal distribution
with a couple of outliers.

The fault detection ability of hand-seeded faults ob-
served in our earlier study and reconsidered here, overall, is
similar to the result seen on the mutation faults in jtopas. We
conjecture that this is primarily due to the small numbers of
faults in these cases. Even ant, which has the largest number
of hand seeded faults in total, displays results similar to
those on jtopas with mutation faults, because five out of
eight versions of ant contain only one or two faults and,
thus, most of the fault detection ratios are 0 or 1 values.

While results among programs with JUnit test suites
vary widely, results of mutation detection rates from galileo
and nanoxml show more consistent trends. The distributions
of detection rates are a bit skewed, but close to a normal
distribution, and, in particular, the fault detection rate
distribution for nanoxml is very close to that measured for
space in the Andrews et al. study (mean: 0.75, max: 0.82,
min: 0.62, 75 percent: 0.77, and 25 percent: 0.74). The fault
detection rates on hand-seeded faults for these two
programs also appear to be different than those for the
JUnit object programs. As shown in Fig. 7 (lower right),
these fault detection rate values are also skewed, but show
some variability.

From the two sets of analyses of mutation and hand-
seeded fault detection rates, we also observe that the two
types of test suites considered are associated with different
fault detection rates. The methods used to construct test
suites might be a factor in this case: JUnit test suites perform
unit tests of Java class files, so the code coverage achieved
by these test cases is limited to the class under test. TSL test
suites, in contrast, perform functional system-level tests,
which cover larger portions of the code than unit tests.

7.4 Practical Implications

While our results show that there can be statistically
significant differences in the rates of fault detection

achieved by various test case prioritization techniques
applied to Java programs with JUnit and TSL test cases,
the improvements seen in rates of fault detection cannot be
assumed to be practically significant. Thus, we further
consider the effect sizes of differences to see whether the
differences we observed through statistical analyses are
practically meaningful [29]. Table 13 shows the effect sizes
of differences between noncontrol and control techniques;
we calculated these effect sizes only in cases in which the
differences between control and noncontrol techniques
showed statistical significance. With the exception of one
case (effect size ¼ 0:3 for galileo), the effect sizes range from
0.6 to 4.7, which are considered to be large effect sizes [6], so
we can say that the differences we observed in this study
are indeed practically significant.

Even though the foregoing analysis of effect size
indicates the practical significance of the differences that
we observed in our statistical analyses, a further practical
issue to consider is the relationship between the associated
costs of prioritization techniques and the benefits of
applying them. In practice, prioritization techniques have
associated costs, and depending on the testing processes
employed and other cost factors, these techniques may not
provide savings even though providing higher rates of fault
detection.

Our previous study [9] investigated issues involving
costs and practical aspects of prioritization results. The
study considered models of two different testing processes,
batch and incremental testing, and used the resulting
models to consider the practical implications for prioritiza-
tion cost-effectiveness across the different approaches.
Further, the study investigated the practical impact of
empirical results relative to the four Java programs with
JUnit test suites and seeded faults used in Experiment 1,
with respect to differences in delays values, which represent
the cumulative cost of waiting for faults to be exposed while
executing a test suite. The study showed that several of the
prioritization techniques considered did indeed produce
practically significant reductions in delays relative to costs
and, thus, that these techniques could be cost-effectively
applied in at least certain situations.

Because Experiment 1 utilized the same set of Java
programs and JUnit tests for which the foregoing analysis
showed practical benefits, the analysis utilized in [9], and its
results, are applicable in this case as well. Because our
results using mutation faults exhibit better fault detection

750 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

TABLE 13
Experiment Objects and Associated Data

rates for noncontrol techniques than those using hand-
seeded faults, we expect better practical savings in testing
costs relative to these faults in at least the cases considered
in Experiment 1.

8 CONCLUSIONS AND FUTURE WORK

Studies on the possible usage of mutation faults for
controlled experiments with testing techniques have been
overlooked prior to the work by Andrews et al. [1]. Whereas
Andrews et al. consider the usage of mutation faults on
C programs and on the relative fault detection effectiveness
of test suites, however, we consider this issue in the context
of a study assessing prioritization techniques using muta-
tion faults, focusing on Java programs.

We have examined prioritization effectiveness in terms
of rate of fault detection, considering the abilities of several
prioritization techniques to improve the rate of fault
detection of JUnit and TSL test suites on open-source Java
systems, while also varying other factors that affect
prioritization effectiveness. Our analyses show that non-
control test case prioritization can improve the rate of fault
detection of both types of test suites, assessed relative to
mutation faults, but the results vary with the numbers of
mutation faults and with the test suites’ fault detection
ability.

Our results also reveal similarities and dissimilarities
between results using hand-seeded and mutation faults,
and in particular, different data spreads between the two
were observed. As discussed in Section 7, this difference can
be partly explained in relation to the sizes of the mutation
fault sets and hand-seeded fault sets, but more studies and
analysis should be done to further investigate this effect.

More importantly, comparing our results to those
collected in earlier studies with hand-seeded faults, our
results reveal several implications for researchers perform-
ing empirical studies of test case prioritization techniques
and testing techniques in general. In particular, mutation
faults may provide a low-cost avenue to obtaining data sets
on which statistically significant conclusions can be
obtained, with prospects for assessing causal relationships.

For future work, we intend to perform various controlled
experiments using larger object programs, and using
different types of mutation faults and testing techniques,
to generalize our findings. We also intend to perform
additional controlled experiments that use three different
types of faults (real, hand-seeded, and mutation faults) to
investigate further the findings by Andrews et al.

Through the results reported in this paper, and our
planned future work, we hope to provide useful feedback to
testing practitioners wishing to practice prioritization, while
also providing alternative choices to researchers who wish
to evaluate their testing techniques or testing strategies
using various resources that may be available. If our results
and those of Andrews et al. are generalized through
replicated studies, then we can expect significant cost
reduction for controlled experiments compared to the cost
of experiments with hand-seeded faults.

ACKNOWLEDGMENTS

Steve Kachman of the University of Nebraska-Lincoln
Statistics Department provided assistance with our statistical

analysis. Alex Kinneer and Alexey Malishevsky helped to

construct parts of the tool infrastructure used in the

experimentation. This work was supported in part by the

US National Science Foundation under Awards CCR-

0080898 and CCR-0347518 to the University of Nebraska-

Lincoln.

REFERENCES

[1] J.H. Andrews, L.C. Briand, and Y. Labiche, “Is Mutation an
Appropriate Tool for Testing Experiments,” Proc. Int’l Conf.
Software Eng., pp. 402-411, May 2005.

[2] http://ant.apache.org, 2004.
[3] http://jakarta.apache.org/bcel, 2004.
[4] J.M. Bieman, S. Ghosh, and R.T. Alexander, “A Technique for

Mutation of Java Objects,” Proc. Int’l Conf. Automated Software Eng.,
pp. 337-340, Nov. 2001.

[5] T.A. Budd, “Mutation Analysis of Program Test Data,” PhD
dissertation, Yale Univ., 1980.

[6] R. Coe, “What Is an Effect Size?” CEM Centre, Durham Univ.,
Mar. 2000.

[7] R.A. Demillo, R.J. Lipton, and F.G. Sayward, “Hints on Test Data
Selection: Help for the Practicing Programmer,” Computer, pp. 34-
41, 1978.

[8] H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and
Its Potential Impact,” Empirical Software Eng.: An Int’l J., vol. 10,
no. 4, pp. 405-435, 2005.

[9] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing JUnit Test
Cases: An Empirical Assessment and Cost-Benefits Analysis,”
Empirical Software Eng.: An Int’l J., vol. 11, no.1, pp. 33-70, Mar.
2006.

[10] S. Elbaum, D. Gable, and G. Rothermel, “Understanding and
Measuring the Sources of Variation in the Prioritization of
Regression Test Suites,” Proc. Int’l Software Metrics Symp.,
pp. 169-179, Apr. 2001.

[11] S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel, and S.
Kanduri, “Understanding the Effects of Changes on the Cost-
Effectiveness of Regression Testing Techniques,” J. Software
Testing, Verification, and Reliability, vol. 12, no. 2, pp. 65-83, 2003.

[12] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing Test
Cases for Regression Testing,” Proc. Int’l Symp. Software Testing
and Analysis, pp. 102-112, Aug. 2000.

[13] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
Varying Test Costs and Fault Severities into Test Case Prioritiza-
tion,” Proc. Int’l Conf. Software Eng., pp. 329-338, May 2001.

[14] S. Elbaum, A.G. Malishevsky, and G. Rothermel, “Test Case
Prioritization: A Family of Empirical Studies,” IEEE Trans.
Software Eng., vol. 28, no. 2, pp. 159-182, Feb. 2002.

[15] P.G. Frankl, S.N. Weiss, and C. Hu, “All-Uses versus Mutation
Testing: An Experimental Comparison of Effectiveness,” J. Systems
and Software, vol. 38, no. 3, pp. 235-253, 1997.

[16] R.G. Hamlet, “Testing Programs with the Aid of a Compiler,”
IEEE Trans. Software Eng., vol. 3, no. 4, pp. 279-290, 1977.

[17] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
on the Effectiveness of Dataflow- and Controlflow-Based Test
Adequacy Criteria,” Proc. Int’l Conf. Software Eng., pp. 191-200,
May 1994.

[18] http://jakarta.apache.org/jmeter, 2004.
[19] http://xml.apache.org/security, 2004.
[20] http://www.junit.org, 2004.
[21] J. Kim and A. Porter, “A History-Based Test Prioritization

Technique for Regression Testing in Resource Constrained
Environments,” Proc. Int’l Conf. Software Eng., pp. 119-129, May
2002.

[22] J.-M. Kim, A. Porter, and G. Rothermel, “An Empirical Study of
Regression Test Application Frequency,” Proc. Int’l Conf. Software
Eng., pp. 126-135, June 2000.

[23] S. Kim, J.A. Clark, and J.A. McDermid, “Class Mutation: Mutation
Testing for Object-Oriented Programs,” Proc. Net.ObjectDays Conf.
Object-Oriented Software Systems, Oct. 2000.

[24] S. Kim, J.A. Clark, and J.A. McDermid, “Investigating the
Effectiveness of Object-Oriented Testing Strategies with the
Mutation Method,” J. Software Testing, Verification, and Reliability,
vol. 11, no. 4, pp. 207-225, 2001.

DO AND ROTHERMEL: ON THE USE OF MUTATION FAULTS IN EMPIRICAL ASSESSMENTS OF TEST CASE PRIORITIZATION TECHNIQUES 751

[25] A. Kinneer, “Assessing the Cost-Benefits of Using Type Inference
Algorithms to Improve the Representation of Exceptional Control
Flow in Java,” MS thesis, Univ. of Nebraska-Lincoln, Aug. 2005.

[26] D. Leon and A. Podgurski, “A Comparison of Coverage-Based
and Distribution-Based Techniques for Filtering and Prioritizing
Test Cases,” Proc. Int’l Symp. Software Reliability Eng., pp. 442-453,
Nov. 2003.

[27] C. Lindsey, J. Tolliver, and T. Lindblad, JavaTech: An Introduction
to Scientific and Technical Computing with Java. Cambridge Univ.
Press, 2005.

[28] Y. Ma, Y. Kwon, and J. Offutt, “Inter-Class Mutation Operators for
Java,” Proc. Int’l Symp. Software Reliability Engineering, pp. 352-363,
Nov. 2002.

[29] C. Murphy and B. Myors, Statistical Power Analysis: A Simple and
General Model for Traditional and Modern Hypothesis Tests. Lawrence
Erlbaum Associates, 1998.

[30] A.J. Offutt, J. Pan, K. Tewary, and T. Zhang, “An Experimental
Evaluation of Data Flow and Mutation Testing,” Software-Practice
and Experience, vol. 26, no. 2, pp. 165-176, Feb. 1996.

[31] K. Onoma, W-T. Tsai, M. Poonawala, and H. Suganuma,
“Regression Testing in an Industrial Environment,” Comm.
ACM, vol. 41, no. 5, pp. 81-86, May 1988.

[32] T.J. Ostrand and M.J. Balcer, “The Category-Partition Method for
Specifying and Generating Functional Tests,” Comm. ACM, vol. 31,
no. 6, pp. 676-686, June 1988.

[33] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B.
Davia, “The Impact of Test Suite Granularity on the Cost-
Effectiveness of Regression Testing,” Proc. Int’l Conf. Software
Eng., pp. 230-240, May 2002.

[34] G. Rothermel, S. Elbaum, A.G. Malishevsky, P. Kallakuri, and X.
Qiu, “On Test Suite Composition and Cost-Effective Regression
Testing,” ACM Trans. Software Eng. and Methodology, vol. 13, no. 3,
pp. 227-331, July 2004.

[35] G. Rothermel and M.J. Harrold, “Analyzing Regression Test
Selection Techniques,” IEEE Trans. Software Eng., vol. 22, no. 8,
pp. 529-551, Aug. 1996.

[36] G. Rothermel, R. Untch, C. Chu, and M.J. Harrold, “Prioritizing
Test Cases for Regression Testing,” IEEE Trans. Software Eng.,
vol. 27, no. 10, pp. 929-948, Oct. 2001.

[37] http://www.insightful.com/products/splus, 2004.
[38] A. Srivastava and J. Thiagarajan, “Effectively Prioritizing Tests in

Development Environment,” Proc. Int’l Symp. Software Testing and
Analysis, pp. 97-106, July 2002.

[39] C. Wohlin, P. Runeson, M. Host, M. Ohlsoon, B. Regnell, and
A. Wesslen, Experimentation in Software Engineering: An Introduc-
tion. Kluwer Academic, 2000.

[40] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal, “A Study of
Effective Regression Testing in Practice,” Proc. Int’l Symp. Software
Reliability Eng., pp. 230-238, Nov. 1997.

[41] http://xml.apache.org/security, 2004.

Hyunsook Do received the MS degree in
computer science from the Tokyo Institute of
Technology and the BS degree in computer
science from Sungshin Women’s University,
South Korea. She is a PhD student and research
assistant with the Department of Computer
Science and Engineering at the University of
Nebraska-Lincoln. She was a member of the
research staff at Electronics and Telecommuni-
cations Research Institute (ETRI) in South

Korea. Her research interests lie in software testing, maintenance,
issues involving software testing infrastructure, and empirical studies.
She is a student member of the IEEE and the IEEE Computer Society
and a member of the ACM.

Gregg Rothermel received the PhD in compu-
ter science from Clemson University, an MS in
computer science from SUNY Albany, and a BA
in philosophy from Reed College. He is currently
Professor and Jensen Chair of Software En-
gineering with the Department of Computer
Science and Engineering at the University of
Nebraska-Lincoln. His research interests include
software engineering and program analysis, with
emphases on the application of program analy-

sis techniques to problems in software maintenance and testing and on
empirical studies. Dr. Rothermel is a program cochair for ICSE 2007 and
has previously served as an associate editor in chief for the IEEE
Transactions on Software Engineering, program chair for ISSTA 2004,
and chair of the steering committee for the International Conference on
Software Maintenance. He is a member of the editorial boards for the
Empirical Software Engineering Journal and the Software Quality
Journal. He has served as a member of program committees for the
IEEE International Conference on Software Engineering, the ACM
International Symposium on Foundations of Software Engineering, the
ACM International Symposium on Software Testing and Analysis, and
the IEEE International Conference on Software Maintenance. He is a
member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

752 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 9, SEPTEMBER 2006

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	9-2006

	On the Use of Mutation Faults in Empirical Assessments of Test Case Prioritization Techniques
	Hyunsook Do
	Gregg Rothermel

	untitled

