5 research outputs found

    A performance evaluation of oscillation based test in continuous time filters

    Get PDF
    This work evaluates the ability of OBT for detecting parametric faults in continuous-time filters. To this end, we adopt two filters with quite different topologies as cases of study and a previously reported statistical fault model. In addition, we explore the behavior of the test schemes when a particular test condition is changed. The new data reported here, obtained from a fault simulation process, reveal a lower performance of OBT not observed in previous work using single-deviation faults, even under the change in the test condition.publishedVersionFil: Romero, Eduardo Abel. Universidad Tecnológica Nacional. Facultad Regional Villa María; Argentina.Fil: Romero, Eduardo Abel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Costamagna, Marcelo. Universidad Tecnológica Nacional. Facultad Regional Villa María; Argentina.Fil: Peretti, Gabriela Marta. Universidad Tecnológica Nacional. Facultad Regional Villa María; Argentina.Fil: Peretti, Gabriela Marta. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Marqués, Carlos Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Informació

    An alternative evaluation of oscillation-based test. A case study

    Get PDF
    In this work, we evaluate the ability of Oscillation-Based Test (OBT) for detecting in continuous-time filters, more realistic parametric faults. As a case study, we consider a low pass fourth order leapfrog filter. We use a fault simulation based on Monte Carlo and redefine a fault coverage metric to globally characterized OBT. The fault model applied assumes that only one component can be faulty while the others adopt random values within their tolerance bands. Statistical deviations in the values of the fault-free components are considered in order to obtain a more accurate evaluation of the test technique under study. The fault coverage data obtained show high values only for high deviation faults and presents significant differences for positive and negative deviations. In addition, the metric also reveals that some of the components of the filter under study can be considered as hard to test.Sociedad Argentina de Informática e Investigación Operativ

    Dynamic Test Scheduling for Analog Circuits for Improved Test Quality

    Get PDF
    Abstract-In this paper, we present an innovative test scheduling method to improve test quality and/or reduce test time for analog circuits. Our dynamic test scheduling approach predicts the fail probability of unmeasured specifications with the aim of passing statistically well-behaved chips early on so as to devote more resources to marginal devices. Results show that for a gain controlled LNA circuit, with 48 specification parameters, it is possible to achieve 67% improvement in test quality for the same test time or 19.2% test time reduction with the same test quality compared to the widely used set cover method

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    Detection and Diagnosis of Out-of-Specification Failures in Mixed-Signal Circuits

    Get PDF
    Verifying whether a circuit meets its intended specifications, as well as diagnosing the circuits that do not, is indispensable at every stage of integrated circuit design. Otherwise, a significant portion of fabricated circuits could fail or behave correctly only under certain conditions. Shrinking process technologies and increased integration has further complicated this task. This is especially true of mixed-signal circuits, where a slight parametric shift in an analog component can change the output significantly. We are thus rapidly approaching a proverbial wall, where migrating existing circuits to advanced technology nodes and/or designing the next generation circuits may not be possible without suitable verification and debug strategies. Traditional approaches target accuracy and not scalability, limiting their use to high-dimensional systems. Relaxing the accuracy requirement mitigates the computational cost. Simultaneously, quantifying the level of inaccuracy retains the effectiveness of these metrics. We exercise this accuracy vs. turn-around-time trade-off to deal with multiple mixed-signal problems across both the pre- and post-silicon domains. We first obtain approximate failure probability estimates along with their confidence bands using limited simulation budgets. We then generate “failure regions” that naturally explain the parametric interactions resulting in predicted failures. These two pre-silicon contributions together enable us to estimate and reduce the failure probability, which we demonstrate on a high-dimensional phase-locked loop test-case. We leverage this pre-silicon knowledge towards test-set selection and post-silicon debug to alleviate the limited controllability and observability in the post-silicon domain. We select a set of test-points that maximizes the probability of observing failures. We then use post-silicon measurements at these test-points to identify systematic deviations from pre-silicon belief. This is demonstrated using the phase-locked loop test-case, where we boost the number of failures to observable levels and use the obtained measurements to root-cause underlying parametric shifts. The pre-silicon contributions can also be extended to perform equivalence checking and to help diagnose detected model-mismatches. The resultant calibrated model allows us to apply our work to the system level as well. The equivalence checking and model-mismatch diagnosis is successfully demonstrated using a high-level abstraction model for the phase-locked loop test-case
    corecore