799 research outputs found

    Common Metrics for Human-Robot Interaction

    Get PDF
    This paper describes an effort to identify common metrics for task-oriented human-robot interaction (HRI). We begin by discussing the need for a toolkit of HRI metrics. We then describe the framework of our work and identify important biasing factors that must be taken into consideration. Finally, we present suggested common metrics for standardization and a case study. Preparation of a larger, more detailed toolkit is in progress

    Human-robot cross-training: Computational formulation, modeling and evaluation of a human team training strategy

    Get PDF
    We design and evaluate human-robot cross-training, a strategy widely used and validated for effective human team training. Cross-training is an interactive planning method in which a human and a robot iteratively switch roles to learn a shared plan for a collaborative task. We first present a computational formulation of the robot's interrole knowledge and show that it is quantitatively comparable to the human mental model. Based on this encoding, we formulate human-robot cross-training and evaluate it in human subject experiments (n = 36). We compare human-robot cross-training to standard reinforcement learning techniques, and show that cross-training provides statistically significant improvements in quantitative team performance measures. Additionally, significant differences emerge in the perceived robot performance and human trust. These results support the hypothesis that effective and fluent human-robot teaming may be best achieved by modeling effective practices for human teamwork.ABB Inc.U.S. Commercial Regional CenterAlexander S. Onassis Public Benefit Foundatio

    A framework for using humanoid robots in the school learning environment

    Get PDF
    With predictions of robotics and efficient machine learning being the building blocks of the Fourth Industrial Revolution, countries need to adopt a long-term strategy to deal with potential challenges of automation and education must be at the center of this long-term strategy. Education must provide students with a grounding in certain skills, such as computational thinking and an understanding of robotics, which are likely to be required in many future roles. Targeting an acknowledged gap in existing humanoid robot research in the school learning environment, we present a multidisciplinary framework that integrates the following four perspectives: technological, pedagogical, efficacy of humanoid robots and a consideration of the ethical implications of using humanoid robots. Further, this paper presents a proposed application, evaluation and a case study of how the framework can be used.publishedVersio

    Human-robot interaction in groups: Methodological and research practices

    Get PDF
    Understanding the behavioral dynamics that underline human-robot interactions in groups remains one of the core challenges in social robotics research. However, despite a growing interest in this topic, there is still a lack of established and validated measures that allow researchers to analyze human-robot interactions in group scenarios; and very few that have been developed and tested specifically for research conducted in the wild. This is a problem because it hinders the development of general models of human-robot interaction, and makes the comprehension of the inner workings of the relational dynamics between humans and robots, in group contexts, significantly more difficult. In this paper, we aim to provide a reflection on the current state of research on human-robot interaction in small groups, as well as to outline directions for future research with an emphasis on methodological and transversal issues.info:eu-repo/semantics/publishedVersio

    Attention Allocation for Human Multi-Robot Control: Cognitive Analysis based on Behavior Data and Hidden States

    Get PDF
    Human multi-robot interaction exploits both the human operator’s high-level decision-making skills and the robotic agents’ vigorous computing and motion abilities. While controlling multi-robot teams, an operator’s attention must constantly shift between individual robots to maintain sufficient situation awareness. To conserve an operator’s attentional resources, a robot with self reflect capability on its abnormal status can help an operator focus her attention on emergent tasks rather than unneeded routine checks. With the proposing self-reflect aids, the human-robot interaction becomes a queuing framework, where the robots act as the clients to request for interaction and an operator acts as the server to respond these job requests. This paper examined two types of queuing schemes, the self-paced Open-queue identifying all robots’ normal/abnormal conditions, whereas the forced-paced shortest-job-first (SJF) queue showing a single robot’s request at one time by following the SJF approach. As a robot may miscarry its experienced failures in various situations, the effects of imperfect automation were also investigated in this paper. The results suggest that the SJF attentional scheduling approach can provide stable performance in both primary (locate potential targets) and secondary (resolve robots’ failures) tasks, regardless of the system’s reliability levels. However, the conventional results (e.g., number of targets marked) only present little information about users’ underlying cognitive strategies and may fail to reflect the user’s true intent. As understanding users’ intentions is critical to providing appropriate cognitive aids to enhance task performance, a Hidden Markov Model (HMM) is used to examine operators’ underlying cognitive intent and identify the unobservable cognitive states. The HMM results demonstrate fundamental differences among the queuing mechanisms and reliability conditions. The findings suggest that HMM can be helpful in investigating the use of human cognitive resources under multitasking environments
    • …
    corecore