383,912 research outputs found

    A test matrix sequencer for research test facility automation

    Get PDF
    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually

    Automation of electromagnetic compatability (EMC) test facilities

    Get PDF
    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures

    Maintenance of Automated Test Suites in Industry: An Empirical study on Visual GUI Testing

    Full text link
    Context: Verification and validation (V&V) activities make up 20 to 50 percent of the total development costs of a software system in practice. Test automation is proposed to lower these V&V costs but available research only provides limited empirical data from industrial practice about the maintenance costs of automated tests and what factors affect these costs. In particular, these costs and factors are unknown for automated GUI-based testing. Objective: This paper addresses this lack of knowledge through analysis of the costs and factors associated with the maintenance of automated GUI-based tests in industrial practice. Method: An empirical study at two companies, Siemens and Saab, is reported where interviews about, and empirical work with, Visual GUI Testing is performed to acquire data about the technique's maintenance costs and feasibility. Results: 13 factors are observed that affect maintenance, e.g. tester knowledge/experience and test case complexity. Further, statistical analysis shows that developing new test scripts is costlier than maintenance but also that frequent maintenance is less costly than infrequent, big bang maintenance. In addition a cost model, based on previous work, is presented that estimates the time to positive return on investment (ROI) of test automation compared to manual testing. Conclusions: It is concluded that test automation can lower overall software development costs of a project whilst also having positive effects on software quality. However, maintenance costs can still be considerable and the less time a company currently spends on manual testing, the more time is required before positive, economic, ROI is reached after automation
    • …
    corecore