

Copyright

by

Iyad Shaher Azrai

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/10647429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Iyad Shaher Azrai

Certifies that this is the approved version of the following report:

Software Test Automation: A Design and Tool Selection Approach for a

Heterogeneous Environment

APPROVED BY

SUPERVISING COMMITTEE:

Adnan Aziz

Sarfraz Khurshid

Supervisor:

Software Test Automation: A Design and Tool Selection Approach for a

Heterogeneous Environment

by

Iyad Shaher Azrai, B.S.Comp.E.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2012

 iv

Acknowledgements

I would like to thank my professors Dr. Adnan Aziz and Dr. Sarfraz Khurshid for

their unwavering support and their infinite patience. I would also like to thank my wife

Tara for standing by me throughout this journey.

 v

Abstract

Software Test Automation: A Design and Tool Selection Approach for a

Heterogeneous Environment

Iyad Shaher Azrai, MSE

The University of Texas at Austin, 2012

Supervisor: Adnan Aziz

This report describes a design approach for implementing a software test

automation solution that can accommodate existing test processes in an organization. The

process of implementing a software test automation solution is a large undertaking and

requires careful planning to avoid unsuccessful implementations. This report outlines a

design that can integrate with existing business and development processes in an

organization, and recommends automation and development frameworks for achieving

the test automation goals.

Considerations for a heterogeneous test environment with varying types of

supported operating systems, such as Windows and Linux, and multiple test execution

environments, such as Java and .NET, have been made in this design and in the tool

selections for the system implementation. The report also describes some of the

challenges and caveats of automation in a heterogeneous environment along with

recommended solutions to these challenges.

 vi

Table of Contents

List of Tables ... viii

List of Figures .. ix

Chapter 1: Introduction ..1

Problem Description ...1

Report Organization ..2

Chapter 2: Goals and Requirements ..3

Standalone Regression Testing ...3

Product Install and Configuration ..4

Test Harness Install and Configuration..4

Test Execution ...5

Results Reporting ...5

Cleanup ..5

Product Removal ..6

Client-Server Regression Testing ...6

Product Install and Configuration ..7

Test Install and Configuration ...7

Test Execution ...8

Result Reporting ..8

Cleanup ..8

Product Removal ..8

Performance, Load and Endurance Testing ..9

Environmental Constraints..9

Business Constraints ...11

Usability Requirements ...12

Test Automation System and Environment Assumptions12

 vii

Chapter 3: High Level Architecture and Design ..13

Chapter 4: Tool Evaluation and Selection ...19

Remote Execution and File Transfer ..19

Web MVC Framework ...24

Chapter 5: Implementation Results, Considerations and Caveats26

Implementation Results ..26

Implementation Considerations and Caveats ..26

STAF Automation Lessons Learned ...29

Chapter 6: Conclusions ..31

Future Work ..32

Bibliography ..33

 viii

List of Tables

Table 1: Supported Operating Systems ..10

Table 2: Test application environments ...11

 ix

List of Figures

Figure 1: Standalone Regression Test Process Overview..4

Figure 2: Client-Server Test Process Overview...7

Figure 3: Software Test Automation System High Level Architecture18

Figure 4: Sample Python code using STAF. ..22

 1

Chapter 1: Introduction

PROBLEM DESCRIPTION

Implementing a software test automation solution in an organization with

established development and test procedures is no small undertaking [1]. Automation

projects tend to consume large amounts of resources and time to develop. The benefits of

successfully completing a test automation process are also typically slow to materialize

due to the heavy initial costs of implementation [2]. Therefore, careful planning is

required to avoid common pitfalls in software test automation and to produce a solution

that meets the current and future test needs of an organization.

Planning for a test automation effort is especially important in heterogeneous

environments. A heterogeneous environment contains a mix of operating systems and

software platforms. A heterogeneous environment typically contains tests systems

running various operating systems from several major vendors such as Microsoft, Apple,

Red Hat, Suse and Ubuntu. Moreover, each of these vendors has a variety of past and

present editions of their operating systems that are still under active support [3, 4, 5].

A heterogeneous environment also consists of supporting several software

environments for test execution such as JAVA, C/C++, .NET, Python and various other

software environments, each with its own constraints and caveats.

For a software test automation solution to be successful in and established

development and test organization with a large number variables and permutations in the

environment, it would need to integrate seamlessly with the existing processes of the

organization and be able to leverage existing test automation tools and frameworks to

facilitate supporting the various environmental permutations and reduce the cost of the

initial investment in the system.

 2

This report describes the process of designing and implementing a test automation

solution that can accommodate a heterogeneous test environment. This was a team effort

conducted by a Quality Engineering group in which I contributed to the design of the

solution, the tool evaluation efforts and the development of the system. This Quality

Engineering group is part of a commercial organization with several software product

offerings. We leveraged open source tools and frameworks to implement this software

test automation system that transformed testing on different operating systems from a

manual process on a handful of platforms to an automated one that covers over thirty

different operating system configurations.

REPORT ORGANIZATION

This report describes the goals and requirements for the software test automation

system in Chapter 2 with special emphasis on leveraging existing test processes to

promote adoption among Quality and Software Engineers. The report describes the

architecture and design of the system in Chapter 3 based on the goals and requirements of

the group. The report provides tool and framework recommendations based on research

and experimentation in test automation approaches in Chapter 4. Implementation

considerations and caveats are described with some solutions to the challenges faced

using the recommended tools and frameworks in Chapter 5.

 3

Chapter 2: Goals and Requirements

The main objective of this report is to describe the design of a software test

automation system that is easy to maintain and can accommodate running existing

software test harnesses [6] and processes. The system should be able to support a

heterogeneous operating systems environment and test applications from a variety of

software environments such as Java, C/C++, VisualBasic, C#, Delphi and several

scripting languages Perl, Python and TCL.

The system should be easy to deploy, use and maintain to promote adoption

among Quality Engineers and Developers as well. The system shouldn’t disrupt processes

that are already in place for Configuration Management and Development; it should

seamlessly integrate with these existing processes.

This system will address automating the following test patterns: Standalone

Regression Testing, Client-Server Regression Testing, Performance Testing, Load

Testing and Endurance Testing. There are some common aspects to all these test patterns,

but they do offer enough differences that can pose challenges for automation. Describing

their use cases should help illustrate the needs of the test automation infrastructure. Note

that these test patterns are the internal test processes for the Quality Engineering group

that developed the solution described in this report. However, these patterns are most

likely common to other quality organizations.

STANDALONE REGRESSION TESTING

Regression testing is the process of running established and repeatable test cases

and harnesses on a system to detect software defects, also known as regressions,

introduced into a product through the development of new features or through software

maintenance. Standalone regression testing is the process of executing these regression

 4

tests locally on a System under Test, referred to throughout the document as SUT. Test

applications and the product to be tested will reside on the same system and are executed

locally on that machine. The process for conducting standalone tests on a system was

designed by the Quality Engineering group for this test automation system and consists

the following phases:

Figure 1: Standalone Regression Test Process Overview

Product Install and Configuration

In this phase the product binaries or the product install package are copied to the

SUT. Then the product is installed and configured for testing. Product configuration

changes in this phase tend to be common changes that can be utilized by all the tests that

will be conducted on the SUT. Product logging levels could be raised to verbose and

other system configurations can be performed such as enabling application debuggers to

catch and trap fatal product exceptions.

Test Harness Install and Configuration

In this phase, the test harness is copied to the SUT and installed. Installing a test

harness could involve several activities, such as registering libraries, installing supporting

products such as an interpreter or a system dependency such as a .NET. The harness can

also be configured by performing updates to test configuration files, such as INI files or

 5

PROPERTIES files. Test data preparation is another common task that is performed in

this phase. This can consist of creating database tables and populating them with data or

simply copying existing data sets to appropriate locations for testing.

Test Execution

Once the harness has been configured, the tests can be executed on this system. In

this phase, the test automation infrastructure would need to verify that the test was started

successfully and that it completes. A test execution can abort prematurely if the product

exhibits a defect and fatally terminates. This could cause the test application to pause or

terminate itself. An automation framework would need to be able to detect such scenarios

and act appropriately by terminating the test if it is in an inconsistent state and by

preserving diagnostic artifacts such as test logs, product logs and core dumps if the

product crashed.

Results Reporting

After test execution is complete, or if the test or product failed and diagnostic

artifacts were generated, gathering the results is the next step in order to perform result

analysis and reporting. Gathering results simply means collecting all result and diagnostic

artifacts and copying them to a centralized results location. This is done to avoid having

Quality Engineers visit every SUT to analyze test results.

Cleanup

Once the results are gathered, the SUT should be cleaned up in order to queue up

other test harnesses for execution and have them start from a consistent system state.

Cleanup usually means changing any product configurations that were performed by the

test harness and also removing any test data and binaries from the system. Restoring the

 6

product to a state identical to that post the first phase of automation “Product Install and

Configuration” is ideal and desired.

Product Removal

This is the last phase in automated testing. Once all the tests have been conducted,

the product should be removed from the system to get the system back to a clean state,

ready to start the complete Standalone Regression process once again with a newer

version of the product as soon as it is available. This can be achieved in several ways: by

automating the process of removing the product and removing all artifacts that were

installed or created by all the test harnesses that were invoked on the SUT, or by

automating the operating system deployment on that SUT, i.e. the operating system is

either freshly reinstalled on the SUT or a backup of the installed operating system is

restored on the SUT.

CLIENT-SERVER REGRESSION TESTING

Client-Server Regression testing has similar phases to Standalone Regression

testing, but it involves two SUTs that need to synchronize their progress along these

phases. Client-Server Regression harnesses can be variants of Standalone test harnesses

that simply exercise the same set of tests over a network to a remote server to verify that

networking doesn’t introduce adverse behaviors in the product. They can also be

specialized regression tests that emphasize network communication by employing a

variety of connection methods and networking configurations. The process for

conducting Client-Server Regression tests was designed by the Quality Engineering

group for this test automation system. Figure 2 illustrates this design and the timelines for

the client and server in the Client-Server pattern:

 7

Figure 2: Client-Server Test Process Overview

Product Install and Configuration

This phase is identical to that of the Standalone Regression tests and can be

conducted simultaneously on both the Client and the Server SUTs. The product binaries

or installer can be copied simultaneously to both the Client and the Server. The install can

also be conducted simultaneously by the Client and Server along with any product

configuration required for general testing.

Test Install and Configuration

This phase will require synchronization between the Client and the Server as the

client typically relies on having certain server elements in place, such as shares to data

should be created, specific services started and test data configured and made accessible

remotely. There are however certain steps that can be executed simultaneously in this

phase, such as copying test harness binaries to both the client and the server. Once the

 8

copies are completed, test harness configuration should be conducted on the server first

followed by the client.

Test Execution

Here the test is executed on the client. No actions will need to be conducted on

the server as all the test preparation should have already been conducted in the previous

phase “Test Install and Configuration”. The server in this phase simply awaits the

completion of tests conducted by the client.

Result Reporting

After the tests are complete, copying the test results to a centralized repository is

necessary along with any other artifacts including failure artifacts such as core dumps or

diagnostic logs. These steps should be executed by both the client and the server and can

be done simultaneously. Results from the client and any artifacts from the server should

ideally be copied to a common location to form a single test results location. This will

help avoid confusion during results analysis.

Cleanup

This phase can also be executed on both the client and server simultaneously. It

should leave both the client and the server in a state that is ready for executing another set

of Client-Server Regression tests.

Product Removal

This phase is identical to that of the Standalone Regression testing and can be

conducted simultaneously on clients and servers. This should be conducted once all the

client-server test harnesses are complete to prepare the SUTs for a new set of regression

 9

tests. This will ensure that future tests will be conducted on a system in a clean and

consistent state.

PERFORMANCE, LOAD AND ENDURANCE TESTING

Performance, Load and Endurance testing are test activities that require

synchronization among several SUTs. They are typically Multi-Client-Server tests, where

multiple clients are conducting tests on a shared server simultaneously. Performance tests

are designed to determine maximum product thresholds, such as the maximum

transactions per second throughput for a database system. Load tests are designed to

verify that overcommitting a product’s resources does not adversely affect the product.

Endurance tests are designed to exercise a product in a typical usage scenario over an

extended period of time to simulate extended customer usage of a product.

These three test patterns can be considered variations of Client-Server Regression

tests. They simply substitute a single client with multiple clients and follow the same

timeline as the Client-Server Regression tests would follow. During the “Test Install and

Configuration” phase, all the clients wait on the server to complete its configuration

steps. The server also waits on all the clients to complete their test execution before

executing the results collection steps. The synchronization solution used for a Client-

Server Regression pattern should meet the synchronization needs of these Multi-Client-

Server Test patterns.

ENVIRONMENTAL CONSTRAINTS

The software test automation system will need to support an environment that

consists of many different operating systems. The operating systems we intend to support

are outlined in the table below.

 10

Operating System [3, 4, 5] Processor

Architectures

Supported Editions

Microsoft Windows XP x86, x86_64 Professional

Microsoft Windows 2003 Server x86, x86_64 Standard, Enterprise

Microsoft Windows Vista x86, x86_64 Professional, Enterprise

Microsoft Windows 2008 Server x86, x86_64 Standard, Enterprise

Microsoft Windows 7 x86, x86_64 Professional, Enterprise

Microsoft Windows 2008 R2 Server x86_64 Standard, Enterprise

Microsoft Windows 8 x86, x86_64 Professional, Enterprise

Microsoft Windows 2012 Server x86_64 Standard, Enterprise

Red Hat Enterprise Linux 4 x86, x86_64 Desktop, Server

Red Hat Enterprise Linux 5 x86, x86_64 Desktop, Server

Red Hat Enterprise Linux 6 x86, x86_64 Desktop, Server

Suse Linux Enterprise 9 x86, x86_64 Desktop, Server

Suse Linux Enterprise 10 x86, x86_64 Desktop, Server

Suse Linux Enterprise 11 x86, x86_64 Desktop, Server

Ubuntu 10.04 LTS x86, x86_64 Desktop, Server

Ubuntu 12.04 LTS x86, x86_64 Desktop, Server

Mac OS X x86_64 10.6, 10.7, 10.8

Table 1: Supported Operating Systems

There are also several software application environments that will need to be

supported for testing purposes. Test applications can be developed in any one of the

following application environments:

 11

Application Environment Typical Applications Console/Graphical Interface

JAVA JDBC application Both

C/C++ ODBC application Both

C# .NET ADO.NET application Both

Visual Basic OLEDB or ActiveX Graphical

Perl Test automation Console

Python Test automation Console

TCL Test automation Console

Table 2: Test application environments

The expectation here is that the test automation system would not be tightly

coupled with any one of these application environments; it should merely be a conduit for

executing these applications. The test applications should not have any dependencies on

the automation system; an Engineer should be able to continue executing the test

applications without the presence of the automation infrastructure. A dependency on the

new automation system should not be introduced in any of the existing test applications

or harnesses.

BUSINESS CONSTRAINTS

Another constraint on this effort is integrating an automated software test solution

into an already well-established development and configuration management

environment. The constraint here is to not disrupt the existing processes and ideally not

force any changes or dependencies on them.

 12

Developers and Quality Engineers should be able to continue maintaining their

test environments independently from maintaining the automation infrastructure. They

should be able to continue executing their test harnesses and applications without

deploying the new test automation system.

No changes to configuration management are expected as well other than the

introduction of a new project for the software test automation system. The expectation is

that the software test automation system will support the existing configuration

management process by detecting when new software builds are available and by

obtaining these builds when necessary.

USABILITY REQUIREMENTS

Usability requirements for this product are geared towards maximizing the

adoption of this new system by the Quality Engineers and even Developers. The solution

should be easy to deploy, preferably a “Turnkey” solution with everything included.

Detection of SUTs should be done dynamically; i.e. the operating system and

configuration of the SUT should be deduced rather than provided to the system. This will

simplify the process of configuring a freshly deployed software test automation system.

TEST AUTOMATION SYSTEM AND ENVIRONMENT ASSUMPTIONS

The following is assumed to be true for the test environment and the test

automation system:

• A system under test can only have one product installed at a time.

• A system under test can only have one test running at a time. A test can utilize

more than one running application simultaneously, but no two different test

harnesses can be executed simultaneously to avoid configuration, execution

and cleanup conflicts.

 13

Chapter 3: High Level Architecture and Design

The process of architecting this system needs to start with defining its

environment and identifying what components would be required to meet the goals and

requirements of the system. The environment as we described earlier is a heterogeneous

environment that supports multiple operating systems and application platforms. The

environment is networked as it is expected to support client-server tests along with

performance, load and endurance tests that utilize multiple clients simultaneously

connected to a shared server. We can conclude from this that the environment is a basic

computer network consisting of several computers connected to a single or multiple

network switches. We can assume that there is infrastructure in place for managing

network addressing such as a DNS and DHCP server.

The system will need a cross-platform method for invoking remote commands on

various operating systems, and a cross-platform component for transferring files to and

from various operating systems. These components will need to reside on all the SUTs

and will most likely involve introducing new technologies to the test environment.

A master-slave architecture pattern [7] will be used for developing this system.

The SUTs will be considered the slaves in this architecture; a master server is expected to

delegate tasks for them to complete. A new system will need to be introduced to the

environment to act as the master server and will be referred to as the Test Automation

Server, TAS for short. This server will have to perform several functions: stage the

product and test binaries, copy the product and test binaries to the systems under test,

house and delegate test configuration and execution steps on remote systems, gather test

results and artifacts from SUTs and store them in a results repository.

 14

We have identified two required repositories for the system so far: one for staging

which can simply be a file system directory location, and a results repository which will

most likely also be a file system directory location to store all the test results and

artifacts. The file transfer and remote invocation components implemented for the SUTs

will be reused on the TAS to provide the functionality for transferring files from and to

the SUTs and the staging and results repositories. The remote invocation component will

be used to execute the configuration steps and the software tests on the SUTs.

An additional component will be required for housing common utilities that will

be deployed on the SUTs. This is necessary to maximize the delegation ability of the

TAS. This component will contain a wide range of utilities such as tools for performing

compressed archive management and system configuration scripts. This element of the

design should help minimize the required features of the remote invocation component.

The design of the system will largely depend on the tools and frameworks we

select for implementation. There are however some high level design items that can be

elaborated to help with the tool and framework selections. The first component to

consider is the common utility repository. This component will need to be able to

perform the following tasks:

• Recursively traverse test file system directories and perform token

substitutions on test files such as INI or PROPERTIES configuration files.

• Create and delete files and directories.

• Change file and folder permissions and ownership.

• Manage the compression and deflation of file archives.

As for the TAS design, a simple Model-View-Controller (MVC) [8] application

will meet the desired functionality from the server. Most modern web frameworks can

generate good scaffolding for the Controllers and Views and will not need many

 15

alterations to provide basic functionality with room to grow and improve in the future.

This design will focus on the model of the system as it will be help describe the expected

behavior of the system.

The model follows the physical environment very closely. The entities that are of

interest are the SUTs, software products and the test harnesses. I will start by describing

the important attributes of the SUTs.

To successfully conduct a test on a system, we would need to know the following

attributes of the system:

• System name or IP Address (name or address needed for communication)

• Operating system

• Operating system family: Windows, Linux, Macintosh

• Processor Architecture: x86, x86_64

• System state: Clean, product installed, running tests.

• Supported software environments: Java, .NET, Python, etc.

The operating system, and specifically the operating system family, will

determine the syntax required for the remote execution calls to that system from the

remote invocation component. The combination of the operating system and processor

architecture will also determine what types of products are supported on that SUT. That

information along with the supported software environments will determine which tests

can be executed on the SUT.

The supported software environments can also be used to alert the tester of

possible misconfigurations on the system such as not having the Java Runtime

Environment installed.

The state of the system is necessary to enforce repeatability of the tests. You

wouldn’t want to conduct a test on a system that is already conducting a test or that has

 16

failed to clean up after the completion of a test. The System state attribute will be used to

enforce these testing practices.

As for the Test model, we would need to know the following attributes:

• Test or test harness name.

• Test pattern: Standalone, client-server, performance, etc.

• Supported products.

• Supported operating system families.

• Supported processor architectures.

• Required software environment: C, Java, .Net, Python, etc.

• Test procedure.

The supported operating system, processor architectures and software execution

environment and product fields are necessary to match up the test harness with

compatible SUT candidates. The Test model has a many-to-many relationship with the

SUT model.

The procedure attribute specifies the sequence of steps for the test harness and test

pattern. It will follow the expected test pattern steps with specific actions for configuring

and executing the test harness. This attribute will simply hold the name of a test script

that is provided by the common utilities component. This utility is expected to be

executed on the SUT through the remote invocation component. The test procedure is

specified in a script that is copied over to the SUT versus a procedure that resides on the

TAS to adhere to the master-slave architecture pattern by facilitating the delegation of the

test configuration and execution. Having a script that can be copied to the SUT would

also simplify manual troubleshooting as the script execution can be isolated from the

TAS remote invocation mechanism.

 17

The Product model is a simple one. The following product attributes are required

for building the system:

• Product name.

• Supported operating system family.

• Supported processor architecture.

• Product install procedure.

• Product removal procedure.

The product supported operating system families and processor architectures are

used to determine which systems under test are compatible with the product. The product

install and removal procedure attributes are similar to the Test model’s test procedure

attribute in that they point to a utility from the common utility component to be executed

on the SUT when the product is to be installed or removed.

The Product model has a one-to-many relationship with the SUT model. This is

based on the assumption stated in the Goals and Requirements section that no more than

one product can be installed on a SUT at any given time. The Product model has a many-

to-many relationship with the Test model.

Figure 3 illustrates the complete high level architecture of the system:

 18

Figure 3: Software Test Automation System High Level Architecture

 19

Chapter 4: Tool Evaluation and Selection

The evaluation process for finding tools and frameworks to implement the

software test automation system focused on finding open source and well maintained

tools that can be drop-in, low configuration, easy to maintain and use components. We

can list the tools and frameworks required for implementing the test automation system

as follows:

• A tool or component to handle delegating tasks and invoking commands on

multiple remote operating systems.

• A tool or component to handle file transfers between multiple operating

systems.

• A tool or component to query remote systems for configuration properties.

This is necessary for dynamically determining the operating systems and other

attributes of the systems.

• A tool or component that can synchronize actions between multiple systems.

• A programming environment that is both suitable for developing components

for the TAS infrastructure and the common utilities component.

• A web framework to build the TAS MVC application.

REMOTE EXECUTION AND FILE TRANSFER

Shell based utilities were first examined to accomplish the task of transferring

files and invoking remote commands on SUTs. Tools such as SSH [9] and RSYNC [10]

presented problems due to cross-platform compatibility issues and the need to store login

credentials or certificates per SUT. Setting up an environment that can utilize SSH and

RSYNC for test automation would have required additional infrastructure changes, such

as configuring SAMBA [11] and Windows shares for file transfers. The attempt to use

 20

these tools was abandoned for a more robust and cross platform solution that was

designed for test automation.

STAF [12], Software Test Automation Framework, is a tool that was originally

developed by IBM for test automation and was subsequently released as an open source

project [13]. STAF is a multi-platform and multi-programming language framework for

test automation. It provides many reusable services to facilitate the process of test

automation such as file transfer, remote execution and querying remote systems for

configuration properties. STAF was originally released under the GNU Lesser General

Public License V2.1, then under the Common Public License V1.0 after the STAF V2.6.8

release, and is now distributed under the Eclipse Public License V1.0 and has been since

the STAF v3.2.5 release. STAF is at version v3.5.4 as of this writing. Several projects

have successfully used STAF to automate their testing activities; Cervantes [14] from the

Jet Propulsion Laboratory describes the experience of successfully implementing an

automated test framework using STAF and selecting it over building an in-house solution

or using proprietary solutions that were recommended by consultants. The project is still

under active development and has a vibrant community.

STAF requires a client to be installed on a system in order to perform its tasks.

Installing the client is a simple process. Both graphical wizard installers and simple

compressed archives are provided for all the supported operating systems and processor

architectures.

STAF provides many services out the box. The ones of interest to this effort are:

• The Ping Service. This service is used to determine if a STAF client is

running.

• The Variable Service. This service is used to query a client for system and

shared variables. System variables can be internal STAF configuration

 21

variables or system environmental variables. Shared variables are dynamic

variables that can be used by test applications.

• The File System Service. This service allows you to interface with the file

system on STAF clients. It can be used to transfer files from and to a system.

• The Process Service. This service allows you to start processes and execute

commands on a STAF client.

• The Semaphore Service. This service can be used to synchronize multiple

client activities and access to resources. This service is useful for

synchronizing clients in performance, load and endurance testing.

STAF is a multi-language framework. It can be accessed through C/C++, Java,

Python, Perl, TCL and ANT. The language selection for implementing the system will

largely depend on the web framework that will be used to implement the TAS MVC

application. A Python framework was ultimately selected for this project, and is

described later in this document, so the Python access method was used for developing

the automation solution around STAF. Here is a sample Python application that illustrates

the usage of the main STAF services that are of interest to this project.

 22

Figure 4: Sample Python code using STAF.

 23

A handle needs to be acquired in order to process STAF requests as illustrated on

line 5 in Figure 4. The local STAF client needs to be running in order to obtain the handle

otherwise an error and return code of 21 is returned to the caller. Once a handle is

acquired, STAF requests can be submitted. STAF requests always take the host name or

IP address of the target system as the first parameter, followed by the desired service to

be used. Then the specific service request is passed and is processed by the STAF engine

that returns a STAFResult object consisting of the return code and the result string.

Line 10 shows a simple ping service request to a remote host called “remote”.

This request simply validates that the STAF client is running on the remote host. Line 16

uses the Variable Service (VAR) to retrieve the remote host operating system name. An

abbreviated form of the operating system name is returned such as Win7 or WinSrv2008.

Line 25 shows an example of using the File System Service (FS) to copy a file from the

local system to the remote system. Note that in this example the remote host is a

Windows system, but STAF can handle Unix-style file system paths on Windows which

simplifies supporting the various operating systems required for this project. Line 33

shows an example for the Process Service which is used to invoke commands and

applications on the remote system. Note that this example uses some decorators to control

the behavior of the Process Service call return. The “wait” decorator signifies that the call

should only return once the remote process completes and exits. Calls can also be

invoked asynchronously to avoid waiting on long running processes using the “async”

decorator. The “stderrtostdout” and “returnstdout” decorators are used to pipe any

command line standard output or errors from the remote invocations back to the

STAFResult object. This is only useful for commands or applications that have command

line output.

 24

STAF will be used in the implementation of both the File Transfer and Remote

Execution design components for this test automation system. It does not require storing

login credentials for the various SUTs and already provides great support for all the

operating systems this project required.

WEB MVC FRAMEWORK

The web2py [15] Python framework was selected for implementing the Test

Automation Server. A preference to use either Python or Java for this implementation

existed in the beginning due to familiarity with these two programming environments.

Python was preferred due to its dynamic and interpreted [16] nature as it was expected to

also be deployed to the SUTs as part of the common utilities component of the system. A

compiled language wouldn’t fare well in an environment like this as it would require

several additional steps for implementing and deploying changes throughout the

infrastructure.

Web2py is licensed under the GNU Lesser General Public License V3. It received

InfoWorld’s 2012 Technology of the Year award [17]. It was originally developed as a

teaching tool for programming and has grown to be a full-fledged database driven web

framework.

Web2py was selected as the framework for the system due to the following

features that are unique to it:

• Batteries Included. The install, which is simply a compressed archive,

contains everything you would need to run the framework including a Python

interpreter, web server, database abstraction layer and SQLite database [18].

• Very small footprint of 1.4MB and no configuration required to run.

 25

• Applications can be modified, installed and uninstalled without the need for

restarting the web server.

• Integrated development environment that is accessible through a web browser.

Editing source code and deploying applications can all be done through a

browser.

The ability to easily modify and maintain the application, even from a browser,

and the small and easy deployment of the framework meet the goals and requirements for

this project. It promoted rapid application development and prototyping of features. This

is why web2py was selected for this project over other very successful Python

frameworks such as Django [19] and Pylons [20].

 26

Chapter 5: Implementation Results, Considerations and Caveats

IMPLEMENTATION RESULTS

The implementation of the test automation system was completed in sixteen

months and consumed two Engineers working on the project. The effort produced over

eighty thousand lines of code and the project now contains over one hundred and ten

thousand lines of code from contributions by Quality Engineers and Developers as well.

Operating system coverage testing was transformed from a manual process involving a

handful of Windows and Linux SUTs to over thirty operating systems exercised

automatically with each iteration of a test pattern. Moreover, testing permutations with

different operating system and product combinations was also expanded due to the

automation of the install and removal of the software products.

This increased test coverage accelerated the defect detection rate in the

organization. A recent example of this was the introduction of networking changes to the

products that were compatible with all the supported operating systems except for the

oldest supported Windows operating system in this group which is Windows XP. The

defect was immediately detected using the automation system. A manual process would

have very likely missed this defect as older operating systems might be deprioritized in

manual test efforts. Having this automation framework in place increased the confidence

of the organization in detecting defects which has led to more aggressive feature

roadmaps for our products.

IMPLEMENTATION CONSIDERATIONS AND CAVEATS

The system implementation was divided into several phases. The first phase was

the development of the product and test staging repositories with the STAF enabled file

transfer and remote execution components for distributing and installing the software

 27

product on the SUTs. Some challenges were faced while implementing two key features

in this phase: operating system detection and file transfer performance.

An early implementation of the test automation system did not dynamically detect

the remote system and relied on manual population of the SUT database table on the

TAS. This approach was very error prone as it is easy to forget to update the table when a

configuration change is performed on the SUT. Many test cycles were wasted on

misconfigured tests due to this approach as tests failed to execute properly on various

systems. This approach was abandoned and replaced by a dynamic method of detecting

remote operating systems.

The STAF Variable service was used to dynamically detect the operating system

of the SUT. The STAF system variable “STAF/Config/OS/Name” was used to determine

the operating system, but it did suffer from a few limitations. Some Windows systems

would return “Unknown WinNT” as the result of the variable query instead of a specific

operating system. This for the most part didn’t affect the automation effort as the family

of the operating system, in this case Windows, could still be deduced which, was more

important than the specific version. However, on Linux the variable always returns a

generic “Linux” result. A few more queries would be required to determine the specific

operating system installed if that information is important to the automation effort. On

Linux, using the File System Service to retrieve the “/proc/version” file and parsing can

typically provide specific distribution information, however that is not guaranteed. The

“/etc” directory also typically has specific distribution files that can be queried such as

“suse-version”, “redhat-version”, “fedora-version” and so on. On Windows, access to the

system registry is required to determine the specific operating system edition. The

registry key “HKEY_LOCAL_MACHINE\\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\ProductName” will contain the specific edition of the Windows

 28

operating system. The STAF Process Service would be required to execute the command

line “reg.exe” utility to retrieve the value of the key. A similar approach for Macintosh

OS X would be required; the STAF Process Service would need to be used to execute the

“sw_vers” utility to retrieve the product name and version.

As for the file transfers using the STAF File System Service, the speed of the file

copies were roughly 70% the speed of a traditional file transfer using SAMBA or

Windows Shares. This might not be an issue if the products, tests and test results aren’t

large data sets. File transfer durations were a small percentage of the total time spent

configuring and executing test cases in our environment. Therefore the performance of

the system wasn’t largely degraded by using STAF File transfers and was deemed

acceptable when weighed against the advantage of having a uniform file transfer solution.

The second implementation phase was for the Standalone Regression testing

execution and results gathering. Implementation items to consider here are the use of

conventions for common test attributes, such as locations of test binaries in the staging

repository and their respective locations on the SUTs once they are copied over. This

helps in reducing the implementation logic significantly. Conventions for the results

collection are also important to simplify the process of obtaining and storing the results

along with locating the results for analysis in the future. Exercising good logging

practices here is crucial for the success of the system. Each test procedure can go through

many steps before actually conducting a test. Logging the results of each step leading up

to the execution of the test, then the cleanup steps that occur after are all crucial for

troubleshooting issues that could occur in the system. Missteps in early test harnesses can

have ramifications on the execution of the other test harnesses down the line, and

troubleshooting these issues without proper logging is very difficult and time consuming.

 29

The remaining phases of implementation were devoted to the remaining test

patterns such as the Client-Server Regression test pattern. The main implementation

consideration for the multi-system test patterns is how to perform synchronization

between the SUTs. Serializing the execution of the steps among the various SUTs is a

valid approach for implementing synchronization since it is very simple to implement and

is especially viable in environments that have short running steps that lead up to the test

execution. If the pre-test execution steps and post-test execution steps only take a few

seconds to complete, then investing in a parallel execution system would not save on total

test time and would increase the complexity of the system. However, investing in a

parallel execution system by utilizing the STAF Semaphore Service is necessary if the

pre and post-test execution steps take a long time to complete. Total test execution time

would grow linearly with every additional SUT added to the test.

STAF AUTOMATION LESSONS LEARNED

Two issues using STAF, consistency in detecting remote operating systems and

file transfer performance concerns, have already been discussed in the previous section

“Implementation Considerations and Caveats”. These however were only a part of the

issues discovered in our utilization of STAF. There were also other important STAF

automation caveats that we experienced while implementing the system.

Problems were encountered with the STAF Process Service for invoking remote

commands on x86_64 Windows systems that were running an x86 version of STAF. The

Windows File System Redirector and Registry Redirector [21] redirects access calls to 64

bit file system and registry resources by 32 bit applications into an equivalent 32 bit

resource instead. Therefore direct access to 64 bit system utilities and the registry hive is

not possible from 32 bit applications, which are common steps in test configuration. This

 30

behavior can be corrected by disabling this Windows feature. However, disabling this

feature can have an impact on the software product being tested. A better workaround is

to always ensure that x86_64 Windows operating systems are always configured with an

x86_64 version of STAF to avoid redirections by the Windows Redirector.

Problems were also encountered with starting the STAF client on Linux systems

that have statically assigned network addresses. The STAF client fails to retrieve a

hostname in this configuration which leads to a failure in initializing the client. The

STAF client works properly on Linux systems that are configured to use DHCP and DNS

servers. A workaround for the problem on systems with static network addresses is to add

an entry for the local host in the “/etc/hosts” file.

And finally, the STAF client provides a command line utility for invoking STAF

calls. This utility is very helpful for quick proof of concepts and troubleshooting. I

however would recommend avoiding implementing the automation framework using

direct invocations of this tool. It might seem faster at first to do so, but implementing

your own parser for the command line output and maintaining it are steps that the STAF

framework already provides you programmatically. This could also introduce defects in

STAF result interpretation by mishandling unexpected return codes from the STAF calls.

 31

Chapter 6: Conclusions

Implementing a software test automation solution for a heterogeneous test

environment is a very large undertaking. A large amount of resources and time can be

consumed if careful planning isn’t conducted to avoid common automation pitfalls. The

rewards from undertaking an effort like this might not materialize immediately, but the

increased coverage of product testing will undoubtedly increase the quality of the

software product.

Establishing a system that integrates seamlessly with existing business processes

is essential for the adoption of an automation solution. Leveraging existing and well

established automation tools and development frameworks will accelerate the

implementation of the system and increase the chances of success. These tools and

frameworks can be open source and freely available which also minimizes the overall

cost of the automation effort.

The tools selected for this automation implementation, STAF and web2py, do

come with caveats and challenges. I however still prefer implementing automation

solutions using these tools over building an in-house solution or purchasing a proprietary

solution. STAF and web2py provide tremendous features straight out of the box and they

both have vibrant support communities.

The high level design described in this report can be leveraged by any

organization that is willing to implement an automation solution for a heterogeneous

environment. The core design concepts, data models and implementation considerations

will hopefully assist these organizations in their automation endeavors especially if they

use STAF in their automation implementation.

 32

FUTURE WORK

There are a couple of items to investigate for future improvements of this test

automation infrastructure. The first concerns the file transfer performance issue

mentioned previously. A mitigation plan is needed if this becomes a problem in the

future. STAF provides additional add-on services that are not included in the default

installation of the utility. One of these additional services is an FTP Service [22]. File

transfer performance tests should be conducted using this service to see if any

improvements are detected. Another option is to build an in-house solution for

transferring files in the test environment.

Another area of future work is to investigate if this design and implementation

can be leveraged to automate testing in cloud environments such as Amazon Web

Services [23]. The demand to conduct testing on cloud environments, especially Client-

Server Regression testing, will increase as more businesses adopt cloud technologies.

 33

Bibliography

[1] Persson, C.; Yilmazturk, N.; , "Establishment of automated regression testing at ABB:

industrial experience report on 'avoiding the pitfalls'," Automated Software

Engineering, 2004. Proceedings. 19th International Conference on , vol., no., pp.

112- 121, 20-24 Sept. 2004

[2] Ramler, R.; Klaus Wolfmaier, K.; , “Economic perspectives in test automation:

balancing automated and manual testing with opportunity cost.” In Proceedings of

the 2006 international workshop on Automation of software test (AST '06). ACM,

New York, NY, USA, pp. 85-91

[3] Microsoft Windows Product Support Lifecycle, http://windows.microsoft.com/en-

US/windows/products/lifecycle

[4] Red Hat Linux Support Lifecycle,

https://access.redhat.com/support/policy/updates/errata/

[5] Suse Linux Support Lifecycle, http://support.novell.com/inc/lifecycle/linux.html

[6] Test Harness, http://en.wikipedia.org/wiki/Test_harness

[7] Buschmann, F.; Henney, K; Schmidt, D; , “Pattern-Oriented Software Architecture: A

Pattern Language for Distributed Computing.” John Wiley & Sons 2007.

[8] Model-View-Controller, http://en.wikipedia.org/wiki/Model-view-controller

[9] SSH IETF Request For Comment 4253 Website. http://tools.ietf.org/html/rfc4253

[10] RSYNC Utility Website. http://rsync.samba.org/

[11] SAMBA Website. http://www.samba.org/

[12] Rankin, C.; , "The Software Testing Automation Framework," IBM Systems Journal

vol.41, no.1, pp.126-139, 2002

[13] STAF Main Website, http://staf.sourceforge.net/

 34

[14] Cervantes, A.; , "Exploring the use of a test automation framework," Aerospace

conference, 2009 IEEE , vol., no., pp.1-9, 7-14 March 2009

[15] Web2py Web Framework Main Website, http://www.web2py.com/

[16] Python Overview Website, http://www.python.org/about/

[17] InfoWorld’s 2012 Technologies of the Year Award Winners,

http://www.infoworld.com/slideshow/24605/infoworlds-2012-technology-of-the-

year-award-winners-183313#slide23

[18] SQLite Database Website, http://www.sqlite.org/

[19] Django Python Web Framework Website, https://www.djangoproject.com/

[20] Pylons Python Web Framework Website, http://www.pylonsproject.org/

[21] Windows File System and Registry Redirectors,

http://msdn.microsoft.com/en-us/library/windows/desktop/aa384249

[22] STAF FTP Service, http://staf.sourceforge.net/current/FTP.html

[23] Amazon Web Services, http://aws.amazon.com/

