View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by UT Digital Repository

Copyright
by
lyad Shaher Azrai
2012

https://core.ac.uk/display/10647429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Iyad Shaher Azrai
Certifiesthat thisisthe approved version of the following report:

Software Test Automation: A Design and Tool Selection Approach for a

Heter ogeneous Environment

APPROVED BY
SUPERVISING COMMITTEE:

Supervisor:

Adnan Aziz

Sarfraz Khurshid

Software Test Automation: A Design and Tool Selection Approach for a
Heter ogeneous Environment

by

lyad Shaher Azrai, B.S.Comp.E.

Report
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Sciencein Engineering

The University of Texasat Austin
December 2012

Acknowledgements

I would like to thank my professors Dr. Adnan Aaiad Dr. Sarfraz Khurshid for
their unwavering support and their infinite patient would also like to thank my wife

Tara for standing by me throughout this journey.

Abstract

Software Test Automation: A Design and Tool Selection Approach for a
Heter ogeneous Environment

lyad Shaher Azrai, MSE

The University of Texas at Austin, 2012

Supervisor: Adnan Aziz

This report describes a design approach for imphtimg a software test
automation solution that can accommodate exisgaggrocesses in an organization. The
process of implementing a software test automagmintion is a large undertaking and
requires careful planning to avoid unsuccessfullemgentations. This report outlines a
design that can integrate with existing businesd davelopment processes in an
organization, and recommends automation and dewsop frameworks for achieving
the test automation goals.

Considerations for a heterogeneous test environmetht varying types of
supported operating systems, such as Windows amaxiand multiple test execution
environments, such as Java and .NET, have been maties design and in the tool
selections for the system implementation. The re@dso describes some of the
challenges and caveats of automation in a heteemgsn environment along with

recommended solutions to these challenges.

Table of Contents

LISt Of TADIES ... viii
LISt Of FIQUIES ... IX
(O gF=T o] (=1 g I 1 011 o o (1 ox 1 o o ISR UUUR 1
Problem DeSCHPLIONuuiiiiiiiiiiiiiit ceeemeeeiiebieibeeee bbb nnna 1
ReEPOIt OrganiZationeueeueeueiiieeaee e e e e e e e e e 2
Chapter 2: Goals and ReqUIremMentscccoeeeieiiiiieieeee e 3
Standalone Regression TeSHNGcouviierreeceeeeee e 3
Product Install and Configurationcccceeuvvvveevirieeeeiieeiiieinen. 4
Test Harness Install and Configuration.......cccoc....oooooeiin. 4
TESE EXECULION ...ttt e e e e e e e e e e e e e e e e e e eaeeea e 5.
TS U1 K3 =T o Jo] 1] o PSPPI
(1= T U] o TP 5
Product Removal..........ooooiiiiee 6
Client-Server Regression TeSHNGc.vvvvvuueuueermriiiiinsnssn s een e 6
Product Install and Configurationcccceeuvevveviiiieieeiiiniiieiiin. 7
Test Install and Configurationcoceeee oo, 7
TESE EXECULION ...ttt eaeeea e 8...
RESUIt REPOIMING .evvvvviiiiiiiiiiiiiiiiiiiitereere e e e e e e e e e e e e e e e ee e e
ClEANUP ettt e e e e e e e e e e e et e et e e e e et e e e e e eeeeeaes 8
Product Removal..........ooooiiiiiiie
Performance, Load and Endurance TeSting ...cceeceeeeeeeeeeeeeiiiieiiiiieieeeeeee 9
Environmental CONSIraiNtS............uuiiiiiieiieeiee e Q..
BUSINESS CONSIIAINTS ..o 11
Usability REQUIFEMENTS.........uviiiiiiiiiiiereee et 12
Test Automation System and Environment ASsumptions............c........ 12

Vi

Chapter 3: High Level Architecture and DeSign e ..ocooeeeerieiiiiiiiiiaiiieee, 13

Chapter 4: Tool Evaluation and Selectioncc.eevvvvviieiiiiiiiiiiieiiiiieiieiiennns 19.
Remote Execution and File Transferccccccooviiniiiiiiiiieeieeee e 19
WeED MVC FrameEWOrKcooiiiiiiiiiiis e e e e e e et e e e e e e eeeanannnas 24

Chapter 5: Implementation Results, Consideratioms@aveatsccccuene. 26
Implementation RESUILSoooiiiiiiiiieeeee e 26
Implementation Considerations and CaveatS......cccooceeeeeeiiiiiiiiiiien e, 26
STAF Automation Lessons Learned...........cceevveeiiiiiiiiiiiieiieeen e 29

Chapter 6: CONCIUSIONSoooiiii ettt e e neeeeee e 31
FULUIE WOTK ... 32

BIDIOGIraphy .. e 33

Vii

List of Tables

Table 1: Supported Operating Systems

Table 2: Test application environments

viii

List of Figures

Figure 1: Standalone Regression Test Process @VerVi............cccccceveveveveeenennn. 4
Figure 2: Client-Server Test ProCeSS OVEIVIEW.ccuae. . uuuuuueniaeeeeee e 7
Figure 3: Software Test Automation System High LLéuehitecture................. 18

Figure 4: Sample Python code USING STAF. .. e 22

Chapter 1: Introduction

PROBLEM DESCRIPTION

Implementing a software test automation solution aim organization with
established development and test procedures ismadl sindertaking [1]. Automation
projects tend to consume large amounts of resoamgsime to develop. The benefits of
successfully completing a test automation processakso typically slow to materialize
due to the heavy initial costs of implementatiof). [Eherefore, careful planning is
required to avoid common pitfalls in software tagtomation and to produce a solution
that meets the current and future test needs ofganization.

Planning for a test automation effort is especiathportant in heterogeneous
environments. A heterogeneous environment containsix of operating systems and
software platforms. A heterogeneous environmentciyly contains tests systems
running various operating systems from several magodors such as Microsoft, Apple,
Red Hat, Suse and Ubuntu. Moreover, each of theadors has a variety of past and
present editions of their operating systems thastl under active support [3, 4, 5].

A heterogeneous environment also consists of stipgorseveral software
environments for test execution such as JAVA, C/CNET, Python and various other
software environments, each with its own constsaamd caveats.

For a software test automation solution to be ssfoé in and established
development and test organization with a large rermbriables and permutations in the
environment, it would need to integrate seamlegsth the existing processes of the
organization and be able to leverage existing aesbmation tools and frameworks to
facilitate supporting the various environmentalmpetations and reduce the cost of the

initial investment in the system.

This report describes the process of designingraptementing a test automation
solution that can accommodate a heterogeneousrtegsbnment. This was a team effort
conducted by a Quality Engineering group in whicbohtributed to the design of the
solution, the tool evaluation efforts and the depetent of the system. This Quality
Engineering group is part of a commercial orgamratwith several software product
offerings. We leveraged open source tools and fwaomes to implement this software
test automation system that transformed testinglitierent operating systems from a
manual process on a handful of platforms to anraated one that covers over thirty

different operating system configurations.

REPORT ORGANIZATION

This report describes the goals and requirementthésoftware test automation
system in Chapter 2 with special emphasis on |gvegaexisting test processes to
promote adoption among Quality and Software Engse&he report describes the
architecture and design of the system in Chapterséd on the goals and requirements of
the group. The report provides tool and framewatommendations based on research
and experimentation in test automation approacmesChapter 4. Implementation
considerations and caveats are described with swhgions to the challenges faced

using the recommended tools and frameworks in @n&pt

Chapter 2: Goals and Requirements

The main objective of this report is to describe thesign of a software test
automation system that is easy to maintain and amnommodate running existing
software test harnesses [6] and processes. Thensyshould be able to support a
heterogeneous operating systems environment ahncapedications from a variety of
software environments such as Java, C/C++, ViswsatBeC#, Delphi and several
scripting languages Perl, Python and TCL.

The system should be easy to deploy, use and nmaitdapromote adoption
among Quality Engineers and Developers as well.siiseem shouldn’t disrupt processes
that are already in place for Configuration Managetmand Development; it should
seamlessly integrate with these existing processes.

This system will address automating the followirestt patterns: Standalone
Regression Testing, Client-Server Regression Tgstierformance Testing, Load
Testing and Endurance Testing. There are some comnaspects to all these test patterns,
but they do offer enough differences that can pbs#lenges for automation. Describing
their use cases should help illustrate the needlseofest automation infrastructure. Note
that these test patterns are the internal testepsas for the Quality Engineering group
that developed the solution described in this regdowever, these patterns are most

likely common to other quality organizations.
STANDALONE REGRESSION TESTING

Regression testing is the process of running ested and repeatable test cases
and harnesses on a system to detect software slefaéisb known as regressions,
introduced into a product through the developmémew features or through software

maintenance. Standalone regression testing is riwegs of executing these regression

3

tests locally on a System under Test, referreditoughout the document as SUT. Test
applications and the product to be tested willdesin the same system and are executed
locally on that machine. The process for conducstandalone tests on a system was

designed by the Quality Engineering group for teist automation system and consists

the following phases:

Standalone Regression Process

Product Install and
Caonfiguration

Test Install and
Configuration

Test Execution

Results Reporting

Cleanup

* Product binaries copied
to SUT

* Product installed on
SUT

+ Product configured for

* Test binaries copied to
SuT

* Testconfiguredfor
EXecution

+ Product prepared for

+ Diagnostics and
monitoring started
* Tests executed

& Results copied to
results repository

* Diagnostic test artifacts
copied to results
repository

s Product configuration
restored to post install
state.

Test configuration
rolled back.

* Test hinaries, results
and artifacts removed
from SUT

testing testing

Phase

Figure 1: Standalone Regression Test Process @vervi

Product I nstall and Configuration

In this phase the product binaries or the produstail package are copied to the
SUT. Then the product is installed and configured testing. Product configuration
changes in this phase tend to be common changesathde utilized by all the tests that
will be conducted on the SUT. Product logging lsvebuld be raised to verbose and
other system configurations can be performed sgobnabling application debuggers to

catch and trap fatal product exceptions.

Test HarnessInstall and Configuration

In this phase, the test harness is copied to thE &\l installed. Installing a test
harness could involve several activities, suchegsstering libraries, installing supporting
products such as an interpreter or a system dependeich as a .NET. The harness can
also be configured by performing updates to tesfigaration files, such as INI files or

4

PROPERTIES files. Test data preparation is anatbermon task that is performed in
this phase. This can consist of creating datakases and populating them with data or

simply copying existing data sets to appropriatatmns for testing.

Test Execution

Once the harness has been configured, the testsecaxecuted on this system. In
this phase, the test automation infrastructure doeked to verify that the test was started
successfully and that it completes. A test exeoutian abort prematurely if the product
exhibits a defect and fatally terminates. This dotduse the test application to pause or
terminate itself. An automation framework would dée be able to detect such scenarios
and act appropriately by terminating the test ifsitin an inconsistent state and by
preserving diagnostic artifacts such as test Iggsduct logs and core dumps if the

product crashed.

Results Reporting

After test execution is complete, or if the testpooduct failed and diagnostic
artifacts were generated, gathering the resultseésnext step in order to perform result
analysis and reporting. Gathering results simplamsecollecting all result and diagnostic
artifacts and copying them to a centralized redoltation. This is done to avoid having

Quality Engineers visit every SUT to analyze tesuits.

Cleanup

Once the results are gathered, the SUT shoulddamet! up in order to queue up
other test harnesses for execution and have tharhfsbm a consistent system state.
Cleanup usually means changing any product cordtguns that were performed by the

test harness and also removing any test data aadids from the system. Restoring the

product to a state identical to that post the fasase of automation “Product Install and

Configuration” is ideal and desired.
Product Removal

This is the last phase in automated testing. Ohi¢keatests have been conducted,
the product should be removed from the system tdlhgesystem back to a clean state,
ready to start the complete Standalone Regressiocegs once again with a newer
version of the product as soon as it is availabhés can be achieved in several ways: by
automating the process of removing the product @mdoving all artifacts that were
installed or created by all the test harnesses Wt invoked on the SUT, or by
automating the operating system deployment on $hél, i.e. the operating system is
either freshly reinstalled on the SUT or a backf@ighe installed operating system is

restored on the SUT.

CLIENT-SERVER REGRESSION TESTING

Client-Server Regression testing has similar phaseStandalone Regression
testing, but it involves two SUTs that need to $yoaize their progress along these
phases. Client-Server Regression harnesses caaripatg of Standalone test harnesses
that simply exercise the same set of tests ovetwank to a remote server to verify that
networking doesn’t introduce adverse behaviors Ha product. They can also be
specialized regression tests that emphasize netwonkmunication by employing a
variety of connection methods and networking camfigions. The process for
conducting Client-Server Regression tests was dedidoy the Quality Engineering
group for this test automation system. Figure@sthates this design and the timelines for

the client and server in the Client-Server pattern:

Client-Server Regression Process

Product Install and Test Install and ; .
.) Test Execution Results Reporting Cleanup
Configuration Configuration
« Product binariescopied | » Test binaries copiedto | * Diagnostics and * Results copied to * Product configuration
to SUT SUT monitoring started results repository restored to post install
+ Product installed on * Test confizured for * Tests executed * Diagnostic test artifacts state.

copied to results Test configuration

sSUT execution)
* Product configured for * Product prepared for repository rolled back.
testing testing * Test binaries, results
z and artifacts removed
& from SUT
,r'/ ~\ Vi Ve \ /-'_“\\ .-'/_ “\‘
o '.\ inj— % | Client H——m{ Client *;f Client } »{ Client /J
c \
E — i — —
.g ~ -.\ Ir/ -\‘ I/ “\' I,I’/; .
=z | server —}{I Server | ‘—‘\Q;:EPE,/’/ ‘—“.\ Server | | SE:mj
E
£
(=]

Figure 2: Client-Server Test Process Overview

Product I nstall and Configuration

This phase is identical to that of the StandalomgrBssion tests and can be
conducted simultaneously on both the Client andSt&ever SUTs. The product binaries
or installer can be copied simultaneously to bb&hGlient and the Server. The install can
also be conducted simultaneously by the Client 8edver along with any product

configuration required for general testing.

Test Install and Configuration

This phase will require synchronization between@tent and the Server as the
client typically relies on having certain serveerakents in place, such as shares to data
should be created, specific services started astddtga configured and made accessible
remotely. There are however certain steps thatbeaexecuted simultaneously in this

phase, such as copying test harness binaries kothetclient and the server. Once the

copies are completed, test harness configurationldhbe conducted on the server first

followed by the client.

Test Execution

Here the test is executed on the client. No actwifisneed to be conducted on
the server as all the test preparation should héready been conducted in the previous
phase “Test Install and Configuration”. The seruerthis phase simply awaits the

completion of tests conducted by the client.

Result Reporting

After the tests are complete, copying the testlt®$o a centralized repository is
necessary along with any other artifacts includaityre artifacts such as core dumps or
diagnostic logs. These steps should be executédthythe client and the server and can
be done simultaneously. Results from the client amg artifacts from the server should
ideally be copied to a common location to form ragkg test results location. This will

help avoid confusion during results analysis.

Cleanup

This phase can also be executed on both the @dmohtserver simultaneously. It
should leave both the client and the server irmteghat is ready for executing another set

of Client-Server Regression tests.

Product Removal

This phase is identical to that of the StandaloegrBssion testing and can be
conducted simultaneously on clients and servers Jimould be conducted once all the

client-server test harnesses are complete to meaparSUTs for a new set of regression

tests. This will ensure that future tests will benducted on a system in a clean and

consistent state.

PERFORMANCE, L OAD AND ENDURANCE TESTING

Performance, Load and Endurance testing are tesviti@as that require
synchronization among several SUTs. They are tilgitulti-Client-Server tests, where
multiple clients are conducting tests on a shaegdes simultaneously. Performance tests
are designed to determine maximum product threshotlich as the maximum
transactions per second throughput for a databgsters. Load tests are designed to
verify that overcommitting a product’'s resourcegslmot adversely affect the product.
Endurance tests are designed to exercise a pradactypical usage scenario over an
extended period of time to simulate extended custarsage of a product.

These three test patterns can be considered wasatif Client-Server Regression
tests. They simply substitute a single client withltiple clients and follow the same
timeline as the Client-Server Regression tests evéallow. During the “Test Install and
Configuration” phase, all the clients wait on therver to complete its configuration
steps. The server also waits on all the clienteamplete their test execution before
executing the results collection steps. The symubhadion solution used for a Client-
Server Regression pattern should meet the syndatiom needs of these Multi-Client-

Server Test patterns.

ENVIRONMENTAL CONSTRAINTS

The software test automation system will need topsut an environment that
consists of many different operating systems. Tperating systems we intend to support

are outlined in the table below.

Operating System [3, 4, 5] Processor Supported Editions
Architectures
Microsoft Windows XP x86, x86 64 Professional
Microsoft Windows 2003 Server x86, x86 64 StandBrderprise
Microsoft Windows Vista x86, x86_64 Professionatié&tprise
Microsoft Windows 2008 Server x86, x86 64 StandBrdgerprise
Microsoft Windows 7 x86, x86 64 Professional, Eptise
Microsoft Windows 2008 R2 Server x86 64 Standardegprise
Microsoft Windows 8 x86, x86_ 64 Professional, Eptee
Microsoft Windows 2012 Server x86 64 Standard, gpmise
Red Hat Enterprise Linux 4 x86, x86 64 Desktopy&er
Red Hat Enterprise Linux 5 x86, x86 64 Desktopy&er
Red Hat Enterprise Linux 6 x86, x86_64 Desktopy&er
Suse Linux Enterprise 9 x86, x86 64 Desktop, Server
Suse Linux Enterprise 10 x86, x86 64 Desktop, Serve
Suse Linux Enterprise 11 x86, x86 64 Desktop, Serve
Ubuntu 10.04 LTS x86, x86 64 Desktop, Server
Ubuntu 12.04 LTS x86, x86_64 Desktop, Server
Mac OS X x86 64 10.6, 10.7, 10.8

Table 1: Supported Operating Systems

There are also several software application enmerts that will need to be
supported for testing purposes. Test applicatics lme developed in any one of the

following application environments:

1C

Application Environment Typical Applications | Console/Graphical Interface
JAVA JDBC application Both

C/C++ ODBC application Both

C# .NET ADO.NET applicatiori Both

Visual Basic OLEDB or ActiveX Graphical

Perl Test automation Console

Python Test automation Console

TCL Test automation Console

Table 2: Test application environments

The expectation here is that the test automatiatesy would not be tightly
coupled with any one of these application enviromistet should merely be a conduit for
executing these applications. The test applicatghmild not have any dependencies on
the automation system; an Engineer should be ableohtinue executing the test
applications without the presence of the automatdmastructure. A dependency on the
new automation system should not be introducechindd the existing test applications

or harnesses.
BUSINESS CONSTRAINTS

Another constraint on this effort is integratingawtomated software test solution
into an already well-established development andhfigoration management
environment. The constraint here is to not disthptexisting processes and ideally not

force any changes or dependencies on them.

11

Developers and Quality Engineers should be ableotdinue maintaining their
test environments independently from maintaining #utomation infrastructure. They
should be able to continue executing their tesindmses and applications without
deploying the new test automation system.

No changes to configuration management are expexgedell other than the
introduction of a new project for the software tastomation system. The expectation is
that the software test automation system will suppgbe existing configuration
management process by detecting when new softwailldsbare available and by

obtaining these builds when necessary.

USABILITY REQUIREMENTS

Usability requirements for this product are geatedards maximizing the
adoption of this new system by the Quality Engisesrd even Developers. The solution
should be easy to deploy, preferably a “Turnkeyluson with everything included.
Detection of SUTs should be done dynamically; itee operating system and
configuration of the SUT should be deduced rathan tprovided to the system. This will

simplify the process of configuring a freshly def@d software test automation system.

TEST AUTOMATION SYSTEM AND ENVIRONMENT ASSUMPTIONS

The following is assumed to be true for the testirenment and the test

automation system:

* A system under test can only have one productliedtat a time.

» A system under test can only have one test runatirrgtime. A test can utilize
more than one running application simultaneousiy, o two different test
harnesses can be executed simultaneously to awoiigaration, execution
and cleanup conflicts.

12

Chapter 3: High Level Architecture and Design

The process of architecting this system needs #ot swith defining its
environment and identifying what components wouddréquired to meet the goals and
requirements of the system. The environment aseseribed earlier is a heterogeneous
environment that supports multiple operating systeand application platforms. The
environment is networked as it is expected to stpplent-server tests along with
performance, load and endurance tests that utimdtiple clients simultaneously
connected to a shared server. We can conclude tiiisnthat the environment is a basic
computer network consisting of several computensneoted to a single or multiple
network switches. We can assume that there issinfreture in place for managing
network addressing such as a DNS and DHCP server.

The system will need a cross-platform method fepking remote commands on
various operating systems, and a cross-platformpoment for transferring files to and
from various operating systems. These componertseed to reside on all the SUTs
and will most likely involve introducing new techingies to the test environment.

A master-slave architecture pattern [7] will be diser developing this system.
The SUTs will be considered the slaves in this iggcture; a master server is expected to
delegate tasks for them to complete. A new systéinneed to be introduced to the
environment to act as the master server and willeberred to as the Test Automation
Server, TAS for short. This server will have to fpen several functions: stage the
product and test binaries, copy the product andhiesries to the systems under test,
house and delegate test configuration and execsteps on remote systems, gather test

results and artifacts from SUTs and store themrasalts repository.

13

We have identified two required repositories fax fystem so far: one for staging
which can simply be a file system directory locatiand a results repository which will
most likely also be a file system directory locatito store all the test results and
artifacts. The file transfer and remote invocattmmponents implemented for the SUTs
will be reused on the TAS to provide the functiayafor transferring files from and to
the SUTs and the staging and results repositoftes.remote invocation component will
be used to execute the configuration steps anddfteare tests on the SUTS.

An additional component will be required for hogsicommon utilities that will
be deployed on the SUTs. This is necessary to magithe delegation ability of the
TAS. This component will contain a wide range dfitigs such as tools for performing
compressed archive management and system confauistripts. This element of the
design should help minimize the required featufedh@remote invocation component.

The design of the system will largely depend on tdeds and frameworks we
select for implementation. There are however soigk level design items that can be
elaborated to help with the tool and framework ct@@s. The first component to
consider is the common utility repository. This qmmnent will need to be able to
perform the following tasks:

* Recursively traverse test file system directoriesd aperform token

substitutions on test files such as INI or PROPHESTtonfiguration files.

» Create and delete files and directories.

» Change file and folder permissions and ownership.

* Manage the compression and deflation of file arehiv

As for the TAS design, a simple Model-View-Conteol(MVC) [8] application
will meet the desired functionality from the servBtost modern web frameworks can

generate good scaffolding for the Controllers anéwg and will not need many
14

alterations to provide basic functionality with rodo grow and improve in the future.
This design will focus on the model of the systemitavill be help describe the expected
behavior of the system.

The model follows the physical environment veryselly. The entities that are of
interest are the SUTSs, software products and stehernesses. | will start by describing
the important attributes of the SUTSs.

To successfully conduct a test on a system, we dvoeéd to know the following
attributes of the system:

» System name or IP Address (name or address neededmmunication)

» Operating system

* Operating system family: Windows, Linux, Macintosh

» Processor Architecture: x86, x86_64

» System state: Clean, product installed, runninggtes

» Supported software environments: Java, .NET, Pytéatn

The operating system, and specifically the opegatsystem family, will
determine the syntax required for the remote exacutalls to that system from the
remote invocation component. The combination of dperating system and processor
architecture will also determine what types of patd are supported on that SUT. That
information along with the supported software eowments will determine which tests
can be executed on the SUT.

The supported software environments can also bd tsealert the tester of
possible misconfigurations on the system such as having the Java Runtime
Environment installed.

The state of the system is necessary to enforceatapility of the tests. You

wouldn’t want to conduct a test on a system thatieady conducting a test or that has
15

failed to clean up after the completion of a t&ste System state attribute will be used to
enforce these testing practices.

As for the Test model, we would need to know tHB¥ang attributes:

» Test or test harness name.

» Test pattern: Standalone, client-server, perforraaetc.

» Supported products.

» Supported operating system families.

» Supported processor architectures.

* Required software environment: C, Java, .Net, Gytetc.

» Test procedure.

The supported operating system, processor architeciand software execution
environment and product fields are necessary tochmatp the test harness with
compatible SUT candidates. The Test model has ay#ttamany relationship with the
SUT model.

The procedure attribute specifies the sequenctep$dor the test harness and test
pattern. It will follow the expected test pattetaps with specific actions for configuring
and executing the test harness. This attribute santiply hold the name of a test script
that is provided by the common utilities componehhis utility is expected to be
executed on the SUT through the remote invocatmmponent. The test procedure is
specified in a script that is copied over to thelSkgrsus a procedure that resides on the
TAS to adhere to the master-slave architecturepatiy facilitating the delegation of the
test configuration and execution. Having a scriyat tcan be copied to the SUT would
also simplify manual troubleshooting as the scepécution can be isolated from the

TAS remote invocation mechanism.

16

The Product model is a simple one. The followingduoict attributes are required
for building the system:

* Product name.

» Supported operating system family.

» Supported processor architecture.

* Product install procedure.

* Product removal procedure.

The product supported operating system families @odessor architectures are
used to determine which systems under test are atiloigwith the product. The product
install and removal procedure attributes are sintidathe Test model’s test procedure
attribute in that they point to a utility from tlkemmon utility component to be executed
on the SUT when the product is to be installeceanaved.

The Product model has a one-to-many relationshtp thie SUT model. This is
based on the assumption stated in the Goals andifreegents section that no more than
one product can be installed on a SUT at any dgivee. The Product model has a many-
to-many relationship with the Test model.

Figure 3 illustrates the complete high level amtttire of the system:

17

TAS

e B ~—— W~
> 222
88 858
Controller 28 558
< § T
[-
Model| SO
Shared Components

Common Utilities
Component

File Transfer
Component

Remote Execution

Component

Products and Tests.
are retrievad and ™
stored inrepo.

(Configuration Managment)

Figure 3: Software Test Automation System High LLéwehitecture

18

Chapter 4: Tool Evaluation and Selection

The evaluation process for finding tools and frames to implement the
software test automation system focused on findipgn source and well maintained
tools that can be drop-in, low configuration, e&synaintain and use components. We
can list the tools and frameworks required for iempénting the test automation system
as follows:

* A tool or component to handle delegating tasks iamdking commands on

multiple remote operating systems.

* A tool or component to handle file transfers betweaultiple operating

systems.

* A tool or component to query remote systems forfigomation properties.

This is necessary for dynamically determining tperating systems and other
attributes of the systems.

» Atool or component that can synchronize actiortsséen multiple systems.

* A programming environment that is both suitabledeweloping components

for the TAS infrastructure and the common utilittesnponent.

* A web framework to build the TAS MVC application.

REMOTE EXECUTION AND FILE TRANSFER

Shell based utilities were first examined to acclshpthe task of transferring
files and invoking remote commands on SUTs. Toothsas SSH [9] and RSYNC [10]
presented problems due to cross-platform compiyilslsues and the need to store login
credentials or certificates per SUT. Setting upeamironment that can utilize SSH and
RSYNC for test automation would have required addél infrastructure changes, such

as configuring SAMBA [11] and Windows shares fde firansfers. The attempt to use

19

these tools was abandoned for a more robust ansk gtatform solution that was
designed for test automation.

STAF [12], Software Test Automation Framework, isoal that was originally
developed by IBM for test automation and was subsetly released as an open source
project [13]. STAF is a multi-platform and multiggramming language framework for
test automation. It provides many reusable servicedacilitate the process of test
automation such as file transfer, remote executind querying remote systems for
configuration properties. STAF was originally reded under the GNU Lesser General
Public License V2.1, then under the Common Publehse V1.0 after the STAF V2.6.8
release, and is now distributed under the Eclipgdi®License V1.0 and has been since
the STAF v3.2.5 release. STAF is at version v3ds4of this writing. Several projects
have successfully used STAF to automate theimgstctivities; Cervantes [14] from the
Jet Propulsion Laboratory describes the experiefcsuccessfully implementing an
automated test framework using STAF and selectinger building an in-house solution
or using proprietary solutions that were recommerale consultants. The project is still
under active development and has a vibrant communit

STAF requires a client to be installed on a sysierarder to perform its tasks.
Installing the client is a simple process. Bothphiieal wizard installers and simple
compressed archives are provided for all the supgarperating systems and processor
architectures.

STAF provides many services out the box. The oh@gerest to this effort are:

 The Ping Service. This service is used to deterniing STAF client is

running.

* The Variable Service. This service is used to quewlient for system and

shared variables. System variables can be inteB1@AF configuration
20

variables or system environmental variables. Shaeethbles are dynamic
variables that can be used by test applications.

» The File System Service. This service allows younterface with the file

system on STAF clients. It can be used to trarfgéey from and to a system.

* The Process Service. This service allows you td pracesses and execute

commands on a STAF client.

 The Semaphore Service. This service can be useayrchronize multiple

client activities and access to resources. Thisvigeris useful for
synchronizing clients in performance, load and eadce testing.

STAF is a multi-language framework. It can be asedsthrough C/C++, Java,
Python, Perl, TCL and ANT. The language selectianifmplementing the system will
largely depend on the web framework that will bediso implement the TAS MVC
application. A Python framework was ultimately stbel for this project, and is
described later in this document, so the Pythorsseethod was used for developing
the automation solution around STAF. Here is a $afgthon application that illustrates

the usage of the main STAF services that are efast to this project.

21

from PyS3TAF import *

2 import sys

3

4 try:

5 handle = S5TAFHandle ("Test™)

& except S5TAFException, e:

7 print "Error registering with S5TAF, RC: %d" % e.rc
8 zys.exit(e.rc)

9

10 result = handle.submit ('remote', 'ping', 'ping')

12 1if (result.rc != 0):

13 print "Error submitting request, RC: %d, Result: %s" \
14 % (result.rc, result.result)

15

16 result = handle,submit('remote', 'var',

17 'resolve string {STAF/Config/0S5/Name}')

19 1if (result.rc !'=0):
20 print "Error submitting request, RC: %d, Result: %s" \
% (result.rc, result.result)
else:
print "C5 Hame: %=" % result.result

result = handle.submit ('loczl', 'f=',
'copy file "/stage/install.exe" tofile \

1 em LN b L0 R

"/stage/ilnstall.exe" tomachine remote')

w o

if (result.rc !'= 0):
print "Error submitting request, RC: %d, Result: %s" \

[==]

% (result.rc, result.result)

result = handle.submit ('remcote', 'process',

iy

'start command "/temp/install.exe" wait stderrtostdout returnstdout')

w

if (result.rec != 0):
print "Error submitting request, RC: %d, Result: %s" \

-1 o

% (result.rc, result.result)
else:

(o B T B S]

print "Result: 32" % result.result

re = handle.unregister()

O PURN TV FURNE TURNE ORI TURNE JUNME JURMY TURNE OB RN N R SO WO R R Wy Y
Ll R

[YTI

ays.exit(rc)

Figure 4. Sample Python code using STAF.

22

A handle needs to be acquired in order to procégdg-3equests as illustrated on
line 5 in Figure 4. The local STAF client need®&running in order to obtain the handle
otherwise an error and return code of 21 is redirtze the caller. Once a handle is
acquired, STAF requests can be submitted. STAFestqualways take the host name or
IP address of the target system as the first paenfellowed by the desired service to
be used. Then the specific service request is gass® is processed by the STAF engine
that returns a STAFResult object consisting ofrdtarn code and the result string.

Line 10 shows a simple ping service request tonaote host called “remote”.
This request simply validates that the STAF clismunning on the remote host. Line 16
uses the Variable Service (VAR) to retrieve the ggrhost operating system name. An
abbreviated form of the operating system nametismed such as Win7 or WinSrv2008.
Line 25 shows an example of using the File Systemi€e (FS) to copy a file from the
local system to the remote system. Note that is #xample the remote host is a
Windows system, but STAF can handle Unix-style $ijstem paths on Windows which
simplifies supporting the various operating systaeguired for this project. Line 33
shows an example for the Process Service whichsésl uo invoke commands and
applications on the remote system. Note that tkesrple uses some decorators to control
the behavior of the Process Service call reture. Tait” decorator signifies that the call
should only return once the remote process conwglatel exits. Calls can also be
invoked asynchronously to avoid waiting on longmumg processes using the “async”
decorator. The “stderrtostdout” and *“returnstdodé&corators are used to pipe any
command line standard output or errors from theotemnvocations back to the
STAFResult object. This is only useful for commandspplications that have command

line output.

23

STAF will be used in the implementation of both ke Transfer and Remote
Execution design components for this test automatistem. It does not require storing
login credentials for the various SUTs and alreadyvides great support for all the

operating systems this project required.

WEB MV C FRAMEWORK

The web2py [15] Python framework was selected foplementing the Test
Automation Server. A preference to use either Rytbp Java for this implementation
existed in the beginning due to familiarity witheie two programming environments.
Python was preferred due to its dynamic and in&tegr [16] nature as it was expected to
also be deployed to the SUTs as part of the comutibties component of the system. A
compiled language wouldn't fare well in an enviramh like this as it would require
several additional steps for implementing and dgptp changes throughout the
infrastructure.

Web2py is licensed under the GNU Lesser Generdid®Puloense V3. It received
InfoWorld’s 2012 Technology of the Year award [1iR]was originally developed as a
teaching tool for programming and has grown to Hellafledged database driven web
framework.

Web2py was selected as the framework for the systamto the following
features that are unique to it:

» Batteries Included. The install, which is simply campressed archive,

contains everything you would need to run the fraor& including a Python
interpreter, web server, database abstraction Ey@ISQLite database [18].

* Very small footprint of 1.4MB and no configuratioequired to run.

24

» Applications can be modified, installed and unihsthwithout the need for
restarting the web server.

* Integrated development environment that is acckstibough a web browser.
Editing source code and deploying applications akhrbe done through a
browser.

The ability to easily modify and maintain the apption, even from a browser,
and the small and easy deployment of the framewwé&t the goals and requirements for
this project. It promoted rapid application devetgmt and prototyping of features. This
is why web2py was selected for this project oveheotvery successful Python

frameworks such as Django [19] and Pylons [20].

25

Chapter 5: Implementation Results, Consider ations and Caveats

IMPLEMENTATION RESULTS

The implementation of the test automation systens wampleted in sixteen
months and consumed two Engineers working on tbgqr The effort produced over
eighty thousand lines of code and the project nowtains over one hundred and ten
thousand lines of code from contributions by Qualingineers and Developers as well.
Operating system coverage testing was transformoed & manual process involving a
handful of Windows and Linux SUTs to over thirty espting systems exercised
automatically with each iteration of a test pattdvtoreover, testing permutations with
different operating system and product combinatioras also expanded due to the
automation of the install and removal of the sofevaroducts.

This increased test coverage accelerated the defetdction rate in the
organization. A recent example of this was theouhtiction of networking changes to the
products that were compatible with all the suppbrd@erating systems except for the
oldest supported Windows operating system in thagig which is Windows XP. The
defect was immediately detected using the automaystem. A manual process would
have very likely missed this defect as older opegasystems might be deprioritized in
manual test efforts. Having this automation framewa place increased the confidence
of the organization in detecting defects which hed to more aggressive feature

roadmaps for our products.

IMPLEMENTATION CONSIDERATIONSAND CAVEATS

The system implementation was divided into sevehalses. The first phase was
the development of the product and test stagingsiggries with the STAF enabled file

transfer and remote execution components for Higing and installing the software

26

product on the SUTs. Some challenges were faceld whplementing two key features
in this phase: operating system detection andrilesfer performance.

An early implementation of the test automation eystlid not dynamically detect
the remote system and relied on manual populatfotined SUT database table on the
TAS. This approach was very error prone as it 8y @¢a forget to update the table when a
configuration change is performed on the SUT. Maest cycles were wasted on
misconfigured tests due to this approach as tedtsdfto execute properly on various
systems. This approach was abandoned and replgcadiinamic method of detecting
remote operating systems.

The STAF Variable service was used to dynamicatitect the operating system
of the SUT. The STAF system variable “STAF/Confi§/@ame” was used to determine
the operating system, but it did suffer from a fiawitations. Some Windows systems
would return “Unknown WInNT” as the result of thariable query instead of a specific
operating system. This for the most part didn’eefffthe automation effort as the family
of the operating system, in this case Windows, ¢atill be deduced which, was more
important than the specific version. However, onux the variable always returns a
generic “Linux” result. A few more queries would kejuired to determine the specific
operating system installed if that information nsportant to the automation effort. On
Linux, using the File System Service to retrieve thproc/version” file and parsing can
typically provide specific distribution informatipmowever that is not guaranteed. The
“letc” directory also typically has specific didtution files that can be queried such as
“suse-version”, “redhat-version”, “fedora-versioarid so on. On Windows, access to the
system registry is required to determine the spea@perating system edition. The
registry key “HKEY_LOCAL_MACHINE\SOFTWARE\MicrosafWindows

NT\CurrentVersion\ProductName” will contain the esifie edition of the Windows
27

operating system. The STAF Process Service wouledpared to execute the command
line “reg.exe” utility to retrieve the value of they. A similar approach for Macintosh
OS X would be required; the STAF Process Serviceldvoeed to be used to execute the
“sw_vers” utility to retrieve the product name aretsion.

As for the file transfers using the STAF File Syst8ervice, the speed of the file
copies were roughly 70% the speed of a traditidilal transfer using SAMBA or
Windows Shares. This might not be an issue if tffugycts, tests and test results aren’t
large data sets. File transfer durations were dl gmeacentage of the total time spent
configuring and executing test cases in our enwram. Therefore the performance of
the system wasn't largely degraded by using STAlE Hansfers and was deemed
acceptable when weighed against the advantagevofgha uniform file transfer solution.

The second implementation phase was for the StandaRegression testing
execution and results gathering. Implementatiomstdo consider here are the use of
conventions for common test attributes, such aatioes of test binaries in the staging
repository and their respective locations on thelSdnce they are copied over. This
helps in reducing the implementation logic sigrfidly. Conventions for the results
collection are also important to simplify the presef obtaining and storing the results
along with locating the results for analysis in thegure. Exercising good logging
practices here is crucial for the success of tiséegy. Each test procedure can go through
many steps before actually conducting a test. Lngytie results of each step leading up
to the execution of the test, then the cleanupsstbpt occur after are all crucial for
troubleshooting issues that could occur in theesgsMissteps in early test harnesses can
have ramifications on the execution of the othest tearnesses down the line, and

troubleshooting these issues without proper loggngpry difficult and time consuming.

28

The remaining phases of implementation were devédethe remaining test
patterns such as the Client-Server Regressionpisérn. The main implementation
consideration for the multi-system test patternsh@sv to perform synchronization
between the SUTSs. Serializing the execution ofdteps among the various SUTSs is a
valid approach for implementing synchronizatiorcsiit is very simple to implement and
is especially viable in environments that have shamning steps that lead up to the test
execution. If the pre-test execution steps and-fsstexecution steps only take a few
seconds to complete, then investing in a paraketetion system would not save on total
test time and would increase the complexity of $lystem. However, investing in a
parallel execution system by utilizing the STAF S@more Service is necessary if the
pre and post-test execution steps take a longtino®mplete. Total test execution time

would grow linearly with every additional SUT addedhe test.

STAF AUTOMATION L ESSONSL EARNED

Two issues using STAF, consistency in detectingotenoperating systems and
file transfer performance concerns, have alreadnlscussed in the previous section
“Implementation Considerations and Caveats”. THeseever were only a part of the
issues discovered in our utilization of STAF. Thevere also other important STAF
automation caveats that we experienced while imptging the system.

Problems were encountered with the STAF Procesdcgefor invoking remote
commands on x86_64 Windows systems that were rgraninx86 version of STAF. The
Windows File System Redirector and Registry Retlinel@1] redirects access calls to 64
bit file system and registry resources by 32 bpliaptions into an equivalent 32 bit
resource instead. Therefore direct access to &lybiem utilities and the registry hive is

not possible from 32 bit applications, which arenooon steps in test configuration. This

29

behavior can be corrected by disabling this Winddéeeture. However, disabling this
feature can have an impact on the software prdaoiclg tested. A better workaround is
to always ensure that x86_64 Windows operatingesystare always configured with an
x86_64 version of STAF to avoid redirections by Wedows Redirector.

Problems were also encountered with starting th&FSdlient on Linux systems
that have statically assigned network addresses. SBAF client fails to retrieve a
hostname in this configuration which leads to dufai in initializing the client. The
STAF client works properly on Linux systems that aonfigured to use DHCP and DNS
servers. A workaround for the problem on systenth static network addresses is to add
an entry for the local host in the “/etc/hostsgfil

And finally, the STAF client provides a commancdeliatility for invoking STAF
calls. This utility is very helpful for quick proodf concepts and troubleshooting. |
however would recommend avoiding implementing tliomation framework using
direct invocations of this tool. It might seem &asét first to do so, but implementing
your own parser for the command line output anchiaaiing it are steps that the STAF
framework already provides you programmaticallyisT¢ould also introduce defects in

STAF result interpretation by mishandling unexpécstgturn codes from the STAF calls.

3C

Chapter 6: Conclusions

Implementing a software test automation solution & heterogeneous test
environment is a very large undertaking. A largeoamt of resources and time can be
consumed if careful planning isn’t conducted toidvammon automation pitfalls. The
rewards from undertaking an effort like this migidt materialize immediately, but the
increased coverage of product testing will undodlgtancrease the quality of the
software product.

Establishing a system that integrates seamlesdly axisting business processes
is essential for the adoption of an automation tsmiu Leveraging existing and well
established automation tools and development fraorewv will accelerate the
implementation of the system and increase the @ success. These tools and
frameworks can be open source and freely availailieh also minimizes the overall
cost of the automation effort.

The tools selected for this automation implemeatatiSTAF and web2py, do
come with caveats and challenges. | however stidifgp implementing automation
solutions using these tools over building an indesolution or purchasing a proprietary
solution. STAF and web2py provide tremendous festistraight out of the box and they
both have vibrant support communities.

The high level design described in this report dam leveraged by any
organization that is willing to implement an autdima solution for a heterogeneous
environment. The core design concepts, data ma@telamplementation considerations
will hopefully assist these organizations in theitomation endeavors especially if they

use STAF in their automation implementation.

31

FUTURE WORK

There are a couple of items to investigate for reitimprovements of this test
automation infrastructure. The first concerns thke firansfer performance issue
mentioned previously. A mitigation plan is needédhis becomes a problem in the
future. STAF provides additional add-on serviceat thre not included in the default
installation of the utility. One of these additibrsrvices is an FTP Service [22]. File
transfer performance tests should be conductedgutiics service to see if any
improvements are detected. Another option is toldbain in-house solution for
transferring files in the test environment.

Another area of future work is to investigate ifstlilesign and implementation
can be leveraged to automate testing in cloud enments such as Amazon Web
Services [23]. The demand to conduct testing oncclenvironments, especially Client-

Server Regression testing, will increase as mosibases adopt cloud technologies.

32

Bibliography

[1] Persson, C.; Yilmazturk, N.; , "Establishmehtatomated regression testing at ABB:
industrial experience report on ‘'avoiding the @H#fA Automated Software
Engineering, 2004. Proceedings. 19th Internati@wmhference on , vol., no., pp.
112- 121, 20-24 Sept. 2004

[2] Ramler, R.; Klaus Wolfmaier, K.; , “Economic rgeectives in test automation:
balancing automated and manual testing with oppayticost.” In Proceedings of
the 2006 international workshop on Automation dtware test (AST '06). ACM,
New York, NY, USA, pp. 85-91

[3] Microsoft Windows Product Support Lifecycléttp://windows.microsoft.com/en-

US/windows/products/lifecycle

[4] Red Hat Linux Support Lifecycle,

https://access.redhat.com/support/policy/updatetser

[5] Suse Linux Support Lifecycléttp://support.novell.com/inc/lifecycle/linux.html

[6] Test Harnesdjttp://en.wikipedia.org/wiki/Test _harness

[7] Buschmann, F.; Henney, K; Schmidt, D; , “Patt@riented Software Architecture: A
Pattern Language for Distributed Computing.” JohileW& Sons 2007.

[8] Model-View-Controller http://en.wikipedia.org/wiki/Model-view-controller

[9] SSH IETF Request For Comment 4253 Websiti://tools.ietf.org/html/rfc4253

[10] RSYNC Utility Websitehttp://rsync.samba.org/

[11] SAMBA Website http://www.samba.org/

[12] Rankin, C.; , "The Software Testing Automatiramework," IBM Systems Journal
vol.41, no.1, pp.126-139, 2002
[13] STAF Main Websitehttp://staf.sourceforge.net/

33

[14] Cervantes, A.; , "Exploring the use of a testomation framework,” Aerospace
conference, 2009 IEEE , vol., no., pp.1-9, 7-14 Wd2009
[15] Web2py Web Framework Main Websitgtp://www.web2py.com/

[16] Python Overview Websitéttp://www.python.org/about/

[17] InfoWorld’s 2012 Technologies of the Year AwaNinners,

http://www.infoworld.com/slideshow/24605/infoworl@®12-technology-of-the-

year-award-winners-183313#slide23

[18] SQLite Database Websitattp://www.sqlite.org/

[19] Django Python Web Framework Webshéps://www.djangoproject.com/

[20] Pylons Python Web Framework Websli#p://www.pylonsproject.org/
[21] Windows File System and Registry Redirectors,

http://msdn.microsoft.com/en-us/library/windows/kitep/aa384249

[22] STAF FTP Servicehttp://staf.sourceforge.net/current/FTP.html

[23] Amazon Web Servicebitp://aws.amazon.com/

34

