587,869 research outputs found

    Coreless Terrestrial Exoplanets

    Full text link
    Differentiation in terrestrial planets is expected to include the formation of a metallic iron core. We predict the existence of terrestrial planets that have differentiated but have no metallic core--planets that are effectively a giant silicate mantle. We discuss two paths to forming a coreless terrestrial planet, whereby the oxidation state during planetary accretion and solidification will determine the size or existence of any metallic core. Under this hypothesis, any metallic iron in the bulk accreting material is oxidized by water, binding the iron in the form of iron oxide into the silicate minerals of the planetary mantle. The existence of such silicate planets has consequences for interpreting the compositions and interior density structures of exoplanets based on their mass and radius measurements.Comment: ApJ, in press. 22 pages, 5 figure

    Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Get PDF
    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones

    Environment-dependent prey capture in the Atlantic mudskipper (Periophthalmus barbarus)

    Get PDF
    Few vertebrates capture prey in both the aquatic and the terrestrial environment due to the conflicting biophysical demands of feeding in water versus air. The Atlantic mudskipper (Periophthalmus barbarus) is known to be proficient at feeding in the terrestrial environment and feeds predominately in this environment. Given the considerable forward flow of water observed during the mouth-opening phase to assist with feeding on land, the mudskipper must alter the function of its feeding system to feed successfully in water. Here, we quantify the aquatic prey-capture kinematics of the mudskipper and compare this with the previously described pattern of terrestrial feeding. Prior to feeding in the aquatic environment, the gill slits open, allowing water to be expelled through the gill slits. The opposite happens in terrestrial feeding during which the gill slits remain closed at this point. In water, the expansive movements of the head are larger, amounting to a larger volume increase and are initiated slightly later than in the terrestrial environment. This implies the generation of strong suction flows when feeding in water. Consequently, the kinematic patterns of the hydrodynamic tongue during terrestrial feeding and aquatic suction feeding are similar, except for the amplitude of the volume increase and the active closing of the gill slits early during the terrestrial feeding strike. The mudskipper thus exhibits the capacity to change the kinematics of its feeding apparatus to enable successful prey capture in two disparate environments

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    The lifetime of excess atmospheric carbon dioxide

    Get PDF
    We explore the effects of a changing terrestrial biosphere on the atmospheric residence time of CO2 using three simple ocean carbon cycle models and a model of global terrestrial carbon cycling. We find differences in model behavior associated with the assumption of an active terrestrial biosphere (forest regrowth) and significant differences if we assume a donor-dependent flux from the atmosphere to the terrestrial component (e.g., a hypothetical terrestrial fertilization flux). To avoid numerical difficulties associated with treating the atmospheric CO2 decay (relaxation) curve as being well approximated by a weighted sum of exponential functions, we define the single half-life as the time it takes for a model atmosphere to relax from its present-day value half way to its equilibrium pCO2 value. This scenario-based approach also avoids the use of unit pulse (Dirac Delta) functions which can prove troublesome or unrealistic in the context of a terrestrial fertilization assumption. We also discuss some of the numerical problems associated with a conventional lifetime calculation which is based on an exponential model. We connect our analysis of the residence time of CO2 and the concept of single half-life to the residence time calculations which are based on using weighted sums of exponentials. We note that the single half-life concept focuses upon the early decline of CO2under a cutoff/decay scenario. If one assumes a terrestrial biosphere with a fertilization flux, then our best estimate is that the single half-life for excess CO2 lies within the range of 19 to 49 years, with a reasonable average being 31 years. If we assume only regrowth, then the average value for the single half-life for excess CO2 increases to 72 years, and if we remove the terrestrial component completely, then it increases further to 92 years

    Terrestrial planets across space and time

    Full text link
    The study of cosmology, galaxy formation and exoplanets has now advanced to a stage where a cosmic inventory of terrestrial planets may be attempted. By coupling semi-analytic models of galaxy formation to a recipe that relates the occurrence of planets to the mass and metallicity of their host stars, we trace the population of terrestrial planets around both solar-mass (FGK type) and lower-mass (M dwarf) stars throughout all of cosmic history. We find that the mean age of terrestrial planets in the local Universe is 7±17\pm{}1 Gyr for FGK hosts and 8±18\pm{}1 Gyr for M dwarfs. We estimate that hot Jupiters have depleted the population of terrestrial planets around FGK stars by no more than 10%\approx 10\%, and that only 10%\approx 10\% of the terrestrial planets at the current epoch are orbiting stars in a metallicity range for which such planets have yet to be confirmed. The typical terrestrial planet in the local Universe is located in a spheroid-dominated galaxy with a total stellar mass comparable to that of the Milky Way. When looking at the inventory of planets throughout the whole observable Universe, we argue for a total of 1×1019\approx 1\times 10^{19} and 5×1020\approx 5\times 10^{20} terrestrial planets around FGK and M stars, respectively. Due to light travel time effects, the terrestrial planets on our past light cone exhibit a mean age of just 1.7±0.21.7\pm 0.2 Gyr. These results are discussed in the context of cosmic habitability, the Copernican principle and searches for extraterrestrial intelligence at cosmological distances.Comment: 11 pages, 8 figures. v.2: Accepted for publication in ApJ. Some changes in quantitative results compared to v.1, mainly due to differences in IMF assumption
    corecore