11 research outputs found

    Termination of Integer Term Rewriting

    Get PDF
    Recently, techniques and tools from term rewriting have been successfully applied to prove termination automatically for different programming languages. The advantage of rewrite techniques is that they are very powerful for algorithms on user-defined data structures. But in contrast to techniques for termination analysis of imperative programs, the drawback of rewrite techniques is that they do not support data structures like integer numbers which are pre-defined in almost all programming languages. To solve this problem, we extend term rewriting by built-in integers and adapt the dependency pair framework to prove termination of integer term rewriting automatically. Our experiments show that this indeed combines the power of rewrite techniques on user-defined data types with a powerful treatment of pre-defined integers

    Encoding induction in correctness proofs of program transformations as a termination problem

    Get PDF
    The diagram-based method to prove correctness of program transformations consists of computing complete set of (forking and commuting) diagrams, acting on sequences of standard reductions and program transformations. In many cases, the only missing step for proving correctness of a program transformation is to show the termination of the rearrangement of the sequences. Therefore we encode complete sets of diagrams as term rewriting systems and use an automated tool to show termination, which provides a further step in the automation of the inductive step in correctness proofs

    A Complexity Preserving Transformation from Jinja Bytecode to Rewrite Systems

    Full text link
    We revisit known transformations from Jinja bytecode to rewrite systems from the viewpoint of runtime complexity. Suitably generalising the constructions proposed in the literature, we define an alternative representation of Jinja bytecode (JBC) executions as "computation graphs" from which we obtain a novel representation of JBC executions as "constrained rewrite systems". We prove non-termination and complexity preservation of the transformation. We restrict to well-formed JBC programs that only make use of non-recursive methods and expect tree-shaped objects as input. Our approach allows for simplified correctness proofs and provides a framework for the combination of the computation graph method with standard techniques from static program analysis like for example "reachability analysis".Comment: 36 page

    IC0701 verification competition 2011

    Get PDF
    Abstract. This paper reports on the experiences with the program verification competition held during the FoVeOOS conference in October 2011. There were 6 teams participating in this competition. We discuss the three different challenges that were posed and the solutions developed by the teams. We conclude with a discussion about the value of such competitions and lessons that can be learned from them.

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    SAT-Based Termination Analysis Using Monotonicity Constraints over the Integers

    Full text link
    We describe an algorithm for proving termination of programs abstracted to systems of monotonicity constraints in the integer domain. Monotonicity constraints are a non-trivial extension of the well-known size-change termination method. While deciding termination for systems of monotonicity constraints is PSPACE complete, we focus on a well-defined and significant subset, which we call MCNP, designed to be amenable to a SAT-based solution. Our technique is based on the search for a special type of ranking function defined in terms of bounded differences between multisets of integer values. We describe the application of our approach as the back-end for the termination analysis of Java Bytecode (JBC). At the front-end, systems of monotonicity constraints are obtained by abstracting information, using two different termination analyzers: AProVE and COSTA. Preliminary results reveal that our approach provides a good trade-off between precision and cost of analysis

    Analyzing program termination and complexity automatically with AProVE

    Get PDF
    In this system description, we present the tool AProVE for automatic termination and complexity proofs of Java, C, Haskell, Prolog, and rewrite systems. In addition to classical term rewrite systems (TRSs), AProVE also supports rewrite systems containing built-in integers (int-TRSs). To analyze programs in high-level languages, AProVE automatically converts them to (int-)TRSs. Then, a wide range of techniques is employed to prove termination and to infer complexity bounds for the resulting rewrite systems. The generated proofs can be exported to check their correctness using automatic certifiers. To use AProVE in software construction, we present a corresponding plug-in for the popular Eclipse software development environment

    Verifying procedural programs via constrained rewriting induction

    Get PDF
    This paper aims to develop a verification method for procedural programs via a transformation into Logically Constrained Term Rewriting Systems (LCTRSs). To this end, we extend transformation methods based on integer TRSs to handle arbitrary data types, global variables, function calls and arrays, as well as encode safety checks. Then we adapt existing rewriting induction methods to LCTRSs and propose a simple yet effective method to generalize equations. We show that we can automatically verify memory safety and prove correctness of realistic functions. Our approach proves equivalence between two implementations, so in contrast to other works, we do not require an explicit specification in a separate specification language

    Termination of Integer Term Rewriting *

    No full text
    Abstract When using rewrite techniques for termination analysis of programs, a main problem are predefined data types like integers. We extend term rewriting by built-in integers and adapt the dependency pair framework to prove termination of integer term rewriting automatically
    corecore