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Abstract

The diagram-based method to prove correctness of program transformations consists of comput-

ing complete set of (forking and commuting) diagrams, acting on sequences of standard reductions

and program transformations. In many cases, the only missing step for proving correctness of a

program transformation is to show the termination of the rearrangement of the sequences. There-

fore we encode complete sets of diagrams as term rewriting systems and use an automated tool

to show termination, which provides a further step in the automation of the inductive step in

correctness proofs.

1998 ACM Subject Classification F.3.1 - Specifying and Verifying and Reasoning about Pro-

grams, F.3.2 - Semantics of Programming Languages

Keywords and phrases Termination, Program Transformations, Correctness

1 Introduction

The motivation for this work is derived from proving correctness of program transformations

in program calculi, in particular in extended lambda calculi that model core-languages of

variants of Haskell.

In our setting a program calculus is a tuple (E , C,
sr
−→,A) where E is the set of expressions,

C is the set of contexts, i.e. usually C consists of all expressions of E where one subexpression

is replaced by the context hole,
sr
−→ ⊆ E×E is a small-step reduction relation (called standard

reduction) which defines the operational semantics of the program calculus and A ⊆ E is a

set of answers, which are usually
sr
−→-irreducible. The evaluation of a program expression

e ∈ E is a sequence of standard reduction steps to an answer a ∈ A, i.e. e
sr,∗
−−→ a, where

sr,∗
−−→ denotes the reflexive-transitive closure of

sr
−→. If such an evaluation exists, then we

write e⇓ and say e converges, otherwise we write e⇑ and say e diverges. The semantics

is the contextual equivalence of expressions: e ∼c e
′ : ⇐⇒ e ≤c e

′ ∧ e′ ≤c e, where

e ≤c e
′ :⇐⇒ ∀C ∈ C : C[e]⇓ =⇒ C[e′]⇓.

A program transformation
T
−→ ⊆ (E × E) is a binary relation on expressions. It is called

correct if for all e, e′ with e
T
−→ e′ the equivalence e ∼c e

′ holds. Usually a context-closure T ′ of

the program transformation T is considered (w.r.t. all contexts, or a restricted class of contexts,

if a context lemma is available), such that proving e
T ′

−→ e′ implies e⇓ ⇐⇒ e′⇓ suffices to

conclude that T is a correct program transformation. In the following we do not distinguish

between T and its context-closure T ′, and assume that a program transformation is always

closed by an appropriate class of contexts such that the correctness proof is reduced to show
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equivalence of convergence for all e
T
−→ e′. Moreover, with

T
←− denoting the inverse of

T
−→

the correctness of
T
−→ holds, if

T
−→ as well as

T
←− are convergence preserving (where

T
−→ is

convergence preserving if e
T
−→ e′ =⇒ (e⇓ =⇒ e′⇓)).

In the application below, we will use different program transformations T1, . . . , Tk in

which case we set T =
⋃k
i=1 Ti. In general, there are also different kinds of standard

reductions, which are used in the concrete proofs, hence we extend the standard reduction to
sr
−→ ⊆ E ×E ×L where L is a set of labels. Sometimes we indicate the label l by writing

sr,l
−−→.

We say the program transformation
T
−→ is answer-preserving, if a ∈ A and a

T
−→ e implies

e ∈ A; and weakly answer-preserving, if a ∈ A and a
T
−→ e implies e⇓.

The diagram-based proof method operates on abstract reduction sequences (ARS), which

are strings consisting only of the standard reductions with their labels, and the program

transformations, but the expressions are ignored with the exception of an abstract symbol

A for an answer. A forking diagram is a rewriting rule L R on ARSs. The semantics of

a diagram L R is that the reduction sequence L can be transformed (or rewritten) into

the reduction sequence R. We also allow diagrams that speak about transitive closures of

reductions. We are only interested in ARSs that are a mix of
sr
←− and

T
−→-reductions, perhaps

labeled, together with an answer token A to the left. The idea of the diagrams is that they

transform reduction sequences into evaluations. In general, this rewriting is non-deterministic,

which is the price for abstracting away the term structure. Completeness of a set DF (
T
−→) of

forking diagrams for transformation
T
−→ means that every ARS A

sr,+
←−−−

T
−→ is modifiable by

a diagram. For
T
←− we call the diagrams in DF (

T
←−) commuting diagrams.

Usually, forking diagrams are of the form
sr,ln
←−−− . . .

sr,l1
←−−−

Tk
−→  

T1
−→ . . .

Tm
−−→

sr,l
n′

←−−− . . .
sr,l1
←−−−

where labels li may also be omitted and where also the meta-symbols + and ∗ may occur for

the transitive/transitive-reflexive closure of a standard reduction or transformation.

We also need another form of diagrams, the answer diagrams, DA(
T
−→), which are called

complete (for transformation
T
−→), if every ARS A

T,+
−−→ is modifiable by a diagram in DA. In

the case of answer-preservation, these extra diagrams are simply A
T
−→ A, and for a weakly

answer-preserving transformation, the diagrams are of the form A
T
−→  A

sr,ln
←−−− . . .

sr,l1
←−−−,

where usually only a subset of the labels occur as li which may ease the termination proof.

In applications to calculi, the computation of the diagram sets for a given program

transformation is done by analyzing the syntax of expressions and the syntax of rules and

by covering all possibilities, where usually labels are heavily used at
sr
←−, depending on the

kind of reduction rules, and often, several program transformations occur in the diagram set.

This computation may be done by hand, but there is also a proposal for automating this in

an expressive core calculus of Haskell, see [3, 4].

The diagram based method to show correctness of a program transformation
T
−→ is

performed by the steps:

1. Show (weak) answer-preservation of
T
−→ and compute the DA-diagrams.

2. Compute complete sets of forking-diagrams for
T
−→.

3. Show that every reduction sequence a
sr,∗
←−− e

T
−→ e′ where a ∈ A can be transformed

using the diagrams from steps 1 and 2 into a′
sr,∗
←−− e′, where a′ ∈ A. This is usually done

by an induction on the application of diagrams.

4. Do the same by performing steps (1), (2), (3) for the inverse relation
T
←−.

Since answer-preservation implies weak answer-preservation, we show the next theorem

only for the weak case.
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·
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·
iS,seq

//___ ·
iS,seq

//___ ·

(a) Forking diagrams for the transformation (iS, seq)

1

iSseq(n(a, x)) → n(a, iSseq(x))

iSseq(n(seq, x)) → n(seq, iSseq(x))

iSseq(n(cp, x)) → n(cp, iSseq(x))

3

iSseq(n(a, n(seq, x))) → n(a, x)

iSseq(n(seq, n(seq, x))) → n(seq, x)

iSseq(n(cp, n(seq, x))) → n(cp, x)

2

iSseq(n(a, x)) → n(a, x)

iSseq(n(seq, x)) → n(seq, x)

iSseq(n(cp, x)) → n(cp, x)

4 iSseq(n(cp, x)) → n(cp, iSseq(iSseq(x)))

Answer diagram iSseq(w) → w

(b) TRS encoding of forking- and answer-diagrams for the transformation (iS, seq)

Figure 1 Diagrams and their TRS encoding for the transformation (iS, seq)

◮ Proposition 1.1. Let
T
−→ be weakly answer preserving, and let DF (

T
−→) and DA(

T
−→) be

the complete sets of forking and answer diagrams, respectively, for
T
−→. Then termination of

DF (
T
−→) ∪DA(

T
−→) implies that

T
−→ ⊆ ≤c.

Proof. Starting with e⇓ and e
T
−→ e′, this corresponds to an ARS of the form A

sr,ln
←−−−

. . .
sr,l1
←−−−

T
−→. Completeness of DF (

T
−→) and DA(

T
−→) guarantees that an ARS in normal-form

is of the form A
sr,l′

m

←−−− . . .
sr,l′1
←−−−, which shows e′⇓. Since

T
−→ is assumed to be closed for

context application, this implies e ≤c e
′. Since this holds for all e

T
−→ e′, we have shown

T
−→ ⊆ ≤c. ◭

◮ Theorem 1.2. If the assumptions of Proposition 1.1 hold for
T
−→ as well as for

T
←− –

including complete sets DF (
T
−→), DF (

T
←−), DA(

T
−→), and DA(

T
←−) – then

T
−→ ⊆ ∼c, which

means that T is a correct program transformation.

Based on the description above and Theorem 1.2, we encode reduction sequences as

terms, and complete sets of diagrams as term rewriting systems on the sequences. As we

will demonstrate for encoding some of our diagrams including transitive closure we require

conditional integer term rewriting systems (ITRS). However, these can also be treated by the

automated termination prover AProVE [1, 2]. Hence we can use the AProVE system to show

termination of TRSs / conditional ITRSs, which provides a further step in the automation

of the inductive step in correctness proofs.

2 Encodings of Reductions and Sets of Diagrams

We give some examples for the encoding of complete sets of diagrams into (I)TRSs. The

diagrams are taken from [5] for an extended call-by-need lambda calculus with a standard

reduction called normal order reduction, denoted as
n
−→, and expressions considered as answers

are called weak head normal forms (WHNFs).

We first consider the transformation seq. Figure 1a shows the forking diagrams DF(
iS,seq
−−−−→)

for the transformation (iS, seq), which is the context-closure of seq. The label a signifies

an arbitrary reduction label. The solid lines in the diagrams represent the left hand sides
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and the dashed lines the right hand sides in the diagram rules of the form L  R. The

diagrams can also be represented in their flat form, e.g. the flat form of the first diagram is
n,a
←−−

iS,seq
−−−−→  

iS,seq
−−−−→

n,a
←−−. Figure 1b shows the TRS encoding of the forking- and answer-

diagrams for the transformation (iS, seq), where x is a variable, and all other symbols are

function symbols. We highlight on some properties of the encoding:

The special answer token (i.e. WHNF-token) is represented as the constant w.

The abstract reduction sequences in the graphical diagrams are encoded from right to

left, i.e. the flat diagram
n,a
←−−

iS,seq
−−−−→  

iS,seq
−−−−→

n,a
←−− is represented as the rewrite rule

iSseq(n(a, x))→ n(a, iSseq(x)). This is done to express the fact that diagrams turn reduc-

tion sequences into evaluations. E.g. the sequence w
n,a
←−−

n,a
←−−

n,a
←−−

iS,seq
−−−−→ is represented by

the term iSseq(n(a, n(a, n(a,w)))) and can be turned into the evaluation w
n,a
←−−

n,a
←−−

n,a
←−−

(either by repeated application of the first diagram and a closing application of the

answer-diagram or by a single application of the second diagram).

The labels of normal order reductions and transformations are encoded differently: Labels

of transformations are encoded directly into function symbols (like iSseq) whereas labels

of normal order reductions are encoded as parameters of function applications, e.g. in

the term n(a, x) the constant a denotes the label of the normal order reduction. Here a

is a constant that represents arbitrary reduction labels (that are not seq or cp) whereas

the constants seq and cp denote those specific labels (this is also the reason why we need

three rewrite rules per diagram in the present example). The different encoding of names

has mainly technical reasons: The automatic proofs using AProVE are in some cases only

possible with the described encoding.

Since seq is answer-preserving the TRS encoding of DA(
iS,seq
−−−−→) consists of the single diagram

iSseq(w) → w. For the seq transformation the termination of the TRS encoded complete

diagram set could be automatically shown.

Figure 2a gives another example of a complete set of forking diagrams DF(
iS,llet
−−−−→) for

the transformation (iS, llet), which is answer-preserving. In the diagrams
n,lll+

−−−−→ represents

a (non-empty) sequence of l ll-reductions i.e. the transitive closure of those reductions. These

symbols require a special treatment in the encoding into TRS, since they represent an infinite

set of diagrams. If the symbol
n,lll+

−−−−→ occurs on the left hand side of a diagram, this means

that any given (non-empty) reduction sequence of l ll-reductions can be matched. In the

encoding this symbol is represented by the function symbol nlllPlusL and there are additional

rules which allow to contract a given sequence of l ll-reductions into the symbol
n,lll+

−−−−→ (see

Figure 2c). If a symbol
n,lll+

−−−−→ occurs on the right hand side of a diagram, then a naive

approach would be to add rules
n,lll+

−−−−→  
n,lll
−−−→ and

n,lll+

−−−−→  
n,lll+

−−−−→
n,lll
−−−→. However, this

approach does not work, since it introduces nontermination in the corresponding TRS. Hence,

we use integer term rewrite systems for the encoding, which allow to rewrite the symbol
n,lll+

−−−−→ into a sequence of
n,lll
−−−→-reductions of arbitrary but fixed length. In the encoding we

use the function symbol nlllPlusR for the occurrence of
n,lll+

−−−−→ on the right hand side. For

diagrams 3 and 4, an integer variable k is introduced by the rewriting rule which is like

guessing a natural number. Additionally we add ITRS-rules to rewrite the symbol into a

sequence of k
n,lll
−−−→-reductions (see Figure 2d).

Termination of DF(
iS,llet
−−−−→) ∪DA(

iS,llet
−−−−→) can be automatically checked using AProVE.

WST 2012
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1 ·
iS,llet

//
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iS,llet

//
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iS,llet

//___ ·

5 ·
iS,llet

//

n,a
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·
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�
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n,llet
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·

(a) Forking diagrams for the transformation (iS, llet)

3 iSllet(nlllPlusL(x)) → nlllPlusR(k, x) 4 iSllet(nlllPlusL(x)) → nlllPlusR(k, iSllet(x))

(b) ITRS encoding of the third and fourth forking diagram for the transformation (iS, llet)

n(lll,nlllPlusL(x)) → nlllPlusL(x)

n(lll, x) → nlllPlusL(x)

(c) Contracting
n,lll
−−−→-sequences into

n,lll+

−−−−→

nlllPlusR(0, x) → x

nlllPlusR(k, x) → nlllPlusR(k − 1, n(lll, x)) if k > 0

(d) Expansion of
n,lll+

−−−−→ into k
n,lll
−−−→-reductions

Figure 2 Diagrams and ITRS encoding for the transformation (iS, llet)

Conclusion We tested the complete sets of (forking as well as commuting) diagrams of

several program transformations from [5] and they could all be shown terminating with

the above method using AProVE as a tool for automatic termination proofs. While the

encoding of most of the diagrams from [5] was in general rather straightforward, there are

also cases, where additional knowledge (beyond the mere information of the diagram) has to

be employed in the encoding, or where the automatic proof can only be found for a particular

syntactic variant. An increasing set of (I)TRS-encoded diagrams and the corresponding

termination proofs in AProVE can be found on the website:

http://www.ki.informatik.uni-frankfurt.de/research/dfg-diagram/auto-induct/.

Future work is to connect the automated termination prover with the diagram calculator

of [3, 4] and thus to complete the tool for automated correctness proofs of program transfor-

mations. Another direction is to check more sets of diagrams which probably requires to

develop more sophisticated encoding techniques.
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