
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Analyzing Program Termination and Complexity
Automatically with AProVE

J. Giesl · C. Aschermann ·
M. Brockschmidt · F. Emmes · F. Frohn ·
C. Fuhs · J. Hensel · C. Otto ·
M. Plücker · P. Schneider-Kamp ·
T. Ströder · S. Swiderski · R. Thiemann

Abstract In this system description, we present the tool AProVE for automatic
termination and complexity proofs of Java, C, Haskell, Prolog, and rewrite systems.
In addition to classical term rewrite systems (TRSs), AProVE also supports rewrite
systems containing built-in integers (int-TRSs). To analyze programs in high-level
languages, AProVE automatically converts them to (int-)TRSs. Then, a wide range
of techniques is employed to prove termination and to infer complexity bounds for
the resulting rewrite systems. The generated proofs can be exported to check their
correctness using automatic certifiers. To use AProVE in software construction,
we present a corresponding plug-in for the popular Eclipse software development
environment.

Keywords Termination Analysis · Complexity Analysis · Java/C/Haskell/Prolog
Programs · Term Rewriting

1 Introduction

AProVE (Automated Program Verification Environment) is a tool for automatic
termination and complexity analysis. While previous versions (described in [35,

Supported by the Deutsche Forschungsgemeinschaft (DFG) grant GI 274/6-1, the Air Force
Research Laboratory (AFRL), the Austrian Science Fund (FWF) project Y757, and the Danish
Council for Independent Research, Natural Sciences. Most of the research was done while the
authors were at RWTH Aachen.

J. Giesl · C. Aschermann · F. Emmes · F. Frohn · J. Hensel · M. Plücker · T. Ströder
LuFG Informatik 2, RWTH Aachen University, Germany

M. Brockschmidt
Microsoft Research Cambridge, UK

C. Fuhs
Dept. of Computer Science and Information Systems, Birkbeck, University of London, UK

P. Schneider-Kamp
Dept. of Mathematics and Computer Science, University of Southern Denmark, Denmark

R. Thiemann
Institute of Computer Science, University of Innsbruck, Austria

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/59432948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. Giesl et al.

38]) analyzed only termination of term rewriting, the new version of AProVE also
analyzes termination of Java, C, Haskell, and Prolog programs. Moreover, it also
features techniques for automatic complexity analysis and permits the certification
of automatically generated termination proofs. To analyze programs, AProVE uses
an approach based on symbolic execution and abstraction [20] to transform the in-
put program into a symbolic execution graph1 that represents all possible computa-
tions of the input program. Language-specific features (like sharing effects of heap
operations in Java, pointer arithmetic and memory safety in C, higher-order func-
tions and lazy evaluation in Haskell, or extra-logical predicates in Prolog) are han-
dled when generating this graph. Thus, the exact definition of the graph depends
on the considered programming language. For termination or complexity analysis,
the graph is transformed into a set of (int-)TRSs. The success of AProVE at the
annual international Termination Competition [62] and the International Compe-
tition on Software Verification (SV-COMP) [60] at TACAS demonstrates that
our transformational approach is well suited for termination analysis of real-world
programming languages. A graphical overview of our approach is shown below.2

Java

C

Haskell

Prolog

Symbolic
Execution
Graph

(int-)TRS
Termination

Complexity

Non-Termination︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

Technical details on
the techniques for trans-
forming programs to (int-)
TRSs and for analyzing
rewrite systems can be
found in, e.g., [10, 11, 12,
14, 17, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 43, 44, 51, 52, 57, 58].
Since the current paper is a system description, we focus on the implementation
of these techniques in AProVE, which we have made available as a plug-in for the
popular Eclipse software development environment [23]. In this way, AProVE can
already be applied during program construction (e.g., by analyzing termination
of single Java methods for user-specified classes of inputs). In addition to the full
version of AProVE, we also have made AProVE’s frontends for the different pro-
gramming languages available as separate programs. Thus, they can be coupled
with other external tools that operate on rewrite systems (e.g., on TRSs or integer
transition systems) or on symbolic execution graphs. These external tools can then
be used as alternative backends. Finally, AProVE can also be accessed directly via
the command-line (with several possible flags) or via a web interface [4].

A very short description of AProVE’s use for termination analysis of C programs
was published in [59] and a preliminary version of parts of this paper was published
in [42]. The present paper extends [42] substantially:

• We have updated AProVE’s implementation and its description for the use
on different programming languages and TRSs in Sect. 2 by covering new
contributions (e.g., in addition to upper complexity bounds, AProVE now also
infers lower complexity bounds for term rewriting [28]). Moreover, in addition
to the features described in [42], we have developed a new exchange format
for symbolic execution graphs, allowing to combine AProVE’s frontends for
programming languages with arbitrary external backends (Sect. 2.2).

1 In our earlier papers, this was often called a termination graph.
2 While termination can be analyzed for Java, C, Haskell, Prolog, TRSs, and int-TRSs, the

current version of AProVE analyzes complexity only for Prolog and TRSs. In addition, com-
plexity of integer transition systems (a restriction of int-TRSs) is analyzed by calling the tools
KoAT and LoAT.

Analyzing Program Termination and Complexity Automatically with AProVE 3

• To make AProVE applicable in practice, the techniques in the backend have to
deal with large rewrite systems resulting from the original input program. To
handle programs from real programming languages successfully, it is important
to provide support for integers. Therefore, AProVE handles int-TRSs where
integers are built-in. In Sect. 3, we present the techniques that AProVE uses
to simplify such int-TRSs and to prove their termination afterwards. These
techniques are especially tailored to the int-TRSs resulting from our front-
ends and we present experiments to evaluate their usefulness. (The proofs and
further formal details on these techniques can be found in Appendix A.) This
part is completely new compared with [42].
• AProVE solves most search problems occurring during the proofs by calling

SAT or SMT solvers. We discuss the use of SAT and SMT solving for the
several different techniques in AProVE in Sect. 4 (which is also new compared
with [42]). In addition, AProVE can also be used as an SMT solver itself. To
this end, we describe AProVE’s SMT frontend for quantifier-free formulas over
non-linear integer arithmetic QF NIA.
• To increase the reliability of the generated proofs, AProVE supports their cer-

tification, cf. Sect. 5. Compared with [42], we now present different modes to
control the “amount of certification” for automatically generated proofs. In this
way, one can also use certification for proofs where not all proof techniques can
be handled by the certifier yet.

2 AProVE and its Graphical User Interface in Eclipse

AProVE and its graphical user interface are available as an Eclipse plug-in at [4]
under “Download”. After the initial installation, “Check for Updates” in the “Help”
menu of Eclipse also checks for updates of AProVE. As Eclipse and AProVE are
written in Java, they can be used on most operating systems. We describe the
integration of AProVE’s frontends in Eclipse in Sect. 2.1. In Sect. 2.2 we explain
how to use the frontends in a stand-alone way in order to couple them with external
tools that operate on symbolic execution graphs or (int-)TRSs. Finally, Sect. 2.3
focuses on the backend of AProVE.

2.1 Analyzing Programming Languages

The screenshot on the next page shows the main features of our AProVE plug-in.
Here, AProVE is applied on a Java (resp. Java Bytecode (JBC)) program in the
file List.jar and tries to prove termination of the main method of the class List,
which in turn calls the method contains. (The source code is shown in the editor
window (B).) Files in an Eclipse project can be analyzed by right-clicking on the
file in Eclipse’s Project Explorer (A) and selecting “Launch AProVE”.3

When AProVE is launched, the proof (progress) can be inspected in the Proof
Tree View (C). Here, problems (e.g., programs, symbolic execution graphs, TRSs,
. . .) alternate with proof steps that modify problems, where “⇐” indicates sound
and “⇔” indicates sound and complete steps. This information is used to propagate

3 An initial “ExampleProject” with several examples in different programming languages can
be created by clicking on the “AProVE” entry in Eclipse’s menu bar.

4 J. Giesl et al.

A
B

C

E

D

information from child nodes to the parent node. A green (resp. red) bullet in front
of a problem means that termination of the problem is proved (resp. disproved)
and a yellow bullet denotes an unsuccessful (or unfinished) proof. Since the root of
the proof tree is always the input problem, the color of its bullet indicates whether
AProVE could show its termination resp. non-termination.

To handle Java-specific features, AProVE constructs a symbolic execution graph
(D) from the program [10, 11, 12, 52]. From the cycles of this graph, (int-)TRSs are
created whose termination implies termination of the original program.4 Double-
clicking on a problem or proof step in the proof tree shows detailed information
on them. For example, the symbolic execution graph can be inspected by double-
clicking the node JBCTerminationGraph and selecting the Graph tab in the Problem
View (D). This graph can be navigated with the mouse, allowing to zoom in on
specific nodes or edges. Similarly, one of the generated TRSs is shown in the Prob-
lem View (E). For non-termination proofs [11], witness executions are provided in
the Problem View. In contrast to termination, non-termination proofs are directly
guided by the symbolic execution graph (without using the (int-)TRS backend),
from which one extracts a concrete (i.e., non-symbolic) non-terminating execution.

The buttons in the upper right part of the Proof Tree View (C) interact with

AProVE (e.g., aborts the analysis). When AProVE is launched, the termination
proof is attempted with a time-out of 60 seconds. If it is aborted, one can right-
click on a node in the proof tree and by selecting “Run”, one can continue the
proof at this node (here, one may also specify a new time-out).

For Java programs, there are two options to specify which parts of the pro-
gram are analyzed. AProVE can be launched on a jar (Java archive) file. Then it
tries to prove termination of the main method of the archive’s “main class”.5 Al-

4 In (C), TRSs are listed as “QDP” (dependency pair problems [37]) and int-TRSs are shown
as “IRSwT” (“Integer Rewrite Systems with Terms”).

5 See http://www.termination-portal.org/wiki/Java_Bytecode for the conventions of the
Termination Competition, which also contain a detailed discussion of the limitations imposed
on analyzed Java programs.

Analyzing Program Termination and Complexity Automatically with AProVE 5

ternatively, to use AProVE during software development, single Java methods can
be analyzed. Eclipse’s Outline View (reachable via “Window” and “Show View”)
shows the methods of a class opened by a double-click in Eclipse’s Project Ex-
plorer. An initial “JavaProject” with a class List can be created via the “AProVE”
entry in Eclipse’s menu bar. Right-clicking on a method in the Outline View and
choosing “Launch AProVE” leads to the configu-
ration dialog on the side. It can be used to spec-
ify the sharing and shape of the method’s in-
put values. Each argument can be tree-shaped,
DAG-shaped, or arbitrary (i.e., possibly cyclic)
[12]. Furthermore, one can specify which argu-
ments may be sharing. Similarly, one can pro-
vide assumptions about the contents of static
fields. There are also two short-cut buttons
which lead to the best- and worst-case as-
sumption. Moreover, under “AProVE options”,
one can adjust the desired time-out for the
termination proof and under “Problem selec-
tion”, one may replace AProVE’s default strat-
egy with alternative user-defined strategies (a
general change of AProVE’s strategy is possible
via the “AProVE” entry in Eclipse’s main menu).

C [58], Haskell [40], and Prolog [41] are han-
dled similarly. The function, start terms, or que-
ries to be analyzed can be specified in the input
file (as in the Termination Competition). Otherwise the user is prompted when the
analysis starts. For Prolog, AProVE can also infer asymptotic upper bounds on the
number of evaluation steps (i.e., unification attempts) and prove determinacy (i.e.,
that there is at most one solution). Similarly to many other termination provers,
AProVE treats built-in data types like int in Java as unbounded integers Z. Thus,
a termination proof is valid only under the assumption that no overflows occur
which influence the control flow. However for C programs, we recently extended
AProVE by an approach to handle fixed-width bitvector integers as well [43].

All our programming language frontends first construct symbolic execution
graphs. From these graphs, AProVE generates rewrite systems which express the
information that is relevant for termination. Thus, analyzing implementations of
the same algorithm in different languages leads to very similar rewrite systems, as
AProVE identifies that the reason for termination is always the same. For example,
implementations of a contains algorithm in different languages all terminate for
the same reason on (finite acyclic) lists, since the length of the list decreases in
each recursive call or iteration.

2.2 Using AProVE as a Frontend

We have separated AProVE’s programming languages frontends such that other
tools can be used in place of the existing AProVE backend. As the symbolic exe-
cution graphs computed by AProVE represent over-approximations of the original
program’s behavior, many analyses can be performed on these graphs. For in-

6 J. Giesl et al.

stance, the absence of memory-safety violations in C programs, determinacy of
queries in Prolog programs, or information-flow properties in all supported lan-
guages can be proved by analyzing the corresponding symbolic execution graphs.
In general, analyses with the goal of proving universal properties can be executed
on such graphs directly (e.g., to prove that all computations are finite). Moreover,
together with a reachability analysis, existential properties can be analyzed as well.
An example of such an analysis is our non-termination analysis of Java programs
(i.e., that there exists an infinite computation). Here, we first detect infinite loops
in the symbolic execution graph, and then check their reachability.

AProVE can export its symbolic execution graphs in the JSON format [9],
which is both human-readable as well as suitable for automated processing. Such
an export is produced by the command-line version of AProVE when running

java -ea -cp aprove.jar aprove.CommandLineInterface.<X>FrontendMain <E> -j yes -o <D>,

where <X> has to be replaced by JBC, C, LLVM,6 Haskell, or Prolog, <E> is the input
program, and <D> specifies the path to the directory where the output graph is
written. This allows other tools to use AProVE for symbolic execution and to
implement their own analysis on the graph obtained by AProVE. We refer to [4]
for a detailed explanation of the command-line flags available for AProVE.

Instead of symbolic execution graphs, AProVE can also export the resulting
rewrite systems in the formats used at the Termination Competition [62]. As
these systems are generated with the goal of termination or complexity analy-
sis, they only “over-approximate” the program’s termination and complexity. So
in contrast to the symbolic execution graphs, these rewrite systems are no general
over-approximations for the original program’s behavior. Still, other termination
and complexity provers can make use of these systems and obtain analyses for
programming languages by implementing only their own backend techniques and
re-using our frontends. The command to export the resulting rewrite systems is
the same as the one to generate the symbolic execution graph but without -j yes.

2.3 Analyzing Term Rewrite Systems

To prove termination of TRSs, AProVE implements a combination of numerous
techniques within the dependency pair framework [37]. Non-termination of TRSs is
detected by suitable adaptions of narrowing [25, 36]. The frontends for Java and C
programs generate int-TRSs, a variation of standard term rewriting that has built-
in support for integer values and operations. The advantage of built-in integers
is that this simplifies termination proofs for algorithms on integers tremendously
[33]. Note that most other tools for termination analysis of imperative programs
abstract the program to integer transition systems (ITSs). Compared with ITSs,
int-TRSs have the advantage that they allow a more precise representation of com-
plex data structures by terms. We give an overview of the termination techniques
used for this formalism in Sect. 3. The frontend for Haskell programs directly pro-
duces classical TRSs (as dependency pair problems [37]), while the frontend for
Prolog offers techniques to produce definite logic programs, dependency triples (a

6 Here, LLVM stands for the intermediate representation of the LLVM compilation framework
[46]. To analyze C programs, they are first compiled to LLVM and analyzed afterwards. This is
similar to our approach for Java where we consider Java Bytecode instead of Java source code.

Analyzing Program Termination and Complexity Automatically with AProVE 7

variant of dependency pairs for definite logic programs) [57], and TRSs.

For complexity analysis of
TRSs, AProVE infers bounds on
the runtime complexity. As ini-
tial terms, here one only con-
siders basic terms f(t1, . . . , tm)
where t1, . . . , tm represent data
(thus, t1, . . . , tm are already in
normal form). This corresponds
to the setting in program anal-
ysis where one wants to infer
asymptotic symbolic bounds on
the number of evaluation steps
that the program can perform.
While upper bounds are com-
puted for innermost rewriting,
lower bounds are inferred for in-
nermost as well as full rewrit-
ing. The focus on upper bounds
for innermost rewriting is moti-
vated by the fact that the trans-
formations from Sect. 2.1 yield
rewrite systems where it suffices
to consider innermost rewriting
in the backend. (Polynomial) up-
per bounds on the runtime com-
plexity are inferred by an adap-
tion of dependency pairs for
complexity analysis [51]. To solve the resulting search problems, AProVE re-uses
the techniques from termination analysis to generate suitable well-founded orders.

To infer polynomial or exponential lower bounds, infinite families of reductions
are speculated by narrowing. Afterwards, their validity is proved via induction and
term rewriting. Then this proof gives rise to a lower complexity bound [28]. In ad-
dition, AProVE applies a narrowing-based technique to prove that the (innermost)
runtime complexity of a TRS is infinite, i.e., that there is an infinite reduction se-
quence starting with a basic term. Blue icons like indicate lower bounds, while
green icons like are used for upper bounds, cf. the screenshot above. Icons like

represent tight bounds where the inferred lower and upper bound coincide. As
the screenshot shows, AProVE easily infers that the above TRS has cubic asymp-
totic complexity. More precisely, the icon (resp. the result (n3, n3)) at the root
node of the proof tree means that the longest rewrite sequences from initial terms
f(t1, . . . , tm) of size n are of length Θ(n3).7 Moreover, AProVE also analyzes the
complexity of integer transition systems with initial states by calling the tools
KoAT [14] (for upper bounds) and LoAT [29] (for lower bounds).

7 In the Proof Tree View, we do not only have complexity icons like or for problems,
but proof steps also result in complexities (e.g., or). More precisely, in each proof step, a
problem P is transformed into a new problem P ′ and a complexity c from the rewrite rule(s)
whose contribution to P ’s complexity is accounted for in this step. Then the complexity of P
is bounded by the maximum (asymptotically equivalent to the sum) of P ′’s complexity and c.

8 J. Giesl et al.

3 Termination Analysis with Integers

To handle standard arithmetic operations on integers, AProVE supports int-TRSs,
i.e., term rewrite systems with built-in integer arithmetic. In Sect. 3.1 we introduce
the notion of int-TRSs used by AProVE and present simplifications which substan-
tially reduce the size of int-TRSs and therefore ease the search for termination
arguments. These simplifications are needed to handle those int-TRSs efficiently
that result from the transformation of programming languages. In Sect. 3.2 we then
introduce the techniques that AProVE uses for termination analysis of int-TRSs.
Finally, Sect. 3.3 contains an experimental evaluation of the presented techniques.
We refer to Appendix A for full formal definitions and proofs.

3.1 Definition and Simplification of int-TRSs

To denote integers and standard pre-defined arithmetic operations, we use the sig-
nature Σpre = Z∪ {+,−, ∗, /,%}. The terms in T (Σpre,V) (i.e., terms constructed
from Σpre and variables V) are called int-terms. Atomic int-constraints have the
form s◦ t where s and t are int-terms and ◦ ∈ {<,≤,=, 6=,≥, >}. An int-constraint
is a Boolean combination of such atomic constraints.

To represent user-defined data structures, we use a signature Σc of data con-
structors. Moreover, we use a signature Σd of defined symbols. For imperative
programs, the defined symbols represent program positions, and their arguments
correspond to the values of the program variables. We require that Σpre, Σc, and
Σd are pairwise disjoint. An int-TRS is a set of int-rules which are used to over-
approximate the effect of program evaluation, operating on term representations
of the data. An int-rule has the following form, where f ∈ Σd, g ∈ Σd ∪ Σc,
s1, . . . , sn, t1, . . . , tm ∈ T (Z ∪Σc,V), and ϕ is an int-constraint.

f(s1, . . . , sn)→ g(t1, . . . , tm) JϕK

The rewrite relation of an int-TRS is simple top-rewriting (i.e., rules may only
be applied at the root of a term),8 where we only consider data substitutions
σ : V → T (Z∪Σc,V). As usual, tσ results from replacing all variables of t according
to σ. We call σ applicable to an int-constraint ϕ if σ(x) ∈ Z for all variables x in ϕ,
and ϕσ is valid if it holds w.r.t. the usual integer arithmetic. Then, s rewrites to t
(denoted “s ↪→ t”) if the int-TRS contains a rule `→r JϕK and a data substitution
σ that is applicable to ϕ such that `σ = s, rσ = t, and ϕσ is valid. In contrast
to standard rewriting, we allow rules ` → r JϕK where the right-hand side r or
the constraint ϕ may contain fresh variables that do not occur in the left-hand
side `. This does not necessarily imply non-termination, as variables may not be
instantiated by terms with defined symbols.

Example 1 A program counting the number of occurrences of the number c in
a list could be represented as follows. Here, we use the constructors N and C to
represent lists, where N stands for the empty list and C(v, xs) results from inserting
the number v in front of the list xs.

8 So our int-TRSs extend int-based TRSs from [27] by constructors and restrict integer
TRSs (ITRSs) from [33] by not allowing nested defined symbols.

Analyzing Program Termination and Complexity Automatically with AProVE 9

count(C(v, xs), c, res)→ count(xs, c, res ′) Jv = c ∧ res ′ = res + 1K (1)

count(C(v, xs), c, res)→ count(xs, c, res) Jv 6= cK (2)

Applying this program to count how often the number 4 occurs in the list [1, 4, 7]
yields the rewrite steps

count(C(1,C(4,C(7,N))), 4, 0)
↪→(2) count(C(4,C(7,N)), 4, 0)
↪→(1) count(C(7,N), 4, 1)
↪→(2) count(N, 4, 1)

In practice, the int-TRSs automatically generated from programming languages
by AProVE differ considerably from the manually crafted TRSs that are often
discussed in the literature, both in the number of rules (of which there are usually
hundreds to thousands) and in the arity of function symbols (which is sometimes
exceeding 50). To tackle these int-TRSs, AProVE uses a number of simplifications
that are similar to techniques employed in classic program analysis. The most
important simplifications are slicing (the removal of needless arguments of function
symbols) and chaining (the static combination of several rewrite rules into one).

3.1.1 Slicing

To reduce the number of arguments of the function symbols in our int-TRSs, we
remove all arguments except those that are possibly needed for termination, i.e.,
that may influence the applicability of a rule to a term. While a related concept for
the restricted formalism of int-based TRSs was informally mentioned in [27], the
following formal criteria identify a substantially larger set of needless positions,
and can handle data structures represented as terms, unlike earlier work [1]. A
related approach for TRSs without built-in integers was presented in [3]. Here the
goal was to find arguments whose elimination does not change the semantics, while
our goal is only to keep the termination behavior unchanged.

We identify “needed” arguments by considering how the application of a rule
can fail. In int-TRSs, this can either be because there is no data substitution
that matches the left-hand side of a rule to a term, or due to an unsatisfied rule
condition. Thus, if the left-hand side of a rule has the form f(c(. . .), . . .) and
there exist subterms f(t, . . .) in right-hand sides where t does not have the form
c(. . .), then the first argument of f is needed since it determines whether matching
succeeds. Similarly, if a left-hand side is non-linear (i.e., if a variable occurs several
times in a left-hand side), then the corresponding arguments are also needed, as
they influence whether a suitable data substitution exists.

Moreover, if the left-hand side has the form f(x, . . .) and the variable x occurs
in some term t in the constraint ϕ of the rule, then this variable may determine
the rule’s applicability and f ’s argument is needed. Here, it suffices to consider
just the assignment-free version of ϕ, in which we disregard simple assignments.
In general, for a rule ` → r JϕK we call atoms “y = t” of ϕ assignments if y is a
variable that neither occurs in ` nor t nor in any other atom of ϕ. The assignment-
free constraint ϕ̂ is obtained by removing all assignments from ϕ. For instance,
the assignment-free variant of the constraint of Rule (1) is just v = c (i.e., the
assignment res ′ = res + 1 is disregarded since res ′ does not occur anywhere else in

10 J. Giesl et al.

the constraint or the left-hand side of the rule). Finally, if a variable x is needed
on the right-hand side r (or if ϕ contains an assignment y = (... x ...) where y is
needed), then all occurrences of x in the left-hand side are also needed (i.e., then
neededness is propagated). The following definition summarizes these ideas. Here,
Σ stands for Σc ∪Σd.

Definition 2 (Needed Argument Positions) The needed argument positions
N ⊆ (Σ × N) for an int-TRS R are the smallest set with (f, i) ∈ N if 1 ≤ i ≤
arity(f) and one of the following holds for some rule `→ r JϕK of R:

• Matching : ` contains a subterm f(t1, . . . , tn), the right-hand side of some rule
in R contains f(u1, . . . , un), and there is no matcher σ with tiσ = ui.

• Non-linearity : ` contains f(t1, . . . , tn) and a variable x ∈ V(ti) occurs more
than once in `.

• Constraint : ` contains a subterm f(t1, . . . , tn) and V(ti) ∩ V(ϕ̂) 6= ∅ for the
assignment-free constraint ϕ̂.

• Propagation: ` contains a subterm f(t1, . . . , tn) such that a needed variable x
occurs in ti. A variable x is needed if one of the following holds:
– x occurs at a needed position of r. (Here, x occurs at a needed position of

a term t iff t = x or t = g(t1, . . . , tm), (g, j) ∈ N , and x occurs at a needed
position of tj .)

– ϕ contains an assignment “y = t” where y is needed and x ∈ V(t)

Thm. 3 states that the simplification of removing all argument positions that
are not needed (by a corresponding argument filter [37]) is not only sound, but
also complete. So the needed positions according to Def. 2 are indeed “exhaustive”,
i.e., they include all argument positions that influence the termination behavior.

Theorem 3 (Soundness of Slicing) Let R be an int-TRS and let R′ result from
filtering away all argument positions that are not needed according to Def. 2. Then
R terminates iff R′ terminates.

For the int-TRS {(1), (2)}, the third argument of count is not needed since its
argument only occurs in an assignment res ′ = res + 1 of the constraint of Rule
(1). Removing this needless argument position simplifies the int-TRS to

count(C(v, xs), c)→ count(xs, c) Jv=cK count(C(v, xs), c)→ count(xs, c) Jv 6=cK

Here, res ′ = res +1 was removed from the constraint of the first rule since res and
res ′ do not occur in its left- or right-hand side anymore after filtering.

In examples from real programs, this technique greatly simplifies the proof
search. As a typical example, in AProVE’s analysis of the addAll method of the
java.util.LinkedList data structure in Oracle’s Java distribution, the average
arity of function symbols in the resulting int-TRS is reduced from 12.4 to 3.4.

3.1.2 Chaining

As our frontends are based on the operational small-step semantics of the respec-
tive languages, every evaluation step of the program results in a separate rewrite
rule. Thus, the generated int-TRSs contain many rules corresponding to intermedi-
ate program positions. Since the number of rules directly influences the size of the

Analyzing Program Termination and Complexity Automatically with AProVE 11

resulting search problems when trying to synthesize well-founded orders, we per-
form chaining to merge rewrite rules that have to be applied after each other [27].
More precisely, we use narrowing of right-hand sides of rules to obtain new rules
which simulate the effect of applying two rules directly after each other. In this
way, we eliminate superfluous defined symbols (i.e., those generated for states on
a long, linear path in a symbolic execution graph) and obtain simpler rewrite sys-
tems. In the analysis of JBC programs via constrained logic programming, similar
unfolding techniques have been discussed [55].

Example 4 To illustrate the idea, consider the following int-TRS.

f(x1)→ g(x′1) Jx′1 = x1 + 1K (3)

g(x2)→ f(x2) Jx2 < 0K (4)

f(x3)→ h(x′3) Jx′3 = x3 − 1K (5)

h(x4)→ f(x4) Jx4 > 0K (6)

After applying rule (3), rule (4) must be used in the next rewrite step. There-
fore, we can combine (3) and (4) using the unifier µ = [x′1/x2] of (3)’s right-hand
side and (4)’s left-hand side (i.e., we narrow (3) with the rule (4)). The conditions
of both rules are combined, too. Similarly, we can combine (5) and (6). Thus, we
obtain the following int-TRS where the defined symbols g and h are removed.

f(x1)→ f(x2) Jx2 =x1+1∧ x2<0K (7) f(x3)→ f(x4) Jx4 =x3−1∧x4>0K (8)

To perform the desired simplification, we define two helpful sets. For an int-
TRS R and a defined symbol f ∈ Σd, let R→f consist of all rules where f is the
root symbol of the right-hand side andRf→ contains all rules where f is the root of
the left-hand side. If R has no directly recursive f -rules (i.e., if R→f ∩Rf→ = ∅),
then we can eliminate f by applying the rules from Rf→ to the right-hand sides
of the rules in R→f . More precisely, let R−f denote the int-TRS which results
from narrowing each rule from R→f with all rules from Rf→. Then R−f does not
contain the symbol f anymore. So for the TRS R from Ex. 4, we have R−g =
{(5), (6), (7)} and (R−g)−h = {(7), (8)}.

Theorem 5 (Soundness of Chaining) Let R be an int-TRS such that there are
no directly recursive rules for f ∈ Σd. Then R terminates iff R−f terminates.

For example, in the analysis of the java.utils.LinkedList.addAll example
discussed above, this technique reduces the number of rules in the resulting int-
TRS from 206 to 6, using just one defined symbol instead of 204 symbols.

3.2 Proving Termination of int-TRSs

Originally, we used AProVE’s support for integer term rewrite systems [33] as back-
end for our programming language frontends. However, experiments showed that
the time spent in this backend dominated the time spent on the overall proof,
even though in most cases, only simple termination arguments were required.
This performance bottleneck was introduced by proof techniques that combined
the handling of termination arguments based on term structure and arithmetic
termination arguments. Therefore, AProVE now uses (specialized) existing tech-
niques for termination of integer transition systems (ITSs, which do not contain

12 J. Giesl et al.

data constructors) and for termination of ordinary TRSs (which do not contain
integers). More precisely, if the int-TRS does not contain symbols from Σpre, then
we use the standard dependency pair framework for termination of TRSs [37]. To
analyze the termination behavior of int-TRSs without data constructors from Σc,
we repeatedly synthesize integer ranking functions. For this, we use a variation
of the constraint-based procedure of [8, 53] that uses the technique of [2] to find
separate (and possibly different) linear ranking functions for every defined symbol.
Additionally, we use the calculus presented in [27] to synthesize non-linear ranking
functions for such int-TRSs.

To handle int-TRSs that contain both integers and terms, AProVE uses two
methods. In one approach (Sect. 3.2.1), we consider projections of the analyzed int-
TRS R either to ordinary term rewriting (by removing all integers) or to ordinary
integer transition systems (by removing all constructor terms) and use specialized
standard techniques. These projections affect only a single step in the termination
proof (i.e., the information that was removed by the projection is again available in
the next step of the termination proof). Thus, for the next step a possibly different
projection can be used.

In the second approach (Sect. 3.2.2), we use a fixed term abstraction to integers
to obtain an integer transition system. The used abstraction is similar to the “path-
length” abstraction of [56], but it is employed at a later point of the analysis. Hence,
it allows us to make use of more precise information during the symbolic execution
in our frontends. In our implementation, we use both techniques in parallel instead
of applying heuristics to choose the right technique.

3.2.1 Termination Proving by Projection

We show how to filter away all “integer arguments” resp. all “term arguments” of
an int-TRS and how to lift termination proofs on a filtered rewrite system back to
the original system. To distinguish between integer and term arguments, we first
define a rudimentary type system on int-TRSs. To identify all integer arguments
of function symbols, we mark every argument containing an integer constant or a
variable that occurs in the constraint of the rule. Then, we propagate this infor-
mation through the rewrite system. Similarly, we mark arguments that contain a
constructor symbol from Σc as term arguments and propagate this information.

Definition 6 (Integer and Term Arguments) The set of integer arguments
IA ⊆ (Σ×N) of an int-TRSR is the smallest set with (f, i) ∈ IA if 1 ≤ i ≤ arity(f)
and one of the following holds for some rule `→ r JϕK of R.

• ` or r contain a subterm f(t1, . . . , tn) and ti ∈ Z ∪ V(ϕ).
• ` or r contain a subterm f(t1, . . . , tn), ti ∈ V, a subterm g(s1, . . . , sm) occurs

in the left- or right-hand side of some rule of R, ti = sj , and (g, j) ∈ IA.

The set of term arguments TA ⊆ (Σ × N) of an int-TRS R is the smallest set
with (f, i) ∈ TA if 1 ≤ i ≤ arity(f) and one of the following holds for some rule
`→ r JϕK of R.

• ` or r contain a subterm f(t1, . . . , tn) and ti = g(. . .) for some g ∈ Σc.
• ` or r contain a subterm f(t1, . . . , tn), ti ∈ V, a subterm g(s1, . . . , sm) occurs

in the left- or right-hand side of some rule of R, ti = sj , and (g, j) ∈ TA.

Analyzing Program Termination and Complexity Automatically with AProVE 13

Example 7 Consider the following int-TRS R.

f(C(v, xs), v)→ f(C(v′, xs), v′) Jv > 0 ∧ v′ = v − 1K (9)

f(C(v, xs), v)→ f(xs, v′) Jv ≤ 0K (10)

Here, we have IA = {(f, 2), (C, 1)} and TA = {(f, 1), (C, 2)}.

There exist int-TRSs that are not well typed, i.e., where IA∩TA 6= ∅. However,
we never automatically generate such int-TRSs in our programming language front-
ends, and thus will ignore such int-TRSs from now on.

For any term t, let IA(t) result from t by removing all term arguments, i.e., the
ith argument of f is removed iff (f, i) /∈ IA. We define TA(t) analogously. Then
for any int-TRS R, we can define its integer and term projections.

IA(R) = {IA(`) → IA(r) JϕK | `→ r JϕK ∈ R} and
TA(R) = {TA(`) → TA(r) | `→ r JϕK ∈ R}

By construction, IA(R) is an int-TRS without user-defined data structures
(i.e., an integer transition system) and TA(R) is an ordinary TRS without built-
in integers. Now we can use standard techniques to obtain reduction pairs (%,�)
for the respective filtered systems [37]. A reduction pair for R partitions R into
a set of rules R� that decreases w.r.t. some well-founded order � with every use,
and a set R% \R� that does not increase w.r.t. this order. Consequently, existence
of a reduction pair (%,�) for R proves that the rules R� cannot be used infinitely
often. The crucial observation is that if we find a reduction pair for a projection
of our int-TRS, then we can lift it to a reduction pair on the original system.

Theorem 8 (Reduction Pairs From Projections) Let R be an int-TRS. If
(%IA,�IA) is a reduction pair for IA(R), then (%,�) is a reduction pair for R
where t1 � t2 holds iff IA(t1) �IA IA(t2) and t1 % t2 holds iff IA(t1) %IA IA(t2).
The same holds for the restriction TA.

To illustrate the approach, let us prove termination of the int-TRS in Ex. 7.
In the first step, we project R to its term arguments and obtain TA(R).

f(C(xs))→ f(C(xs)) (11) f(C(xs))→ f(xs) (12)

Here, (9) and (11) correspond to each other, as do (10) and (12). Using stan-
dard techniques for term rewriting, we obtain a reduction pair (%TA,�TA) with
(TA(R))�TA = {(12)} and (TA(R))%TA = {(11)} (e.g., by using the embed-
ding order). We can lift this to a reduction pair on R, and obtain (%,�) with
R� = {(10)} and R% = {(9)}. Hence, we have proved termination of (10) and

only need to prove termination of R′ = R\R� = {(9)}. In the second step, we
consider its projection to integer arguments IA(R′).

f(v)→ f(v′) Jv > 0 ∧ v′ = v − 1K (13)

Now we can easily obtain a reduction pair (%IA,�IA) with (IA(R′))�IA = {(13)}
= IA(R′). Again, we can lift this to R′ and thus prove its termination. Note how
this termination proof projects away integer information in the first step, but due
to our lifting technique, we can make use of it again in the second proof step.

14 J. Giesl et al.

3.2.2 Termination Proving with Term Height Abstraction

As an alternative to the projection technique in Sect. 3.2.1, we use an integer
abstraction for terms that is similar to the path-length abstraction for heap struc-
tures [56]. This allows us to handle examples that require reasoning about term
structure and integers at the same time. For this, we replace terms by their “term
height”, i.e., by the number of nested constructors. For example, lists are repre-
sented by their length, and trees are represented by their height. Then we adapt
the rewrite rules such that they constrain heights instead of matching and replac-
ing terms. However, as the abstraction of terms to integers is fixed and somewhat
coarse, it fails for algorithms whose termination relies on an intricate manipulation
of data structures. For example, in-place tree-to-list flattening algorithms (which
require treating “left” and “right” subtrees differently) cannot be handled. For a
term t, we define its term height as follows.

th(t) =

{
0 if t ∈ V ∪Z
1 + max{th(ti) | 1 ≤ i ≤ n} if t = f(t1, . . . , tn)

Based on this, we want to transform terms t = f(t1, . . . , tn) with f ∈ Σd
and t1, . . . , tn ∈ T (Z ∪ Σc,V) into terms πth(t) = f(h1, . . . , hn), where the hi
approximate the term height th(ti), and adapt the rewrite rules accordingly. Sub-
terms ti with ti ∈ Z are not changed by the abstraction πth. So from a rule
f(C(v, xs)) → f(xs), we want to derive automatically that the height h of the
argument on the left-hand side is at least 1, and that the height h′ of the ar-
gument on the right-hand side is at least 1 smaller than h. This yields the rule
f(h)→ f(h′) Jh ≥ 1 ∧ h′ ≤ h− 1K, for which we can easily prove termination.

Example 9 Consider the rewrite sequence obtained for C(1,C(4,C(7, xs))) with the
int-TRS R = {f(C(v, xs))→ f(xs)}. Below each term t we denote the term πth(t),
i.e., the result of replacing non-integer subterms by their height.

f(C(1,C(4,C(7, xs))))︸ ︷︷ ︸
f(3)

↪→ f(C(4,C(7, xs)))︸ ︷︷ ︸
f(2)

↪→ f(C(7, xs))︸ ︷︷ ︸
f(1)

↪→ f(xs)︸ ︷︷ ︸
f(0)

We now define a rule translation Πth that is “compatible” with πth, i.e., where
a rewrite step s ↪→ρ t with a rule ρ implies πth(s) ↪→Πth(ρ) πth(t). Then, evaluations
can be reproduced in the translated rewrite system, and hence, the translation
preserves non-termination. In other words, a termination proof of the translated
rewrite system also implies termination of the original rewrite system.

To this end, consider a rule f(`1, . . . , `n) → g(r1, . . . , rm) JϕK. As mentioned
above, we do not need to change those arguments of f and g that are not term
arguments. When replacing a term argument `i by a variable hi representing its
height, we use that the height of any instantiation of `i in a rule application will
be at least th(`i) since th(`iσ) ≥ th(`i) for any data substitution σ. Thus, we add
a constraint hi ≥ th(`i).

For a term t, let VTA(t) be the variables occurring at term positions in t, i.e.,
VTA(t) = {x ∈ V | t has a subterm f(t1, . . . , tn) with (f, i) ∈ TA and ti = x}. For
all variables x ∈ VTA(`i), we know that whenever we instantiate `i with σ in the
application of a rule, the height of σ(x) will be at most the height of σ(`i), and
hence x ≤ hi. This can be made more precise by taking into account how deeply

Analyzing Program Termination and Complexity Automatically with AProVE 15

“nested” x appears in `i. For instance, in `i = C(2,C(1, x)), the height of `i is 2
plus the height of x because x is nested two levels deep in `i. Thus, the nesting
level9 of x in `i is nl(`i, x) = 2. So in general, if hi is the height of `i, then the
difference between hi and the height of x will be at least as large as the nesting
level nl(`i, x) of x in `i. Hence, we add the constraint x+ nl(`i, x) ≤ hi.

Finally, note that the height h′i of any argument ri on the right-hand side is
no larger than the maximum of th(ri) and of the heights of the variables occurring
at term arguments in ri plus their respective nesting levels. Thus, we add the
constraint h′i ≤ max{th(ri),max{x+ nl(ri, x) | x ∈ VTA(ri)}}. In practice, repre-
senting the maximum is not feasible due to its inherent blowup, as our int-TRSs
support no pre-defined max operator. Thus, each max constraint would have to be
represented by a disjunction of all possible cases. Therefore, in AProVE, we replace
each max term by the sum of its arguments if we cannot statically determine the
maximum element.

Definition 10 (Term Height Projection for Rules) Let TA be as in Def. 6
and ρ = f(`1, . . . , `n) → g(r1, . . . , rm) JϕK be a rewrite rule. Then we define the
term height projection for ρ as Πth(ρ) = f(`′1, . . . , `

′
n) → g(r′1, . . . , r

′
m) Jϕ ∧ ψK

where `′i is a fresh variable hi if (f, i) ∈ TA, and otherwise we have `′i = `i.
Similarly, r′i is a fresh variable h′i if (g, i) ∈ TA and otherwise r′i = ri. The
constraint ψ is defined as follows.

ψ =
∧

1≤i≤n
(f,i)∈TA

(
hi ≥ th(`i) ∧

∧
x∈VTA(`i)

(x+ nl(`i, x) ≤ hi ∧ x ≥ 0)

)

∧
∧

1≤i≤m
(g,i)∈TA

(
h′i ≥ th(ri) ∧

∧
x∈VTA(ri)

(x+ nl(ri, x) ≤ h′i ∧ x ≥ 0)

∧ h′i ≤ max{th(ri),max{x+ nl(ri, x) | x ∈ VTA(ri)}}

)

We extend Πth to int-TRSs R by defining Πth(R) = {Πth(ρ) | ρ ∈ R}.

Theorem 11 (Soundness of Term Height Projection) Let R be an int-TRS.
If Πth(R) terminates, then R also terminates.

The following examples demonstrate how well suited the term height projection
is to prove termination of standard iterations on user-defined data structures.

Example 12 For R = {f(C(v, xs))→ f(xs)} from Ex. 9, Πth(R) consists of the rule

f(h1)→ f(h′1) Jh1 ≥ 1 ∧ xs + 1 ≤ h1 ∧ xs ≥ 0 ∧ h′1 ≥ 0 ∧ xs ≤ h′1 ∧ h′1 ≤ xsK

Note that the constraint of the rule can be simplified to h1 ≥ 1 ∧ h′1 ≤ h1 −
1 ∧ h′1 ≥ 0. Now indeed, we have f(3) ↪→Πth(R) f(2) ↪→Πth(R) f(1) ↪→Πth(R) f(0) and
termination can easily be proved.

9 The nesting level of a variable x in a term t = f(t1, . . . , tn) is nl(t, x) = 1 + max{nl(ti, x) |
1 ≤ i ≤ n, x ∈ VTA(ti)} if x ∈ VTA(t), where nl(x, x) = 0, and nl(t, x) =∞ if x /∈ VTA(t).

16 J. Giesl et al.

Configuration Term. Failure Timeout avg. Res. (s) avg. Run. (s)

AProVE-ITRS 239 12 60 11.50 67.42

AProVE-TermHeight 251 10 50 5.67 52.98

AProVE-Project 266 30 15 6.44 20.94

AProVE-IntTerm 285 7 19 6.36 24.51

AProVE-IntTerm-noSimp 146 4 161 18.84 164.21

AProVE-IntTerm-onlySlice 159 5 147 18.78 151.50

AProVE-IntTerm-onlyChain 277 9 25 6.17 30.85

Fig. 1 Experimental Results for Termination of int-TRSs

Similarly, for the TRS R′ = {f(C(v1,C(v2, xs)))→ f(C(v2, xs))}, Πth(R′) con-
sists of the rule

f(h1)→ f(h′1) Jh1 ≥ 2∧ xs + 2 ≤ h1 ∧ xs ≥ 0∧ h′1 ≥ 1∧ xs + 1 ≤ h′1 ∧ h′1 ≤ xs + 1K

Here, we generated the condition h′1 ≤ max{1, xs +1}, which we simplified to h′1 ≤
xs + 1. The constraint can be further simplified to h1 ≥ 2 ∧ h′1 ≤ h1− 1 ∧ h′1 ≥ 1.
Again, termination is easily proved.

3.3 Evaluation

To show the usefulness of our techniques from Sect. 3, we evaluated different
versions of AProVE on the standard benchmarks from version 8 of the Termination
Problem Data Base (TPDB) for Java programs.10 The TPDB is the collection of
problems used in the Termination Competition [62]. However, here we excluded
benchmarks that are known to be non-terminating, resulting in a collection of 311
examples. The results of these experiments are displayed in Fig. 1.

We performed our experiments on a computer with 6 GB of RAM and an Intel
i7 CPU clocked at 3.07 GHz using a timeout of 300 seconds for each example (run-
ning with a higher timeout of 6000 s did not yield additional results). The column
“Term.” shows the number of examples where termination could be proved. “Fail-
ure” are those examples where AProVE failed within 300 s and “Timeout” are the
examples where AProVE was stopped after 300 s. The last two columns document
the average runtime (in seconds), where “avg. Res.” is the average restricted to
successful proof attempts and “avg. Run.” is the average for all examples.

All evaluated versions of AProVE used our frontend for Java. In the first four
experiments, we enabled all simplification techniques and used different variants
of the termination backend described in Sect. 3.2. In AProVE-ITRS, we used inte-
ger term rewrite systems [33] instead of int-TRSs. While this formalism is more
expressive than int-TRSs, it has the drawback of being less efficient, resulting in
a lower of number of examples whose termination can be proved. Therefore, the
remaining versions of AProVE in Fig. 1 used int-TRSs in the backend.

In AProVE-TermHeight, we enabled only the term height projection from Thm.
11, and then applied standard techniques for ITSs. In AProVE-Project, we used

10 The results for the C benchmarks are similar.

Analyzing Program Termination and Complexity Automatically with AProVE 17

only the lifting of reduction pairs from Thm. 8, and applied standard TRS and
ITS techniques. Finally, AProVE-IntTerm combines both techniques and is the most
powerful configuration in Fig. 1.

In a second group of experiments, we used AProVE-IntTerm as basis, and var-
ied the applied simplification techniques (Sect. 3.1). In AProVE-IntTerm-noSimp,
we disabled all such techniques, in AProVE-Term-onlySlice, we used only the slic-
ing technique from Thm. 3, and in AProVE-IntTerm-onlyChain, we used only the
chaining technique from Thm. 5. The experiments clearly show that both of the
simplifications are useful and that their combination (in AProVE-IntTerm) leads to
the most powerful configuration. So the contributions of Sect. 3 are indeed crucial
for applying AProVE to real programs.

4 Automation via SAT and SMT Solving

To solve the arising search problems in (non-)termination or complexity proofs,
AProVE uses encodings to satisfiability problems of logics. Satisfiability of pro-
positional formulas can be checked by SAT solvers, whereas more complex logics
require a SAT modulo theory (SMT) solver for an appropriate theory. Depen-
ding on the kinds of numbers and the possible nesting depth of function symbols
from Σc∪Σd in rewrite rules we use the logics Quantifier-Free Linear Integer Arith-
metic (QF LIA), Quantifier-Free Non-Linear Integer Arithmetic (QF NIA), Quan-
tifier-Free Linear Real Arithmetic (QF LRA), and Quantifier-Free Non-Linear Real
Arithmetic (QF NRA). Any improvements to the SAT and SMT solvers applicable
to these logics would thus also benefit program verification in AProVE.

In the following, we review the search problems tackled by SAT or SMT solving
in AProVE and explain which underlying SMT logic we use for their encoding. For
SAT solving, AProVE uses the tools MiniSat [24] and SAT4J [47]. Like AProVE,
SAT4J is implemented in Java and hence, AProVE calls it for small SAT instances,
where it is very efficient. MiniSat is used on larger SAT instances, but as it is
invoked as an external process, it leads to a small overhead. For SMT solving,
AProVE uses Z3 [21], Yices [22], and SMTInterpol [15]. Similarly to SAT4J, SMTIn-
terpol is written in Java and thus, avoids the overhead for calling a non-Java tool.
In Sect. 4.1 we discuss the use of SMT solving in AProVE’s frontends, whereas
Sect. 4.2 focuses on the application of SAT and SMT solvers in AProVE’s backend.
AProVE’s techniques for SMT solving over non-linear integer arithmetic can also
be accessed directly, allowing to use AProVE as an SMT solver for QF NIA, cf.
Sect. 4.3. Finally, in Sect. 4.4 we describe the low-level optimizations that AProVE
uses for its SAT encodings.

4.1 Techniques in the Programming Languages Frontends

There are two main applications for SMT solving in our frontends. During the
construction of the symbolic execution graph, some executions are infeasible and
thus do not need to be considered. For the integer fragment of the analyzed pro-
grams, AProVE uses (incomplete) heuristics to detect typical unsatisfiable condi-
tions quickly, and external SMT solvers for more complex cases.

The other main application for SMT solving in AProVE’s frontends is prov-

18 J. Giesl et al.

ing non-termination of Java programs. The transformation from a programming
language to (int-)TRSs corresponds to an over-approximation of the original pro-
gram, and hence, non-termination proofs operate on the symbolic execution graph
instead of the resulting (int-)TRSs. In [11], we presented two such techniques for
Java, where both strongly rely on SMT solving. The target logics are QF LIA and
QF NIA (the latter is used if the program has non-linear operations).

4.2 Techniques in the Backend

In AProVE’s backend, SAT and SMT solving is used to automatically find termi-
nation proofs. As mentioned in Sect. 3.2, for integer transition systems, AProVE
uses the approaches from [2, 8, 27, 53] to search for linear ranking functions. To
make use of information about the start of computations, AProVE also provides an
implementation of the safety prover-based T2 algorithm [13, 19], using a variant
of the Impact safety proving method [48]. For these, AProVE uses SMT solving for
the logics QF LIA and QF LRA.

To prove termination of term rewrite systems, AProVE can find termination
arguments from several classes of well-founded orders by encoding the search into
SAT or SMT problems. We now describe the use of SAT and SMT solving for
these orders in AProVE. Here, we put most emphasis on orders based on polynomial
interpretations [45], because these are the orders that are used most often for those
TRSs that result from the transformations of programs.

Polynomial Interpretations. Essentially, a polynomial interpretation maps func-
tion symbols f to polynomials fPol over N. This mapping extends homomorphi-
cally to terms, i.e., [x]Pol = x for variables x and [f(t1, . . . , tn)]Pol = fPol([t1]Pol,
. . . , [tn]Pol) for terms f(t1, . . . , tn). Then to compare two terms s � t, one has to
perform a comparison [s]Pol > [t]Pol of polynomials over the natural numbers.11

A termination prover has to automatically find suitable interpretations Pol.
For this, AProVE generates SMT formulas w.r.t. the logic QF NIA with template
unknowns for the coefficients. These formulas are solved via a bitblasting approach
[30]. Here, bitblasting refers to representing the template unknowns as fixed-width
bitvectors and to encoding integer operations as Boolean circuits. Using bitblast-
ing is successful for this application as coefficients from {0, . . . , k} for small values
of k are usually sufficient in practice (e.g., k = 3; see also the discussion in the ex-
periments section of [30]). Since not finding a solution for the constraints does not
imply non-termination, being incomplete is not problematic for our application.

We also implemented variants of polynomial interpretations over Q+ or R+

[32]. For efficiency, AProVE again reduces the resulting search problems to QF NIA
instead of using dedicated QF NRA solvers. While QF NIA is undecidable and
QF NRA is decidable, decision procedures for QF NRA are extremely inefficient.

AProVE applies its bitblasting approach to solve QF NIA also for other ex-
tensions of classic polynomial interpretations, such as polynomial interpretations
with negative coefficients to prove bounded increase [39], polynomial interpreta-
tions with max and min operators [30, 31], matrix interpretations [26], and partly

11 So this concept of polynomial interpretations encompasses both polynomial ranking func-
tions for defined function symbols and size measures / norms / abstractions for constructors
of data structures.

Analyzing Program Termination and Complexity Automatically with AProVE 19

strongly monotonic polynomial interpretations suitable for a combination with in-
ductive theorem proving [34]. Moreover, AProVE uses polynomial interpretations
not only for termination proving, but also for inferring bounds for the runtime
complexity of TRSs [51] and Prolog programs [41].

Arctic Matrix Interpretations. Matrix interpretations [26] are an extension of poly-
nomial interpretations where terms are mapped to tuples instead of single numbers.
In arctic matrix interpretations [44], one uses the max-plus semi-ring instead of the
conventional plus-times semi-ring. The constraints to solve when searching for such
interpretations can be represented as QF LIA constraints. However, for such inter-
pretations AProVE applies a SAT encoding to bitvectors with unary arithmetic
(a variant of order encoding [61]). To represent k different numbers, this encoding
uses bitvectors of length k− 1, whereas the “usual” encoding to binary arithmetic
only requires bitvectors of length dlog2(k)e. In our experiments, our SAT-based
iterative deepening approach for the search space outperforms dedicated SMT
solvers for QF LIA since on our instances, solutions can often be found within a
small search space. Moreover, our encodings to unary arithmetic outperform more
compact SAT encodings to binary arithmetic for the constraints of arctic matrix
interpretations because of the improved propagation of such encodings [16].

KBO and RPO. AProVE also uses an SMT encoding for Knuth-Bendix orders
(KBO) [64]. Here the target logics are QF LIA or QF LRA. For the recursive path
order (RPO) and its variants, AProVE applies dedicated SAT encodings [17].

4.3 AProVE as an SMT Solver for QF NIA

AProVE also provides an SMT-LIB 2 [5] frontend to access its bitblasting tech-
nique [30] for the QF NIA logic. In fact, AProVE participated successfully in the
SMT-COMP [54] competitions of 2010, 2011, 2014, and 2015 for QF NIA. Since
the examples in the underlying SMT-LIB library stem from various application
domains with different requirements, an iterative deepening approach was used to
determine the search space to be encoded to SAT. With this approach, AProVE
reached the first place in this category of SMT-COMP in 2011, 2014, and 2015.

The performance on some QF NIA instances could be improved further if
AProVE were extended to detect when the search space is bounded. Then for
a formula ϕ like x ≥ 10∧ y = x∧ y ≤ 20∧ · · · we would detect that ϕ is satisfiable
over Z iff ϕ is satisfiable over {10, 11, . . . , 20} for the unknowns x, y. This would
not only improve efficiency, but it would also allow AProVE to return UNSAT, as
UNSAT over [10, 20] for x, y would also imply UNSAT over Z. We have not imple-
mented this optimization, though, as the instances obtained from termination and
complexity analysis typically do not exhibit such patterns and UNSAT results are
usually not interesting for termination and complexity analysis.

To access the SMT-LIB 2 frontend of AProVE, the following command line can
be used, where foo.smt2 contains the satisfiability problem.

java -ea -jar aprove.jar -d diologic -m smtlib foo.smt2

Here, diologic denotes Diophantine logic (Diophantine (i.e., integer polynomial)
inequations connected by arbitrary Boolean connectives), which in SMT-LIB ter-

20 J. Giesl et al.

minology is the logic QF NIA. The flag -m specifies the output format. If smtlib

is used, AProVE prints sat or unknown as a very first answer. Note that this way
of using AProVE as an SMT solver for QF NIA incurs the overhead of starting the
Java virtual machine, loading the Java Bytecode for AProVE and relevant libraries,
and just-in-time-compiling this bytecode. While such an overhead is acceptable
in many applications, it is prohibitively expensive when AProVE is used to solve
a large number of dynamically generated small instances (e.g., this is common in
termination analysis). For such applications, AProVE offers a “server” mode, where
it is started once and then receives a stream of problems, outputting results in the
same order. For example, this approach was chosen to integrate AProVE as an SMT
solving backend for the logic programming termination analyzer Polytool [49].

4.4 Low-Level Optimizations for SAT Solving in AProVE

AProVE uses some low-level optimizations on the generated SAT formulas which
are crucial for the efficiency of the subsequent SAT solving. Virtually all SAT sol-
vers take as input only propositional formulas in conjunctive normal form (CNF).
Thus, the formulas resulting from the encoding of the search problems in AProVE
are transformed to equisatisfiable CNFs before calling external SAT solvers. For
this transformation, AProVE uses the Tseitin conversion built into SAT4J.

Tseitin’s transformation incurs a linear overhead in the size of the formula
converted by replacing each non-atomic subformula x ◦ y by a fresh Boolean
variable z and by adding clauses to enforce that z and x ◦ y must be equivalent.

To minimize this overhead, AProVE uses optimizations based on identities over
Boolean formulas, e.g., cancellation for exclusive-or (x ⊕ x ≡ 0) or trivially valid
implications (0 → x ≡ 1). In addition to such local use of identities, AProVE
globally identifies cases of equivalent subformulas by treating equality for ∧ and
∨ modulo associativity, commutativity, and multiplicity, e.g., identifying both x∨
(y∨x) and (x∨y)∨x with (x∨y). Thus, only one additional variable is introduced
by Tseitin’s transformation for all occurrences of such equivalent subformulas.

In principle, we could first construct the formulas from our encodings and
then post-process them using these optimizations. This process would be effi-
cient enough for the local identities, but vastly inefficient for global ones. Thus,
in AProVE we widely make use of structural hashing, i.e., we represent formu-
las as a directed acyclic graph where all syntactically equal subformulas (modulo
associativity, commutativity, and multiplicity for ∧ and ∨) share the same node.

5 Certification of Generated Proofs

Like any large software product, AProVE had (and very likely still has) bugs.
To allow a verification of its results, it can export generated termination, non-
termination, or complexity proofs as machine-readable CPF (Certification Problem

Format)12 files by clicking on the button of the Proof Tree View. Independent
certifiers can then check the validity of all proof steps. Examples for such certifiers
are CeTA [63], CiME/Coccinelle [18], and CoLoR/Rainbow [7]. Their correctness has

12 See http://cl-informatik.uibk.ac.at/software/cpf/

Analyzing Program Termination and Complexity Automatically with AProVE 21

been formally proved using Isabelle/HOL [50] or Coq [6]. To certify a proof in

AProVE’s GUI, one can also call CeTA directly using the button of the Proof
Tree View. At the moment, certification is available for most proof techniques
operating on term rewrite systems, but we cannot yet certify proof techniques
directly operating on Java, C, Haskell, or Prolog.

The “AProVE” entry in Eclipse’s main menu allows to modify the configuration
of AProVE. Most notably, AProVE can run in either full or certified mode. More-
over, online certification can be enabled or disabled. Finally, AProVE can use its
default proof strategy or a user-defined custom proof strategy, where the choice
of the strategy is independent of certification. In the following we explain the dif-
ference between the full and the certified mode as well as the difference between
offline and online certification.

Full Mode with Partial Certificates. In the full mode of AProVE, arbitrary proof
techniques may be used. However, not all of these techniques can be exported to
CPF to be certified afterwards. In order to still provide certifiable proofs in the full
mode of AProVE, we generate partial certificates. Those steps which are covered
by CPF are exported for certification, and all remaining ones are ignored. More
precisely, we extended CPF by an additional element unknownProof for proof steps
which are not supported by CPF. During certification, unknownProof is treated
as an axiom of the form P0 ←− P1 ∧ · · · ∧ Pn. This allows to prove P1, . . . , Pn
instead of the desired property P0. Each Pi can be an arbitrary property such as
(non-)termination of some TRS, and Pi’s subproof can be checked by the certi-
fier again. In this way, it is possible to certify large parts of every termination
proof generated by AProVE. For example, now 90% of AProVE’s proof steps for
termination analysis of the 4367 TRSs in the TPDB can be certified by CeTA.

Moreover, we added a new CPF element unknownInput for properties that can-
not be expressed in CPF, like termination of a Java program. The only applicable
proof step to such a property is unknownProof (i.e., the proof step from the Java
program to an (int-)TRS is not supported by CPF either). Using unknownInput,
CPF files for every proof can be generated. Now the program transformations in
AProVE’s frontends correspond to unknown proof steps on unknown inputs, but
the reasoning in AProVE’s backend can still be checked by a certifier (i.e., proof
steps can transform unknownInput into objects that are expressible in CPF). To
implement partial certification, AProVE analyzes the generated proof tree and for
each proof step, it is checked whether it can be exported to CPF or not.

Certified Mode. In the certified mode, AProVE is restricted to proof techniques
that can be exported to CPF and subsequently be verified. In principle, this could
be restricted further to the techniques supported by a particular chosen certifier.
These restrictions mean that certain proof techniques have to be disabled com-
pletely and that for other proof techniques, some optimizations must be turned
off. Often, these restrictions have to be combined, e.g., some optimizations in the
process of generating ordering constraints may not be used while also restricting
the search to a certain class of well-founded orders. So the certified mode performs
a priori restrictions on proof techniques, whereas in the full mode, certification is
done a posteriori on the generated proof without looking at the configuration of
the proof techniques.

22 J. Giesl et al.

However, on input problems which correspond to unknownInput (i.e., where
there is no CPF export at all), even in certified mode all techniques may be used
in the proof search. For example, this holds for the transformations in AProVE’s
frontends, since currently, CPF is defined only for problems resulting from term
rewriting. Once an intermediate problem is reached which corresponds to a well-
defined problem type of CPF, only certifiable techniques are used. For such prob-
lems, the proofs in the certified mode are fully certifiable, but at the cost of having
to restrict the proof techniques and thereby the power of AProVE. Thus, for some
examples, no proof can be found in the certified mode, whereas the proof succeeds
in the full mode.

Previous versions of AProVE did not have such a certified mode. Therefore,
specialized proof strategies had to be maintained and used to make sure that only
certifiable techniques were used. This maintenance of two strategies – the default
one and the one for certifiable proofs – resulted in quite some overhead. Moreover,
non-expert users could not easily determine which techniques were allowed to
ensure certifiable proof output. In contrast, in the current AProVE version, the
choice between certified and full mode is independent of the strategy. Thus, the
same default strategy can be used for both the certified and the full mode. Here, the
essential idea is that the restrictions on the proof techniques are not encoded in the
strategy as before, but instead they are enforced at runtime. These runtime checks
are hardcoded in AProVE via a mixture of whitelists and blacklists with a minimal
amount of effort: by default, no new technique is admitted, and by overwriting the
implementation of the CPF-export method, a proof technique becomes amenable
for certification. Afterwards one can (partially) deactivate the technique for specific
certifiers which do not support the technique, or turn off specific optimizations.
As a result, the previous stand-alone certified strategy of AProVE for CeTA (a 27k
text-file) was replaced by a few lines of code. We expect that such a certified mode
can also be useful for other termination analysis tools to ease their development
and make their techniques more accessible for certification.

To summarize, in both the full and the certified mode, AProVE may now gen-
erate partial certificates which may contain unknown proofs and unknown inputs.
However, in the certified mode only certifiable techniques are applied whenever
possible, i.e., unknownProofs are only possible for unknownInputs.

Online Certification. Note that regardless of whether one uses the full or the cer-
tified mode, the generated certificate will contain only proof steps that contribute
to the final proof. In particular, if AProVE was aborted during proof search, then
nothing is certified at all; and if AProVE finds a proof of non-termination, then
those proofs steps which claim termination of other parts of the input are not
checked. This is perfectly fine if only the validity of generated proofs should be
established. However, the idea of online certification is to use certification as a
debugging utility for AProVE itself, where the aim is to increase the coverage of
the performed resp. attempted proof steps.

In online certification, every CPF-exportable proof step is immediately checked
by the certifier, no matter whether this step contributes to the final proof, and
no matter whether a full proof can be found at all. Since the final result is un-
known at this point (e.g., it is unknown whether the input is terminating or non-
terminating), AProVE often has to export two proofs for each proof step, namely

Analyzing Program Termination and Complexity Automatically with AProVE 23

a partial termination proof and a partial non-termination proof. Here, partial-
ity refers to the fact that we assume termination (resp. non-termination) of the
resulting problem, which is the way how implications can be expressed in CPF.
So one has to check whether a proof step was sound when attempting to prove
termination and whether it was sound when attempting to prove non-termination.

Clearly, online certification imposes some runtime overhead, but it also has the
highest coverage w.r.t. error detection. At the moment, online certification is only
available for the certifier CeTA.

Thanks to the new concepts of partial certificates and online certification, three
bugs of AProVE have been revealed (and fixed) which could be exploited to prove
termination of a non-terminating TRS. These bugs had not been discovered before
by certification, as the errors occurred when analyzing TRSs resulting from logic
programs.

6 Conclusion

In this system description, we presented a new version of AProVE to analyze
termination of TRSs and programs for four languages from prevailing programming
paradigms (Java, C, Haskell, and Prolog). Moreover, AProVE analyzes the runtime
complexity of Prolog programs and TRSs. We are currently working on extending
AProVE’s complexity analysis to Java as well [14, 29].

AProVE’s power is demonstrated by its regular performance in the annual Ter-
mination Competition [62] and the SV-COMP competition [60], where it won most
categories related to termination of Java, C, Haskell, Prolog, and to termination or
innermost runtime complexity of TRSs. AProVE’s automatically generated termi-
nation proofs can be exported to (partially) check them by automatic certifiers.
Our tool is available as a plug-in of the Eclipse software development environment.
Moreover, the frontends of AProVE for the different programming languages can
also be used separately to couple them with alternative backends. AProVE is avail-
able for download and can be accessed via a web interface [4].

References

1. Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini.
Removing useless variables in cost analysis of Java Bytecode. In SAC ’08, pages 368–375,
2008.

2. Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart programs. In SAS ’10,
pages 117–133, 2010.

3. Maŕıa Alpuente, Santiago Escobar, and Salvador Lucas. Removing redundant arguments
automatically. TPLP, 7(1-2):3–35, 2007.

4. AProVE. http://aprove.informatik.rwth-aachen.de/.
5. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB standard: Version 2.5.

Technical report, The University of Iowa, 2015. Available at http://smt-lib.org/.
6. Yves Bertot and Pierre Castéran. Coq’Art. Springer, 2004.
7. Frédéric Blanqui and Adam Koprowski. CoLoR: A Coq library on well-founded rewrite re-

lations and its application to the automated verification of termination certificates. Math-
ematical Structures in Computer Science, 4:827–859, 2011.

8. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reachability.
In CAV ’05, pages 491–504, 2005.

24 J. Giesl et al.

9. Tim Bray. The JavaScript object notation (JSON) data interchange format. 2014. RFC
7159.

10. Marc Brockschmidt, Carsten Otto, and Jürgen Giesl. Modular termination proofs of
recursive Java Bytecode programs by term rewriting. In RTA ’11, pages 155–170, 2011.

11. Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl. Automated detec-
tion of non-termination and NullPointerExceptions for Java Bytecode. In FoVeOOS ’11,
pages 123–141, 2012.

12. Marc Brockschmidt, Richard Musiol, Carsten Otto, and Jürgen Giesl. Automated termi-
nation proofs for Java programs with cyclic data. In CAV ’12, pages 105–122, 2012.

13. Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination proving through
cooperation. In CAV ’13, pages 413–429, 2013.

14. Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. Ana-
lyzing runtime and size complexity of integer programs. ACM TOPLAS, 38(4):13:1–13:50,
2016.

15. Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An interpolating SMT
solver. In SPIN ’12, pages 248–254, 2012.

16. Michael Codish, Yoav Fekete, Carsten Fuhs, Jürgen Giesl, and Johannes Waldmann. Ex-
otic semiring constraints (extended abstract). In SMT ’12, pages 87–96, 2012.

17. Michael Codish, Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. SAT solving
for termination proofs with recursive path orders and dependency pairs. JAR, 49(1):53–93,
2012.

18. Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Urbain. Au-
tomated certified proofs with CiME3. In RTA ’11, pages 21–30, 2011.

19. Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic termination
proving. In TACAS ’13, pages 47–61, 2013.

20. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL ’77,
pages 238–252, 1977.

21. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
TACAS ’08, pages 337–340, 2008.

22. Bruno Dutertre and Leonardo Mendonça de Moura. The Yices SMT solver, 2006. Tool
paper at http://yices.csl.sri.com/tool-paper.pdf.

23. Eclipse. http://www.eclipse.org/.
24. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT ’03, pages 502–518,

2004.
25. Fabian Emmes, Tim Enger, and Jürgen Giesl. Proving non-looping non-termination au-

tomatically. In IJCAR ’12, pages 225–240, 2012.
26. Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for prov-

ing termination of term rewriting. JAR, 40(2–3):195–220, 2008.
27. Stephan Falke, Deepak Kapur, and Carsten Sinz. Termination analysis of C programs

using compiler intermediate languages. In RTA ’11, pages 41–50, 2011.
28. Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and Thomas Ströder.

Inferring lower bounds for runtime complexity. In RTA ’15, pages 334–349, 2015.
29. Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and Jürgen Giesl. Lower

runtime bounds for integer programs. In IJCAR ’16, pages 550–567, 2016.
30. Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann,

and Harald Zankl. SAT solving for termination analysis with polynomial interpretations.
In SAT ’07, pages 340–354, 2007.

31. Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann,
and Harald Zankl. Maximal termination. In RTA ’08, pages 110–125, 2008.

32. Carsten Fuhs, Rafael Navarro-Marset, Carsten Otto, Jürgen Giesl, Salvador Lucas, and
Peter Schneider-Kamp. Search techniques for rational polynomial orders. In AISC ’08,
pages 109–124, 2008.

33. Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and Stephan Falke.
Proving termination of integer term rewriting. In RTA ’09, pages 32–47, 2009.

34. Carsten Fuhs, Jürgen Giesl, Michael Parting, Peter Schneider-Kamp, and Stephan Swiders-
ki. Proving termination by dependency pairs and inductive theorem proving. JAR,
47(2):133–160, 2011.

35. Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Automated
termination proofs with AProVE. In RTA ’04, pages 210–220, 2004.

Analyzing Program Termination and Complexity Automatically with AProVE 25

36. Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and disproving termi-
nation of higher-order functions. In FroCoS ’05, pages 216–231, 2005.

37. Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Mechanizing
and improving dependency pairs. JAR, 37(3):155–203, 2006.

38. Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2: Automatic ter-
mination proofs in the dependency pair framework. In IJCAR ’06, pages 281–286, 2006.

39. Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-Kamp. Proving
termination by bounded increase. In CADE ’07, pages 443–459, 2007.

40. Jürgen Giesl, Matthias Raffelsieper, Peter Schneider-Kamp, Stephan Swiderski, and René
Thiemann. Automated termination proofs for Haskell by term rewriting. ACM TOPLAS,
33(2):7:1–7:39, 2011.

41. Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes, and Carsten Fuhs.
Symbolic evaluation graphs and term rewriting – A general methodology for analyzing
logic programs. In PPDP ’12, pages 1–12, 2012.

42. Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Carsten
Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, and
René Thiemann. Proving termination of programs automatically with AProVE. In
IJCAR ’14, pages 184–191, 2014.

43. Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder. Proving termination of
programs with bitvector arithmetic by symbolic execution. In SEFM ’16, pages 234–252,
2016.

44. Adam Koprowski and Johannes Waldmann. Max/plus tree automata for termination of
term rewriting. Acta Cybernetica, 19(2):357–392, 2009.

45. Dallas Lankford. On proving term rewriting systems are Noetherian. Technical Report
Memo MTP-3, Louisiana Technical University, 1979.

46. Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO ’04, pages 75–88, 2004.

47. Daniel Le Berre and Anne Parrain. The SAT4J library, release 2.2. JSAT, 7:59–64, 2010.
48. Ken McMillan. Lazy abstraction with interpolants. In CAV ’06, pages 123–136, 2006.
49. Manh Thang Nguyen, Danny De Schreye, Jürgen Giesl, and Peter Schneider-Kamp. Poly-

tool: Polynomial interpretations as a basis for termination analysis of logic programs.
TPLP, 11(1):33–63, 2011.

50. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Springer, 2002.

51. Lars Noschinski, Fabian Emmes, and Jürgen Giesl. Analyzing innermost runtime com-
plexity of term rewriting by dependency pairs. JAR, 51(1):27–56, 2013.

52. Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl. Automated
termination analysis of Java Bytecode by term rewriting. In RTA ’10, pages 259–276,
2010.

53. Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI ’04, pages 239–251, 2004.

54. SMT-COMP. http://www.smt-comp.org/.
55. Fausto Spoto, Lunjin Lu, and Fred Mesnard. Using CLP simplifications to improve Java

Bytecode termination analysis. ENTCS, 253(5):129–144, 2009.
56. Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyser for Java Bytecode

based on path-length. ACM TOPLAS, 32(3):8:1–8:70, 2010.
57. Thomas Ströder, Peter Schneider-Kamp, and Jürgen Giesl. Dependency triples for im-

proving termination analysis of logic programs with cut. In LOPSTR ’10, pages 184–199,
2011.

58. Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten Fuhs, Jera
Hensel, and Peter Schneider-Kamp. Proving termination and memory safety for programs
with pointer arithmetic. In IJCAR ’14, pages 208–223, 2014.

59. Thomas Ströder, Cornelius Aschermann, Florian Frohn, Jera Hensel, and Jürgen Giesl.
AProVE: Termination and memory safety of C programs (competition contribution). In
TACAS ’15, pages 417–419, 2015.

60. SV-COMP. http://sv-comp.sosy-lab.org/.
61. Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling

finite linear CSP into SAT. Constraints, 14(2):254–272, 2009.
62. Termination Comp. http://termination-portal.org/wiki/Termination_Competition.
63. René Thiemann and Christian Sternagel. Certification of termination proofs using CeTA.

In TPHOLs ’09, pages 452–468, 2009.
64. Harald Zankl, Nao Hirokawa, and Aart Middeldorp. KBO orientability. JAR, 43(2):173–

201, 2009.

26 J. Giesl et al.

A Proofs

To define the removal of arguments formally, we use a suitable argument filter.

Definition 13 (Argument Filter [37]) An argument filter π for a signature
Σ maps every n-ary function symbol to a (possibly empty) list [i1, . . . , ik] with
1 ≤ i1 < . . . < ik ≤ n. The signature Σπ consists of all function symbols f ∈ Σ,
but for π(f) = [i1, . . . , ik], the arity of f in Σπ is k. Every argument filter π induces
a mapping from T (Σ,V) to T (Σπ,V) as follows.

π(t) =

{
t if t is a variable
f(π(ti1), . . . , π(tik)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , ik].

For every int-TRS R, we define π(R) = {π(`)→ π(r) JϕK | `→ r JϕK ∈ R}.

Let N be the set of needed argument positions of Def. 2. Then we define the
needless argument filter πN as πN (f) = [] for f ∈ Z and πN (f) = [i1, . . . , ik] for
any f ∈ Σc ∪Σd, where {i1, . . . , ik} = {i | (f, i) ∈ N} and ij < ij+1 for all j.

Theorem 3 (Soundness of Slicing) Let R be an int-TRS and let R′ result from
filtering away all argument positions that are not needed according to Def. 2, i.e.,
R′ = πN (R). Then R terminates iff R′ terminates.

Proof In the following, we often write s ↪→σ
ρ t to denote the rule ρ and the substi-

tution σ used in the rewrite step.
Soundness: For any argument filter π, non-termination of R implies non-termina-
tion of π(R), since every (root) rewrite step s ↪→`→r JϕK t implies that we have
π(s) ↪→π(`)→π(r) JϕK π(t).

Completeness: For readability, in the following we write “π” instead of “πN”.

Let s1 ↪→σ1

π(`1)→π(r1) Jϕ1K s2 ↪→
σ2

π(`2)→π(r2) Jϕ2K · · · be an infinite reduction w.r.t.

π(R). Our goal is to construct an infinite reduction w.r.t. R.
W.l.o.g., we can assume that the left-hand sides `i of the rules inR only contain

function symbols that also occur on right-hand sides of R. The reason is that all
other rules can be used only a finite number of times at the beginning of a reduction
and thus, any infinite reduction has a suffix that satisfies our assumption.

Note that if there are subterms f(t1, . . . , tn) and f(t′1, . . . , t
′
n) on left-hand sides

where (f, i) /∈ N , then there exists a term ui such that both ti and t′i match ui. The
reason is that some right-hand side must contain a subterm f(u1, . . . , ui, . . . , un)
and by the “matching” condition in Def. 2, ui has the desired property. In other
words, one can always find a term u which is matched by all ith arguments of f
on left-hand sides. We say that such a term u is (f, i)-compatible. A term s has
the lhs matching property iff the following holds: if (f, i) /∈ N , then any f -subterm
of s has some (f, i)-compatible term on its ith argument. Here, an “f -subterm” is
a term with f on its root position.

We now construct a term s1 with π(s1) = s1 that starts an infinite reduction
w.r.t. R. To this end, we define a function unfilter : T (Σπ,V) → T (Σ,V) with
unfilter(x) = x for x ∈ V and unfilter(f(ti1 , . . . , tik)) = f(t′1, . . . , t

′
n) if the arity

of f in Σ is n. Here, we have t′i = unfilter(ti) if i ∈ π(f) and t′i is some (f, i)-
compatible term if i /∈ π(f). Then we choose s1 = unfilter(s1). By construction,
we then have π(s1) = s1 and s1 has the lhs matching property.

Analyzing Program Termination and Complexity Automatically with AProVE 27

Any matcher σ1 for the filtered reduction can now be extended to a matcher
for the non-filtered case. So from π(`1)σ1 = s1, our construction of s1, and the
“non-linearity” condition in Def. 2, we can conclude that there is a substitution
σ1 with `1σ1 = s1 such that π(`1σ1) = s1 = π(`1)σ1. By the condition “con-
straint” in Def. 2, we can define σ1 to coincide with σ1 on all variables from ϕ̂1.
By the condition “propagation”, σ1 can be extended to ϕ1’s remaining variables
such that ϕ1σ1 = ϕ1σ1 is valid, and hence, s1 ↪→σ1

`1→r1Jϕ1K s2, where s2 = r1σ1.

Due to the condition “propagation” in Def. 2, the root symbols of needed sub-
terms in s2 = r1σ1 coincide with the corresponding ones in s2 = π(r1)σ1. Thus,
we obtain π(s2) = s2. By construction, s2 also has the lhs matching property.
Hence, by repeating the above construction, one finally obtains an infinite reduc-
tion s1 ↪→σ1

`1→r1 Jϕ1K s2 ↪→
σ2

`2→r2 Jϕ2K · · · ut

The idea of the chaining simplification is to combine rules by narrowing. Nar-
rowing of a term (or rule) is similar to performing a standard rewrite step. However,
whereas in rewriting we apply a rule ` → r to a term t by finding a matcher σ
such that `σ = t, in narrowing, we search for a unifier µ such that `µ = tµ holds.

Definition 14 (Narrowing) A term t′ is a narrowing of the term t with the int-
rule ` → r JϕK using the unifier µ (written t µ

`→r JϕK t
′) if µ is the most general

unifier of ` and t and t′ = rµ. Here we always assume that ` and t are variable
disjoint (otherwise the variables in the rule are renamed).

Note that our form of narrowing differs from the narrowing of dependency pairs
in [37], where narrowing steps take place only below the root position, whereas
here we narrow only at the root position.

As mentioned, R→f = {` → r JϕK ∈ R | root(r) = f} consists of all rules
where f is the root symbol of the right-hand side and Rf→ = {` → r JϕK ∈ R |
root(`) = f} are all rules where f is the root of the left-hand side.

Definition 15 (f-chained System R−f) Let R be an int-TRS and let f ∈ Σd
such that R→f ∩Rf→ = ∅. Then we define the f-chained system as R−f =
(R\(R→f ∪Rf→))∪R′, whereR′ = {`µ→ r′ J(ϕ∧ϕ)µK | `→ r JϕK ∈ R→f , `→
r JϕK ∈ Rf→, r µ

`→r JϕK
r′}.

Theorem 5 (Soundness of Chaining) Let R be an int-TRS and f be as in
Def. 15. Then R terminates iff R−f terminates.

Proof
Soundness: Let t1 ↪→σ1

`1→r1 Jϕ1K t2 ↪→
σ2

`2→r2 Jϕ2K · · · be an infiniteR-reduction where

we assume that `i → ri JϕiK and `j → rj JϕjK are variable disjoint whenever i 6= j.
W.l.o.g. let `1 → r1 Jϕ1K /∈ Rf→. For every i where `i → ri JϕiK ∈ R→f we

have `i+1 → ri+1 Jϕi+1K ∈ Rf→, since root(ri) = f .
Moreover, ti = `iσi, ti+1 = riσi = `i+1σi+1, and both ϕiσi and ϕi+1σi+1 are

valid. So there is a µ = mgu(ri, `i+1) such that ri
µ
`i+1→ri+1 Jϕi+1K ri+1µ and

`iµ→ ri+1µ J(ϕi ∧ ϕi+1)µK ∈ R′ ⊆ R−f , with R′ as in Def. 15.
As `i → ri JϕiK and `i+1 → ri+1 Jϕi+1K are variable disjoint, there exists a

substitution γ such that µγ is like σi for all variables in `i → ri JϕiK and like
σi+1 for all variables in `i+1 → ri+1 Jϕi+1K. Hence, `iµγ = `iσi = ti, ri+1µγ =
ri+1σi+1 = ti+2, and both ϕiµγ = ϕiσi and ϕi+1µγ = ϕi+1σi+1 are valid. Thus,
ti ↪→γ

`iµ→ri+1µJ(ϕi∧ϕi+1)µK ti+2.

28 J. Giesl et al.

By iterating this replacement of rule applications from R→f , we also eliminate
all applications of rules from Rf→, since they are always preceded by a rule from
R→f . In this way, we obtain an infinite reduction w.r.t. R−f .

Completeness: Every infinite reduction w.r.t. R−f can be transformed into an
infinite reduction w.r.t. R. The reason is that whenever t rewrites to t′ with a
rule from R′ ⊆ R−f , then t also rewrites to t′ in 2 steps with R. To see this,
let t ↪→σ

`µ→r′ J(ϕ∧ϕ)µK t
′. Hence, ϕµσ and ϕµσ are valid. Here, both ` → r JϕK

and ` → r JϕK are from R and r µ

`→r JϕK
r′ (i.e., rµ = `µ and r′ = rµ). Thus,

t = `µσ ↪→µσ
`→r JϕK rµσ = `µσ ↪→µσ

`→r JϕK
rµσ = r′σ = t′. ut

For any term t, we can define IA(t) and TA(t) formally using argument filters.
We define the integer argument projection that removes all term arguments as
πIA(f) = [] for f ∈ Z and πIA(f) = [i1, . . . , ik] for any f ∈ Σc ∪ Σd, where
{i1, . . . , ik} = {i | (f, i) ∈ IA} and ij < ij+1 for all j. The term argument
projection πTA is defined analogously, retaining only term arguments. Then we
have IA(t) = πIA(t) and TA(t) = πTA(t).

Before proving Thm. 8, we recapitulate the definition of reduction pairs.

Definition 16 (Reduction Pairs [37]) We call (%,�) a reduction pair iff % is
reflexive, transitive, and closed under substitutions (i.e., s % t implies sσ % tσ
for all σ), � is closed under substitutions and well founded, and � and % are
compatible (i.e., � ◦ % ⊆ � or % ◦ � ⊆ �). For a reduction pair and an int-TRS
R, we define the sets R� = {` → r JϕK | ϕ =⇒ ` � r} and R% = {` → r JϕK |
ϕ =⇒ ` % r}.

Note that in contrast to the standard definition of reduction pairs [37], here %
does not have to be closed under contexts since we only regard rewrite steps at
the root position.

Theorem 8 (Reduction Pairs From Projections) Let R be an int-TRS. If
(%IA,�IA) is a reduction pair for IA(R), then (%,�) is a reduction pair for R
where t1 � t2 holds iff IA(t1) �IA IA(t2) and t1 % t2 holds iff IA(t1) %IA IA(t2).
The same holds for the restriction TA.

Proof We show that transitivity of %IA implies transitivity of %. Note that t1 % t2
and t2 % t3 implies IA(t1) %IA IA(t2) and IA(t2) %IA IA(t3) by definition. By
transitivity of %IA, we have IA(t1) %IA IA(t3) which implies t1 % t3. For all
other properties, the proof is completely analogous. ut

To prove Thm. 11, we need a few intermediate lemmas. First, we show that th
is “monotonic” w.r.t. data substitutions, i.e., for any term t, its term height th(t)
is not greater than the term height of any instantiation tσ.

Lemma 17 (Term Height is Monotonic w.r.t. Substitutions) Let t ∈
T (Z ∪Σc,V) and σ : V → T (Z ∪Σc,V). Then th(t) ≤ th(tσ).

Proof The proof is by induction on the term structure. In the base case, we either
have t ∈ Z and then t = tσ and thus th(t) = th(tσ), or t ∈ V and then th(t) = 0 ≤
th(tσ). In the induction step, let t = f(t1, . . . , tn). Then we have

th(s) = 1 + max{th(ti) | 1 ≤ i ≤ n}
≤ 1 + max{th(tiσ) | 1 ≤ i ≤ n} by the induction hypothesis

= th(tσ) ut

Analyzing Program Termination and Complexity Automatically with AProVE 29

We also need the following lemma about the relation between the term height
of a variable occurring at a term position of t and the term height of t.

Lemma 18 (Lower Bounds for Term Height) Let t ∈ T (Z ∪ Σc,V), x ∈
VTA(t), and σ : V → T (Z ∪Σc,V). Then th(xσ) + nl(t, x) ≤ th(tσ).

Proof We prove the lemma by induction. In the base case, x ∈ VTA(t) implies
t = x. Then th(xσ) +nl(x, x) = th(xσ). In the induction step, let t = f(t1, . . . , tn).
Then we have

th(xσ) + nl(t, x)

= th(xσ) + 1 + max{nl(ti, x) | 1 ≤ i ≤ n, x ∈ VTA(ti)} as x ∈ VTA(t)

= 1 + max{th(xσ) + nl(ti, x) | 1 ≤ i ≤ n, x ∈ VTA(ti)}
≤ 1 + max{th(tiσ) | 1 ≤ i ≤ n, x ∈ VTA(ti)} by the ind. hypothesis

≤ 1 + max{th(tiσ) | 1 ≤ i ≤ n}
= th(tσ) ut

Finally, we also prove the following lemma about the relation between the term
height of an instantiated term tσ and the term heights th(xσ) of the variables x
occurring in t. In this way, we obtain an upper bound for the term height th(tσ).

Lemma 19 (Upper Bounds for Term Height) Let t ∈ T (Z ∪Σc,V) and σ :
V → T (Z∪Σc,V). Then th(tσ) ≤ max{th(t),max{th(xσ)+nl(t, x) | x ∈ VTA(t)}}.

Proof Again, we prove the lemma by induction. In the base case, we consider
three cases. For t = x ∈ V, we have th(xσ) = max{th(x), th(xσ) + nl(x, x)}, since
th(x) = nl(x, x) = 0. For t ∈ Σc, we have th(tσ) = th(t) = 1 = max{th(t)}. Finally,
for t ∈ Z, we have th(tσ) = 0, which is a lower bound for any term height. In the
induction step, let t = f(t1, . . . , tn).

th(tσ) = 1 + max{th(tiσ) | 1 ≤ i ≤ n}
≤ 1 + max{max{th(ti),

max{th(xσ) + nl(ti, x) | x ∈ VTA(ti)}} | 1 ≤ i ≤ n} by the ind. hyp.

= max{1 + max{th(ti) | 1 ≤ i ≤ n},
1 + max{th(xσ) + nl(ti, x) | 1 ≤ i ≤ n, x ∈ VTA(ti)}}

= max{th(t),max{th(xσ) + 1 + nl(ti, x) | 1 ≤ i ≤ n, x ∈ VTA(ti)}}

≤ max{th(t),max{th(xσ) + nl(t, x) | x ∈ VTA(t)}} as
⋃

1≤i≤n

VTA(ti) =VTA(t)

ut

For the proof of Thm. 11, we define the replacement of non-integer subterms
by their height formally.

Definition 20 (Term Height Projection πth) Let t = f(t1, . . . , tn) for some
f ∈ Σd, t1, . . . , tn ∈ T (Z ∪Σc,V). Then πth(t) = f(t̂1, . . . , t̂n) with

t̂i =

{
ti if (f, i) 6∈ TA
th(ti) otherwise

30 J. Giesl et al.

We can now prove the soundness of termination proving by the term height
projection.

Theorem 11 (Soundness of Term Height Projection) Let R be an int-TRS.
If Πth(R) terminates, then R also terminates.

Proof We show that if R has an infinite reduction t1 ↪→R t2 ↪→R · · · , then there
is also the infinite reduction πth(t1) ↪→Πth(R) πth(t2) ↪→Πth(R) · · · To this end, we
prove that

s = f(s1, . . . , sn) ↪→σ
`→r JϕK g(t1, . . . , tm) = t implies

πth(s) = f(ŝ1, . . . , ŝn) ↪→σ′

Πth(`→r JϕK) g(t̂1, . . . , t̂m) = πth(t)

for a suitable substitution σ′. Let ` = f(`1, . . . , `n) and r = g(r1, . . . , rm). Then
according to Def. 10, we have Πth(`→ r JϕK) = f(`′1, . . . , `

′
n)→ g(r′1, . . . , r

′
m) Jϕ∧

ψK, where `′i is a fresh variable hi if (f, i) ∈ TA, and otherwise `′i = `i. Similarly,
r′i is a fresh variable h′i if (g, i) ∈ TA and otherwise r′i = ri. We now define σ′ as
follows.

σ′(x) =

th(σ(x)) if x ∈ VTA(`) ∪ VTA(r)

th(si) if x = hi

th(ti) if x = h′i

σ(x) otherwise

Now we show that f(ŝ1, . . . , ŝn) ↪→σ′

f(`′1,...,`
′
n)→g(r′1,...,r′m) Jϕ∧ψK g(t̂1, . . . , t̂m).

First note that the left-hand side of the rule matches f(ŝ1, . . . , ŝn) using the
matcher σ′. In other words, we have `′iσ

′ = ŝi for all 1 ≤ i ≤ n. The reason is that
if (f, i) ∈ TA, then `′iσ

′ = hiσ
′ = th(si) = ŝi. If (f, i) /∈ TA, then `′iσ

′ = `iσ
′ =

`iσ = si = ŝi. For a similar reason, we have g(r′1, . . . , r
′
m)σ′ = g(t̂1, . . . , t̂m).

It remains to prove that the constraint (ϕ ∧ ψ)σ′ is valid. As σ′ behaves like
σ on integer variables, we have ϕσ′ = ϕσ, and thus validity of ϕσ′ follows from
validity of ϕσ. So we need to consider only the additional conjuncts in ψ.

Conjuncts of the form hi ≥ th(`i) for (f, i) ∈ TA are valid when instantiated
with σ′ because (hi ≥ th(`i))σ

′ iff hiσ
′ ≥ th(`i) iff th(si) ≥ th(`i) iff th(`iσ) ≥

th(`i). The validity of th(`iσ) ≥ th(`i) follows from Lemma 17.
For conjuncts of the form x+ nl(`i, x) ≤ hi with (f, i) ∈ TA and x ∈ VTA(`i),

we have (x+nl(`i, x) ≤ hi)σ′ iff xσ′+nl(`i, x) ≤ hiσ′ iff th(xσ) +nl(`i, x) ≤ th(si)
iff th(xσ) + nl(`i, x) ≤ th(`iσ). This is a consequence of Lemma 18.

Now we consider conjuncts of the form x ≥ 0 for (f, i) ∈ TA and x ∈ VTA(`i).
Here we have (x ≥ 0)σ′ iff xσ′ ≥ 0 iff th(xσ) ≥ 0. This is clearly valid as th always
yields a non-negative number. The validity of the corresponding conjuncts for the
height variables h′i on the right-hand side can be shown in an analogous way.

Finally, we consider the conjunct h′i ≤ max{th(ri),max{x + nl(ri, x) | x ∈
VTA(ri)}} where (g, i) ∈ TA and x ∈ VTA(ri). We have (h′i ≤ max{th(ri),max{x+
nl(ri, x) | x ∈ VTA(ri)}})σ′ iff h′iσ

′ ≤ max{th(ri),max{xσ′ + nl(ri, x) | x ∈
VTA(ri)}} iff th(ti) ≤ max{th(ri),max{th(xσ) + nl(ri, x) | x ∈ VTA(ri)}} iff
th(riσ) ≤ max{th(ri),max{th(xσ) + nl(ri, x) | x ∈ VTA(ri)}}. This is a conse-
quence of Lemma 19. ut

