23,078 research outputs found

    The shadow approach : an orphan detection protocol for mobile agents

    Get PDF
    Orphan detection in distributed systems is a well researched field for which many solutions exist. These solutions exploit well defined parent-child relationships given in distributed systems. But they are not applicable in mobile agent systems, since no similar natural relationship between agents exist. Thus new protocols have to be developed. In this paper one such protocol for controlling mobile mobile agents and for orphan detection is presented. The shadow' approach presented in this paper uses the idea of a placeholder (shadow) which is assigned by the agent system to each new agent. This defines an artificial relationship between agents and shadow. The shadow records the location of all dependent agents. Removing the root shadow implies that all dependent agents are declared orphan and are eventually terminated. We introduce agent proxies that create a path from shadow to every agent. In an extension of the basic protocol we additionally allow the shadow to be mobile. The shadow approach can be used for termination of groups of agents even if the exact location of each single agent is not known

    Shortest, Fastest, and Foremost Broadcast in Dynamic Networks

    Full text link
    Highly dynamic networks rarely offer end-to-end connectivity at a given time. Yet, connectivity in these networks can be established over time and space, based on temporal analogues of multi-hop paths (also called {\em journeys}). Attempting to optimize the selection of the journeys in these networks naturally leads to the study of three cases: shortest (minimum hop), fastest (minimum duration), and foremost (earliest arrival) journeys. Efficient centralized algorithms exists to compute all cases, when the full knowledge of the network evolution is given. In this paper, we study the {\em distributed} counterparts of these problems, i.e. shortest, fastest, and foremost broadcast with termination detection (TDB), with minimal knowledge on the topology. We show that the feasibility of each of these problems requires distinct features on the evolution, through identifying three classes of dynamic graphs wherein the problems become gradually feasible: graphs in which the re-appearance of edges is {\em recurrent} (class R), {\em bounded-recurrent} (B), or {\em periodic} (P), together with specific knowledge that are respectively nn (the number of nodes), Δ\Delta (a bound on the recurrence time), and pp (the period). In these classes it is not required that all pairs of nodes get in contact -- only that the overall {\em footprint} of the graph is connected over time. Our results, together with the strict inclusion between PP, BB, and RR, implies a feasibility order among the three variants of the problem, i.e. TDB[foremost] requires weaker assumptions on the topology dynamics than TDB[shortest], which itself requires less than TDB[fastest]. Reversely, these differences in feasibility imply that the computational powers of RnR_n, BΔB_\Delta, and PpP_p also form a strict hierarchy

    A protocol for orphan detection and termination in mobile agent systems

    Get PDF
    Orphan detection and termination in distributed systems is a well researched field for which many solutions exist. These solutions exploit well defined parent-child relationships given in distributed systems. But they are not applicable in mobile agent systems, since no similar natural relationship between agents exist. Thus new protocols have to be developed. In this paper one such protocol for orphan detection and agent termination is presented. First we present two approaches, the energy concept and the path concept. The energy concept is a passive termination protocol, and the path concept is a protocol for finding agents, that can be used to implement active termination. The energy' approach is based on the idea that an agent is provided with a limited amount of energy, which can be spent in exchange for the resources used by the agent. From time to time the agent has to request additional energy from its creator. The agent is terminated as soon as the energy falls to 0. This approach to agent termination implicitly implements orphan detection, i.e. if the creator has terminated, the dependent agents are killed as soon as they have no energy left. The path' approach uses a chain of proxies. As soon as an agent leaves a location, a proxy is created that points to the new location. By following the chain of proxies, the path, one can find any agent, and consequently terminate it. Both approaches have disadvantages. By merging them on different levels we create a protocol that combines the advantages of both approaches, and at the same time minimizes the disadvantages. The shadow' approach uses the idea of a placeholder (shadow) which is assigned by the agent system to each new agent. The shadow records the location of all dependent agents. Removing the root shadow implies that all dependent shadows and agents are terminated recursively

    Certified Universal Gathering in R2R^2 for Oblivious Mobile Robots

    Full text link
    We present a unified formal framework for expressing mobile robots models, protocols, and proofs, and devise a protocol design/proof methodology dedicated to mobile robots that takes advantage of this formal framework. As a case study, we present the first formally certified protocol for oblivious mobile robots evolving in a two-dimensional Euclidean space. In more details, we provide a new algorithm for the problem of universal gathering mobile oblivious robots (that is, starting from any initial configuration that is not bivalent, using any number of robots, the robots reach in a finite number of steps the same position, not known beforehand) without relying on a common orientation nor chirality. We give very strong guaranties on the correctness of our algorithm by proving formally that it is correct, using the COQ proof assistant. This result demonstrates both the effectiveness of the approach to obtain new algorithms that use as few assumptions as necessary, and its manageability since the amount of developed code remains human readable.Comment: arXiv admin note: substantial text overlap with arXiv:1506.0160

    A consensus based network intrusion detection system

    Full text link
    Network intrusion detection is the process of identifying malicious behaviors that target a network and its resources. Current systems implementing intrusion detection processes observe traffic at several data collecting points in the network but analysis is often centralized or partly centralized. These systems are not scalable and suffer from the single point of failure, i.e. attackers only need to target the central node to compromise the whole system. This paper proposes an anomaly-based fully distributed network intrusion detection system where analysis is run at each data collecting point using a naive Bayes classifier. Probability values computed by each classifier are shared among nodes using an iterative average consensus protocol. The final analysis is performed redundantly and in parallel at the level of each data collecting point, thus avoiding the single point of failure issue. We run simulations focusing on DDoS attacks with several network configurations, comparing the accuracy of our fully distributed system with a hierarchical one. We also analyze communication costs and convergence speed during consensus phases.Comment: Presented at THE 5TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY 2015 IN KUALA LUMPUR, MALAYSI
    • …
    corecore