
Universität Stuttgart
Fakultät Informatik

A Protocol for Orphan Detection and
Termination in Mobile Agent Systems

Joachim Baumann

Bericht 1997/09
July 1997

A Protocol for Orphan Detection and Termi-
nation in Mobile Agent Systems

Joachim Baumann

Email:Joachim.Baumann@informatik.uni-stuttgart.de

Institut für Parallele und Verteilte
Höchstleistungsrechner (IPVR)

Fakultät Informatik
Universität Stuttgart

Breitwiesenstr. 20 - 22
D-70565 Stuttgart

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147540829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

A Protocol for Orphan Detection and Termination
in Mobile Agent Systems

Joachim Baumann

IPVR (Institute for Parallel and Distributed High-Performance Systems)
Breitwiesenstraße 20-22

D-70565 Stuttgart

Phone: +49 711 7816 218
Fax:+49 711 7816 424

EMail: Joachim.Baumann@informatik.uni-stuttgart.de

Abstract

Orphan detection and termination in distributed systems is a well researched field for which
many solutions exist. These solutions exploit well defined parent-child relationships given
in distributed systems. But they are not applicable in mobile agent systems, since no similar
natural relationship between agents exist. Thus new protocols have to be developed. In this
paper one such protocol for orphan detection and agent termination is presented.

First we present two approaches, the energy concept and the path concept. The energy con-
cept is a passive termination protocol, and the path concept is a protocol for finding agents,
that can be used to implement active termination.

The ‘energy’ approach is based on the idea that an agent is provided with a limited amount
of energy, which can be spent in exchange for the resources used by the agent. From time
to time the agent has to request additional energy from its creator. The agent is terminated
as soon as the energy falls to 0. This approach to agent termination implicitly implements
orphan detection, i.e. if the creator has terminated, the dependent agents are killed as soon
as they have no energy left.

The ‘path’ approach uses a chain of proxies. As soon as an agent leaves a location, a proxy
is created that points to the new location. By following the chain of proxies, the path, one
can find any agent, and consequently terminate it.

Both approaches have disadvantages. By merging them on different levels we create a pro-
tocol that combines the advantages of both approaches, and at the same time minimizes the
disadvantages.

The ‘shadow’ approach uses the idea of a placeholder (shadow) which is assigned by the
agent system to each new agent. The shadow records the location of all dependent agents.
Removing the root shadow implies that all dependent shadows and agents are terminated
recursively. We demonstrate that the shadow approach can be used for termination of
groups of agents even if the exact location of each single agent is not known. We show that
shadow protocol is less fault-sensitive than the path approach and needs less communica-
tion cost than the energy approach.



1 Introduction 2

1 Introduction
A mobile agent is seen as a piece of software roaming the network on behalf of a user, e.g.
searching for information in different databases, buying a flight ticket and renting a car, or trying
to find the cheapest flower shop. Mobile agents seem to be the solution to many of the problems
in the area of distributed systems. But while the idea of mobile agents is quite appealing, and
while many researchers are working in this area, some very important problems have not been
solved. Most of the research concentrates on providing the basic system support for migration,
communication, the security of the platform underlying the agent system and for the asynchro-
nous operation of agents. Some solutions for these problems already exist and have been imple-
mented in different agent systems (e.g. [StBaHo96], [Aglets97], [White94a], [GenMag97,
[BaTsVi96]).

But in the area of termination and orphan detection in agent systems no solutions have been im-
plemented until now.

Termination and orphan detection in an agent system are very important both from the user’s
and from the system side, because a running agent uses resources which are valuable to both
user and system. The user has to pay for resources, and the system has only a limited amount of
them. So if the user does not need the results of a distributed computation in progress (e.g. a
group of ten agents on different systems), he wants to be able to terminate it to be able minimize
the resulting cost. Orphan detection guarantees that even if the termination mechanism has
failed, the now useless agents can be determined by the system and ended, thus freeing the re-
sources they have bound.

In this paper we will investigate two approaches, the ‘energy’ approach and the ‘path’ approach.
After discussing the advantages and disadvantages of both we present a new protocol, the so-
called shadow protocol, that combines both approaches.

In section 2 we define the meaning of orphan detection and termination in Mobile-Agent-Sys-
tems. Section 3 presents our agent model, and section 4 defines the requirements for protocols
in the area of Mobile-Agent-Systems from different points of view. In section 5 we discuss the
energy approach, followed by the path concept in section 6. In section 7 the shadow protocol is
presented with different extensions and optimizations. Section 8 compares the different proto-
cols presented in the light of the requirements found in section 4, section 9 presents related
work, and in section 10 the conclusion and outlook is given. The appendix A contains the dif-
ferent protocols expressed in pseudo object-oriented notation.

2 Orphan Detection and Termination in Mobile-Agent-Systems
In this section we will present our view of orphan detection and termination in Mobile Agent
Systems, which differs substantially from the notion taken in the area of distributed systems.

2.1 Orphan Detection

Orphan detection is a means to find out if an agent is still needed by the application using it. If
it is not, it is an orphan and can be terminated. This decision is by no means trivial because nor-
mal parent-child relations as in distributed systems, e.g. Client-Server relationship or in the
RPC-paradigm, the relationship between caller and called, might not exist. Thus to provide such
a mechanism we have to artificially establish a structure that provides some sort of relation.



2 Orphan Detection and Termination in Mobile-Agent-Systems 3

Typical relationships in “normal” distributed systems are:

• the Client/Server relationship, in which a server activity has a clear relation to a request (or
number of requests) sent by a client. The server can declare its activity as orphan as soon
as it gets to know the client exists no longer (see e.g. [Tanenb95, ComSte93]).

• distributed systems with migrating processes, where a process has at every time a parent
process (the creating process) it depends on (see e.g. the V distributed system [Goscin91).
This allows to determine if a process is an orphan by examining the parent process.

• garbage collection in distributed systems, where some distinguished objects, called root ob-
jects, are known to be no orphans (e.g. because they communicate with a user). An object
having neither a reference (direct or indirect) to such an object nor the ability to get one
such reference in the future is declared an orphan and terminated (see e.g. the work on Stub
Scion Pair Chains [Shapiro92]). While this is not intuitively seen as being in the same prob-
lem area as the first two problems, it is e.g. presented in [BagPiu96], how these can be used
to track resource allocation in mobile environments.

The main problem with orphan detection in Mobile Agent Systems is that in contrast to “nor-
mal” distributed systems, there does not necessarily exist an easily identifiable relationship be-
tween the participants in a distributed computation. Let us assume an agent creates another
agent, informs it to report the result of its task to a third agent that not even exists yet, and ter-
minates. The second agent now depends on the third agent, not on the one that created it. But
this third agent might only exist at some time in the future to receive the result. Is now the second
agent an orphan? No, but a system cannot determine that without additional information.

In each of the three areas mentioned above the dependency between the participants defines, in
a natural way, what an orphan is and how it can be detected. This is not possible in an agent
system, because no dependency is defined by an underlying paradigm, as in Client/Server inter-
actions, with migrating processes, or in the area of distributed garbage collection.

What has to be done is to create such a relationship artificially. This of course redefines the term
“orphan” in the context of this dependency. This in turn restricts the area of use for a protocol
exploiting this dependency to the only those problem areas in which this artificial relationship
doesn’t collide with the problem solution. It follows that if such a road is taken there cannot exist
the one solution to orphan detection for all possible relationships. There has to be a suite of pro-
tocols tailored to different needs instead. Relationships might be dictated by the interaction pat-
terns of agents, by application specific needs or simply by the preference of the programmer.
We will discuss three possible means to define such relationships in the course of the paper.

There is one problem with such an artificial construct. It cannot be deduced from the environ-
ment, i.e. not locally by examining only the agent and its communication pattern, if it is an or-
phan. To decide this, additional information has to be conveyed, normally by the means of com-
munication, which implies additional cost for the protocol. One concept that gets away without
an explicit structure and thus without the additional communication cost (on the system level)
is the energy concept that employs the use of resources as the determining factor.

2.2 Termination

In this paper we view the termination problem in the area of agent systems as the problem of
how to terminate i.e., to end an agent that is somewhere in the network. This is different from



3 The Agent Model 4

the definition in the area of distributed systems, where the termination problem is the problem
how to determine when a distributed computation has been finished [Matter89].

Termination in the context of mobile agents can be done two different ways. The first is to some-
how find the agent in the network and terminate it then (active termination).The second is to
change the status of the agent in question to that of an orphan, and let the system remove it (pas-
sive termination), which does not necessarily imply searching the agent.

3 The Agent Model
In this section we will give you only a short overview
of our agent model, that has been described in much
more detail in [StBaHo96] and [BaumEA97]. Our
model of an agent-based system - as various other
models - is mainly based on the concepts of agents
and locations. An agent system consists of a number
of (abstract) locations, being the home of various
services. Agents are active entities, which may move
from location to location to meet other agents and
access the locations’ services. In our model, agents may be multi-threaded entities, whose state
and code is transferred to the new location when agent migration takes place. Locations provide
the environment for safely executing local as well as visiting agents.

Each agent is identified by a globally unique agent identifier. An agent’s identifier is generated
by the system at agent creation time. The creating location can be derived from this name. It is
independent of the agent’s current location, i.e. it does not change when the agent moves to a
new location. In other words, the applied identifier scheme provides location transparency.

A location is entirely located at a single node of the underlying network, but multiple locations
may be implemented on a given node. For example, a node may provide a number of locations,
each one assigned to a certain agent community, allowing access to a certain set of services or
implementing a certain prizing policy. Locations are divided into two types, depending on the
connectivity of the underlying system. If a system is connected to the network all the time (bar-
ring network failures and system crashes), a location on this systems is calledconnected. If a
system is only part-time connected to the network, e.g. a user’s PDA (Personal Digital Assist-
ant), the location is calledassociated.

4 Requirements
In this section we define the requirements for orphan detection and termination protocols in Mo-
bile Agent Systems. One set of requirements can be derived from the general requirements
found in termination and orphan detection protocol in the area of distributed systems (see e.g.
[Matter89]). These describe properties of a protocol for distributed systems in general:

• No restriction concerning the communication model.

• No restriction concerning the order of messages.

• No acknowledgement of every single message.

• No restriction concerning the topology of the agent system.

• No global time.

migration

location B

location C
application

service agent

H

mobile agent

location A

Figure 1: The Agent Model



5 The Energy Concept 5

• No freezing of the application or the agent system to obtain global knowledge.

• Well-defined fault semantics (this includes partitioning of the network, crashes of agent or
system).

Specific requirements for an orphan detection and termination protocol can be obtained by ex-
amining the protocol from two viewpoints, the system’s and the agent application’s. While the
system requirements define mainly security-related needs, the application requirements are pri-
marily concerned with the suitability for real applications.

One requirement can be derived from both the system’s and the application’s point of view:

• The impact on the communication costs should be as low as possible.

The system’s point of view gives us the following additional requirements:

• An agent should have only a limited life span.

• The algorithm should have no loopholes. This should hold true for malicious agents on one
hand, and for faulty agents on the other hand.

The following requirements can be derived from the application’s viewpoint. These properties
enable a programmer to use an orphan detection and termination protocol

• An agent should be able to create other agents.

• The system checks if an agent is an orphan (not the agent itself).

• It must be possible to prolong the life span of an agent.

• The concept should support both active and passive termination.

5 The Energy Concept
In this section we present the energy concept, and discuss its advantages and disadvantages.

5.1 The Idea

In its life an agent needs resources, cpu time, memory, I/O, and uses services provided by the
system. Let us assume that each service and each resource consumes some of the energy of the
agent. At the beginning of its life the agent gets an amount of energy, and if all its energy is con-
sumed, it is defined an orphan and can be terminated.

This provides a simple means of determining orphans with the advantage that the activity (i.e.
the use of resources) of agents determines their life span. The disadvantage of this simple ap-
proach is that if a problem needs more energy to be solved than the application assumed, the
agent is not able to finish its task. For instance parallel searches in hierarchical organized data
can be problematic. In such cases it would be very helpful if the agent (or agents) could request
additional energy from the application. An agent that detects that its energy runs low could send
a message to its application and go to sleep, i.e. consume only small quantities of energy. It does
not matter if the application reacts at once, as long as it is guaranteed that in the remaining life
span of the agent the message arrives. This way, the concept is resilient against short-timed net-
work faults and system or application crashes. The maximum time for such faults is simply the
time the agent can live with the remaining energy. The application now decides if the agent gets
more energy. If the application decides to serve the request, it sends the additional amount of
energy to the now known location of the agent.



5 The Energy Concept 6

It has to be ensured though that there is no possibility of outmanoeuvring the mechanism. If an
agent creates another agent, this agent cannot get the same amount the creating agent originally
had. Otherwise a malicious agent can create a child agent that sleeps until the original agent
dies, and then in turn creates a child, thus gaining infinite energy. The obvious solution for this
problem is that the energy the new agent gets has to come from the creating agent. Another pos-
sible loophole exists, if the maximum amount of energy an agent can hold is unlimited.

5.2 The Protocol

The protocol as a whole is presented in appendix
A.1. Here we will discuss the different parts sep-
arately. The protocol is presented in an object-
oriented pseudo notation.

The location on which an agent lives, has to de-
crease the energy of the agent in regular inter-
vals to guarantee the finite lifetime. The de-
crease is dependent on the activity of the agent
(the agent can be put to sleep or awakened by
system methods). If the decrease results in the
agent having no energy left, the system termi-
nates the agent (see Figure 2).

Every system method called by an agent, every
service requested has to check if the agent has
enough energy remaining. If this is the case, the
energy amount is taken from the agent and the
system method called. Afterwards a check for
the remaining energy has to be made by the sys-
tem. This check examines the remaining energy
and if it is under a threshold determined by the
agent programmer or the agent user, the agent is
signalled that the energy is low. Additionally a
flag is set that the agent is in its refilling stage.
This prevents that the agent is signalled more
than once (see Figure 3).

The agent itself decides how to react to this sig-
nal. One of the possible reactions is shown in
Figure 4. Here the agent send a message to its
home asking for more energy, and goes to sleep.

The home system receiving the message can re-
act, e.g. by asking the application if the agent
should continue its work. If an amount of energy
is sent, the receiving agent is informed, its ener-
gy is added to and the agent is wakened.

Regular Intervals:
for each agent

agent.energy = agent.energy - agent.livingCost();
if (livingAgents.find(agent) != null)

checkLowEnergy(agent);
if(agent.energy == 0) remove agent;

sleep(agent)
livingAgents.remove(agent);
agent.livingCost = location.sleepCost();

wake(agent)
livingAgents.add(agent);
agent.livingCost = location.livingCost();

Figure 2: Basic Location methods

SystemMethod(method, agent)
if agent.energy < method.cost

throw NotEnoughEnergy;
agent.energy = agent.energy - method.cost;
method.callMethod(agent);
checkLowEnergy(agent);

receiveEnergy(agentId, amount)
agent = getAgent(agentId);
agent.energy = agent.energy + amount;
agent.receiveEnergy();
if (agent.energy > agent.lowEnergy)

agent.refilling = false;
wake(agent);

receiveMessage(„energyLow“, agentId)
[implement policy];

checkLowEnergy(agent)
if (agent.energy < agent.lowEnergy

AND agent.refilling == false)
agent.energyLow();
agent.refilling = true;

Figure 3: System methods

EnergyLow()
[implement policy]

sendMessage(home, “energyLow”, id);
sleep();

ReceiveEnergy(amount)
[implement policy]

Figure 4: Agent Methods



6 The Path Concept 7

5.3 Discussion

The agent paradigm provides as one of its main advantages the asynchronicity of computations.
By introducing the energy concept, this advantage is reduced. Using the energy concept the
agents are too dependent on their applications. Furthermore, they are dependent on the applica-
tion sending them additional energy in time to model asynchronous operation well. Assume an
application that is started only every other week to check information gathered by its agents.
This application would either have to be started more often only to send energy to its agents, or
the agents would have to be able to store large amounts of energy, which would de facto circum-
vent the mechanism.

A second disadvantage is that the agent programmer has to implement a strategy for refilling the
agent’s energy. Predefined routines, e.g libraries, could be of help, but wouldn‘t change the
problem that the programmer has the responsibility to implement the specific strategy.

The advantages on the other hand are obvious. All information to check if an agent is an orphan
is available locally; no additional communication is necessary, which means that scalability is
given. While the energy concept does not provide additional security for the system, it allows
the identification of the agent owner. This in turn allows e.g. punishment as a reaction to the us-
age of malicious agents.

While the energy concept clearly has strong similarities to a currency concept, it has one major
difference. If a location steals money from each agent that visits it, this stolen money can be used
e.g. to buy something. If a location steals energy, the agent might need a refill of its energy soon-
er, but the stolen energy cannot be used. Thus no additional need for security is introduced by
the energy concept.

The energy concept is by its nature an orphan detection protocol. The system can determine if
an agent is an orphan simply by examining its remaining energy. Active termination cannot be
done with this concept, because the agent cannot be reached by means of the protocol. The ap-
plication has to wait until the agent’s energy has been used up, and then can declare the agent
an orphan by denying it additional energy.

6 The Path Concept

6.1 The Idea

If every agent in the agent system leaves a trail behind, then by knowing where an agent has
been created, this agent can ultimately be found. This can be done by simply following the trail
to its end. After finding the agent it can e.g. be terminated. This idea is not new in the area of
distributed systems (e.g. Emerald [JulEA88]), but has not been used in the area of mobile
agents.



6 The Path Concept 8

6.2 The Protocol

The protocol as a whole is presented in appendix
A.2. As before, we discuss the different parts
separately. The path is composed by creating a
proxy at the current location, storing the new lo-
cation of the agent together with its id. In Figure
5 the system methods for an agent arriving and
leaving a location are given. At arrival nothing
has to be done, but upon leaving a new path
proxy is added to the list of proxies. containing agent id and target of the migration.

Finding agents can be divided in two simple
steps. First we have to check if the agent is on
the current location. If it is not on the current lo-
cation, and no proxy exists for this agent, then
either the path to the agent does not cross the
current location (by asking the home location
this can be avoided) or it does not exist. If a
proxy exists, a request is sent to the target loca-
tion stored in the proxy containing the searching
location and the agent id, asking to find the
agent. The receiving location determines if the
agent is on that location. If that is the case it
sends the information back to the original
searching location. If a proxy exists, the request
is sent onward. This happens until the agent is
found at the end of the path (see Figure 6).

6.3 Shortening the Path

If the information about the whereabouts of the
agent are sent to the home location, the path can
be shortened by setting the target of the proxy at
the home location to the new location. This way
the information can be updated without addi-
tional communication.

The intermediate path is now superfluous and
can be removed. This is done by sending a re-
quest to shorten the path containing the new be-
ginning of the path. A location receiving this re-
quest examines if it is the location toward which
the proxy at the home location points, and if this
is not the case, sends the request onward and re-
moves the path proxy (see Figure 7). Addition-
ally, if the agent moves back to a location it vis-
ited before, the now circular path can be cut
short. This can be done using exactly the same method.

onArrival(agent)
agentList.add(agent);

onLeaving(agent, target)
agentList.remove(agent);
pathProxyList.add(newPathProxy(agent.id,target));
SendAgent(target, agent);

Figure 5: Creating a trail

find(agentId)
if (agentList.find(agentId) != null)

return(this)
pathProxy = pathProxyList.find(agentId);
if(pathProxy != null)

sendFind(pathProxy.target, this, agentId);
else

return(notFoundError);

receiveFind(searcher, agentId)
if (agentList.find(agentId) != null)

sendFound(searcher, this, agentId);
if(pathProxyList.find(agentId) != null)

sendFind(pathProxy.target, searcher, agentId);
else

sendError(searcher, notFoundError, agentId);

receiveFound(from, agentId)
return(from);

receiveError(notFoundError, agentId)
return(error);

Figure 6: Methods for finding Agents

receiveFound(from, agentId)
pathProxy = pathProxyList.find(agentId);
sendMessage(pathProxy.target, shortenPath,

agentId);
pathProx.target = from;
return(from);

receiveError(from, error, agentId)
if (error == notFoundError)

shortenPath(from, agentId);
return(error);

shortenPath(target, agentId)
pathProxy = pathProxyList.find(agentId);
if(target != this AND pathProxy != null)

sendMessage(pathProxy.target,
shortenPath, agentId);

pathProxyList.remove(pathProxy);

Figure 7: Shortening the Path



7 The Shadow Protocol 9

6.4 Discussion

The path concept fully supports asynchronous operation. Agents can roam the network without
having to contact their home location. In contrast to the energy concept, no additional commu-
nication cost is introduced by establishing the paths.

The disadvantages come from the path not being limited in length. The communication cost can
be arbitrarily high (at most the number of locations in the agent system), directly dependent on
the length of the path. Furthermore, the path depends on all visited systems being reachable. If
only one of the intermediate systems is not reachable, the agent cannot be found. Thus the long-
er the path the worse is the fault-tolerance, and this with no sensible upper bound.

7 The Shadow Protocol
After having examined the two concepts on which the shadows are based, we present the shad-
ow concept itself. In this section we discuss the basic Shadow Protocol with its agent proxies,
the extension of making the shadows mobile, and discuss possible optimizations.

7.1 The Idea

In the shadow concept each application creates one
or more shadows, a structure on a location that is
accessible at each time. This location does not nec-
essarily have to be the same on which the creating
application runs. Each agent that is created by the
application, depends on such a shadow (Figure 8).
As soon as the shadow is removed by the applica-
tion, the agent can be terminated by the system. Thus the agent is depending on the shadow in-
stead of the application. As long as the shadow exists in the system, no contact of agents to the
application itself or the computer system on which the application runs is necessary. In regular
intervals (calledtime to live) the system checks for each agent if the associated shadow still ex-
ists. Thistime to live cannot be arbitrarily long to impede circumvention of the protocol. If the
shadow does no longer exist, the agent is declared an orphan and is removed.

If an agent creates a new agent, this new agent gets
the same shadow as the creating agent, and the
same remaining time until the next check (Figure
9). Limiting the time span to the same of the creat-
ing agent (and not to the originaltime to live) is
necessary to prevent malicious agents from living
infinitely. Otherwise the mechanism could be cir-
cumvented simply by creating a new agent with
again the wholetime to live just before the life span
of the old agent ends. This way the newest descend-
ant would not be checked for an existing shadow
and thus effectively removed from the control.

If a location on which a shadow resides cannot be reached, the system starts a timeout. If after
the timeout the system cannot be reached, the timer is started again and the counter is decre-
mented. If the counter is 0 and the location can still not be reached, the shadow is presumed no

Application creates

Location
Agent

Shadow

Figure 8: The creation of a shadow

creates

Location

Agent

Shadow

Location

depend

Agent

Figure 9: Creating a new agent



7 The Shadow Protocol 10

longer existent and its associated agents are killed. By adjusting timeout and counter manifold
reactions to communication problems can be adopted.

This protocol implements a concept akin to the energy concept, but the energy has been substi-
tuted by atime to live. The disadvantage of this approach is that regardless of what an agent
does, it has to connect to its shadow’s location in regular intervals. The advantage on the other
hand is that we have an upper bound for the termination of agents through removing the shad-
ows. This upper bound is exactly thetime to live of the agents.

Until now the protocol only allows passive termination. By removing the shadow all depending
agents are declared orphans, and after thetime to live it is guaranteed that all agents have been
removed by the orphan detection. But by adding the path concept to this protocol, we also allow
active termination. This is done via the so-called agent proxies.

7.1.1 Agent Proxies

The agent proxies are structures at each location that keep track of the movement of all agents
belonging to a shadow. They implement the path mentioned in section 6 that enables the active
termination of agents extending the shadow’s functionality. By storing the location at which the
agent got checked the last time we can find the beginning of a path for every agent.

If an agent arrives at a location where not yet an agent proxy exists, one is created (Figure 10a).
As soon as the agent migrates to another location, the destination (being part of the agent trail)
is stored in the proxy together with thetime to live (Figure 10b).

When the end of thetime to live is reached, the agent’s shadow gets a request for extending the
agent’s life, and thus the new location of the agent is made known to the shadow (Figure 11a).
The path stored in the different agent proxies along the agent’s way is now superfluous and can

Figure 10: Proxies

migrates

created by the system

depends on

(a) (b)

A

Loc1

Loc2

migrates
Loc1

Loc3

A

Loc2

Shadow

Agent Proxy

A - Loc3

A - Loc2 A - Loc2

Path



7 The Shadow Protocol 11

be removed (Figure 11b) using the knowledge about thetime to live. An entry can also be re-
moved if the agent migrates back to this location (this simply cuts the now circular path short).

A proxy exists exactly as long as there is an entry in it. As soon as the agent proxy contains no
entries, it can be removed as well. This is especially helpful, if the agents are actively terminat-
ed. In that case, all entries are removed from the proxy, allowing the system to delete the proxy
also.

7.2 The Protocol

As before, the protocol as a whole can be
found in the appendix (appendix A.3.3).

The location on which the agent resides, dec-
rements in regular intervals thetime to live of
the agent. If thetime to live of the agent is 0,
a message is sent back to the home location
of the shadow, containing the id of agent and
shadow. At the same time a timer is started
(the reaction to that is discussed below) and
the agent enters the check phase. To allow
greater flexibility each shadow (and thus each
associated agent) can have a timeout of its
own. But this allows for another loophole by
setting a very long timeout. But it can be
fixed by introducing a second timeout for
each location. The timeout chosen is the min-
imum of agent timeout and location timeout.

If an agent arrives at a location, the list of
proxies is examined if a proxy already exists.
If not, a new one is created. The agent is add-

Figure 11: Update of Proxies

created by the system

depends on

(a) (b)

Shadow

Agent Proxy

Loc1

Loc3

A

Loc2

Loc1

Loc3

A

Loc2

A - Loc2

A - Loc3

comm.
with
shadow

A - Loc3

Regular Intervals:
for each agent

agent.timeToLive - -;
if (agent.timeToLive == 0)

sendCheck(agent.shadowHome, this,
agent.shadowId, agent.id);

startTimer(min(location.TimeOut,agent.timeOut),
agent.proxy, agent);

onArrival(agent)
proxy = proxyList.find(agent.shadowId);
if(proxy == null)

proxy = new Proxy(agent.id, agent.timeToLive,
agent.shadowHome, this);

proxyList.add(proxy);
else

proxy.add(agent.agentId, agent.timeToLive);
agent.proxy = proxy;
agentList.add(agent);
agent.start();

onLeaving(agent, target)
if (agent.timeToLive > 0)

agentList.remove(agent);
agent.proxy.setTarget(agent.id, target));
startTimer( agent.timeToLive + agent.timeOut,

agent.proxy, agent.id);
SendAgent(target, agent);

Figure 12: System Methods



7 The Shadow Protocol 12

ed to the proxy, and the agent gets a reference on it. As soon as an agent wants to leave, itstime
to live is checked. This is done to prevent an agent who is in the check phase to migrate. If it is
not in the check phase, the information in the proxy is updated to point to the target location. At
the same time a timer is started that removes the path after the sum of remainingtime to live and
timeout (see Figure 12).

The check message sent is received by the
home location of the shadow. First a timer is
stopped that has been started the last time the
time to live has been sent back to the agent.
This allows to detect agents that have been
terminated (see below). Thetime to live is re-
quested from the shadow responsible, and if
greater 0 is sent back to the requesting agent.

As soon as the message is received, the timer
for the timeout is stopped, and the agent’s
time to live is set (see Figure 13). This ends
the agent’s check phase and allows it to mi-
grate again.

The shadow can decide on a case-by-case ba-
sis, if the agent’s life time is extended and by
what interval. In Figure 14 we present an ex-
ample policy, that for all of the agents returns
the sametime to live. This method checks
first if an agent proxy already exists for this
agent (in case a newly created agent contacts
the shadow), updates the information about
the location of the agent, and returns thetime
to live. The shadow is also called if it has
been detected (via the timeout), that an agent
has been terminated. The simplest policy is to
remove the related entry from the list.

What remains to discuss is the reaction to the
different timeouts (see Figure 15). One possi-
ble reaction to the timeout of the check mes-
sage has been sketched out above. Here we
present a simple alternative, the agent is re-
moved at once.

The next timeout affects the paths. As soon as
an agent migrates, the path segment pointing
to its new location is created, and a timer
started. As soon as this timer ends, we know
that the path information in the shadow itself
has been updated, and this part of the path
can be removed. The last timed method is called if an agent has not tried to contact the shadow
for the sum oftime to live and timeout. It calls the shadow method (see Figure 14) to react to it.

receiveCheck(from, shadowId, agentId)
stopTimer(agentId);
shadow = shadowList.find(shadowId);
timeToLive = shadow.timeToLive(from, agentId);
if (timeToLive > 0)

startTimer( timeToLive
+ shadow.getTimeOut(agentId),
shadow, agentId);

sendAllowance(from, agentId, timeToLive);

receiveAllowance(agentId, timeToLive)
stopTimer(agentId);
agent = agentList.findAgent(agentId);
agent.timeToLive = timeToLive;
proxyList.setTime(agentId, timeToLive);

Figure 13: The Check Phase

timeToLive(from, agentId)
[implement policy]

agentProxy = listOfProxies.find(agentId);
if(agentProxy != null)

agentProxy.target = from;
else

agentProxy = new AgentProxy(from, agentId,
timeToLive);

return agentProxy.timeToLive;

remove(agentId)
[implement policy]

agentProxy = listOfProxies.find(agentId);
listOfProxies.remove(agentProxy);

Figure 14: Methods in the Shadow Object

onTimer(proxy, agent) // check timeout
[implement policy]

agentList.remove(agent);
proxy.remove(agentId);
if(proxy.entries() == 0)

proxyList.remove(proxy);

onTimer(proxy, agentId) // path is redundant
[implement policy]

proxy.remove(agentId);
if(proxy.entries() == 0)

proxyList.remove(proxy);

onTimer(shadow, agentId) // agent terminated
shadow.remove(agentId);

Figure 15: System: Reaction to Timeouts



7 The Shadow Protocol 13

7.2.1 Finding Agents

If we want to terminate an agent, we have to
find it first. This can be done with the help of
the information stored in the agent proxies. If
the agent is in the local list of active agents, it
is already found. If not, the related agent
proxy is searched. If it is not found, an error
is returned. If it is found, then a find request
is sent to the target found in the proxy. At the
target location the list of active agents is
again examined. If the agent is found, a suc-
cess message is sent back. If not, the agent
proxy is searched. If no proxy exists, an error
is sent back. Otherwise, the message is sent
onward. This is repeated until the agent is
found or the path ends (see Figure 16).

7.3 Mobile Shadows

The Idea

In cases where many of the agents depending on a shadow move somewhere far away (i.e. com-
munication costs are high), every one of the agents has to contact the shadow independently
with high cost. If the migration behaviour is known in advance, the shadow can be placed near
these agents to reduce the communication cost. But in many cases the behaviour is not known
in advance, or the group moves as a whole from area to area (e.g. from one organization to an-
other). It would be much better if the shadow moved with the agents. If a shadow can be moved,
possible policies where to place the shadow might be at a location where the communication
cost to all dependent agents would be lowest, or to place the shadow where one crucial agent is
situated. If then the location goes down (e.g. crashes), both shadow and agent would not be
reachable, and the other dependent agents would be terminated. While in one case the shadow
would have to be persistent, in the other case it would have to be transient to implement the pol-
icy.

To move a shadow two problems have to be dealt with. The first is that the agents depending on
the shadow have somehow to be notified about the new location of the shadow. The second is
that the application still has to be able to reach the shadow, e.g. in case it wants to terminate the
agents. Both problems can be solved similar to the approach used with the agent proxies.
When a shadow moves, a copy of the shadow stays behind. Thus over time a shadow path is
built. By contacting the copy at the home location in regular intervals this path can be cut short.
As alternative to intervals at which to cut the path short, a maximum path length would be suit-
able. But using a maximum path length adds communication along the path, because after the
maximum path length has been reached the shadow copies along the path have to be notified
that they are no longer needed.
Now, when an agent requests a new time to live, it can happen that the shadow has moved some-
where else. In this case, the request is sent to the new location of the shadow. If the shadow al-
ready moved again, the request is forwarded along the path of shadow copies until the shadow

find(agentId)
if (agentList.find(agentId) != null)

return(this);
agentProxy = shadowList.find(agentId);
if(agentProxy != null)

sendFind(agentProxy.target, this, agentId);
else

return(notFoundError);

receiveFind(searcher, agentId)
if (agentList.find(agentId) != null)

sendFound(searcher, this, agentId);
if(proxyList.find(agentId) != null)

sendFind(proxy.target, searcher, agentId);
else

sendError(searcher, notFoundError, agentId);

receiveFound(from, agentId)
return(from);

receiveError(error, agentId)
if (error == notFoundError)

return(error);

Figure 16: Finding Agents



7 The Shadow Protocol 14

is reached. The shadow sends a new grant back to the agent together with its new location. The
next time the agent sends its request directly to the new location.

The copies can be removed as soon as the path is no longer needed and no agent still has the
reference to a copy of the shadow. Thus the maximum of agent and shadow time to live is the
maximum time the copy has to be hold. One exception has to be made. The first copy, that stays
at home, cannot be removed. Only if the shadow returns to the home location, this can be done.

The Protocol

The whole protocol can be found in appendix
A.3.5. We first examine the shadow part of the
protocol.

Moving the shadow to another location creates a
path to the target, and starts a timer. After the
timeout of this timer the path has to be deleted.
We simplify by choosing the sametime to live
for shadow and agents. The path is created by
leaving a shadow proxy behind. Removing the
shadow is done by sending a message along the
path (see Figure 17).

Each shadow gets atime to live, after which it
must contact its home location. This time does
not necessarily have to be the same as for the
agents. In regular intervals thistime to live is
decremented. As soon as the shadow’s time to
live is 0, the shadow enters the check phase. A
message containing the shadow id and its cur-
rent location is sent to the home location and a
timer is started (see Figure 18).

The check message contains the new location of
the shadow. If the shadow copy at home still ex-
ists, it is updated and thetime to live is sent back.
If the answer is not received until the timeout,
the shadow is removed. As soon as it is received,
the timer is stopped and thetime to live is set
(see Figure 19). The shadow copies creating the
path between home location and shadow get a
similar timeout after the sum oftime to live and
communication timeout. At that point the path is
redundant and can be removed (see below). This
way the path created by the shadow is cut short
in regular intervals.

If the shadow comes back to its home location, the copy of the shadow is replaced by the original
(see appendix A.3.5 for details).

move(target)
if (timeToLive != 0)

sendShadow(target, this);
if(currentLocation != null) // part of the path

pathTimeOut = timeToLive + timeOut;
startTimer(pathTimeOut, shadow);

currentLocation = target;

terminateShadow()
if (currentLocation != null)// shadow moved out

sendTerminate(currentLocation, id);
delete(this);

Figure 17: Additional Shadow Methods

Regular Intervals:
[agent related part stays the same]

for each shadow
if (shadow.homeLocation != location.name())

shadow.timeToLive--;
if (shadow.timeToLive == 0)

sendCheck(shadow.homeLocation,
shadow.id);

startTimer(shadow.timeOut, shadow);

Figure 18: Extended System Methods:
Regular Intervals

onTimer(shadow) // this path seg. is redundant
shadowList.remove(shadow);

receiveAllowance(shadowId, timeToLive)
shadow = shadowList.find(shadowId);
stopTimer(shadow);
shadow.timeToLive = timeToLive;

receiveCheck(from, shadowId)
shadow = shadowList.find(shadowId);
if(shadow != null)

shadow.currentLocation = location;
sendAllowance(from, shadowId,

shadow.timeToLive);

Figure 19: Additional System Methods:
Checking the shadow



7 The Shadow Protocol 15

In the basic protocol the check message is sent
to the shadow’s home location. Now it is sent to
the location from which the lasttime to live mes-
sage has been received. This is done by storing
it in an additional attribute containing the agent
shadow’s location. If the shadow moves be-
tween two such messages, the check message is
sent to a shadow proxy (somewhere on the path)
instead of the original. The shadow proxy now
forwards this check message along the path. The
original, upon receiving the message, sends
back thetime to live and its own location. The
path is superfluous as soon as the shadow’s loca-
tion is known at the home locationand no agent
still references a part of it. Since we chose the
shadow and agenttime to live to be the same, the
path timeout is the sum oftime to live and time-
out (see Figure 20).

Together with sending back thetime to live to
the agent the shadow starts a timer. If after this
timeout the agent did not send a check message,
the shadow knows that the agent has terminated.
But if the shadow has moved on in the mean-
time, this information only reaches a proxy and
has to be sent after it. Thus a message is sent
along the path containing the information that
the agent has terminated. Every proxy sends the
information onward until it reaches the shadow.
Here the agent entry is removed (see Figure 21).

7.4 Optimizing the Communication

As soon as more than one agent belongs to a shadow, optimizations of the communication are
possible. Three optimizations exist:

• If two agents belonging to the same shadow come to the same location, the one with the
lower time to live gets the remaining time of the other one. This works with an arbitrarily
large number of agents on a location and happens expediently at the arrival of a new agent.
All others will at that time have the same remaining interval already, so it is sufficient to
check one of the residing agents against the new one.

• If an agent’s shadow has been checked, then this information also gets transferred to all oth-
er agents on the same location.

• The combination of shadow, proxies and trail creates a spanning tree that follows the agents
movements with the shadow as the root. This tree can be optimized by simply using com-
mon trails for the parts of the trails that are the same for different agents. This effectively
reduces the number of messages that flow without changing the functionality. Furthermore,

receiveCheck(from, shadowId, agentId)
stopTimer(agentId);
if(currentLocation != location.name())

sendCheck(currentLocation, from,
shadowId, agentId);

else
shadow = shadowList.find(shadowId);
timeToLive =

shadow.timeToLive(from, agentId);
if (timeToLive > 0)

startTimer(timeToLive
+ shadow.getTimeOut(agentId),
shadow, agentId);

sendAllowance(from, location.name(),
agentId, timeToLive);

receiveAllowance( shadowLocation, agentId,
timeToLive)

stopTimer(agentId);
agent = agentList.findAgent(agentId);
agent.timeToLive = timeToLive;
agent.shadowHome = shadowLocation;
proxyList.setTime(agentId, timeToLive);

Figure 20: Changed System Methods:
Extending the agent’s life

onTimer(shadow, agentId)// agent is terminated
shadow.remove(agentId);
if (shadow.currentLocation != location.name() )

sendRemoved( currentLocation, shadowId,
agentId);

receiveRemoved(shadowId, agentId)
shadow = shadowList.find(shadowId);
if(shadow != null)

if(shadow.currentLocation != location.name())
sendRemoved( currentLocation, shadowId,

agentId);
else

shadow = shadowList.find(shadowId);
shadow.remove(agentId);

Figure 21: Changed System Methods:
Extending the agent’s life



8 Comparison of the Protocols 16

the agents on nodes along the tree can be updated. The mechanism is the same as the one
used in multicast protocols.

7.4.1 Terminating agents actively while using the optimizations

The proxies allow to find an agent, e.g. to terminate it actively. But with all of the mentioned
optimizations the trail can be lost. This can happen if an agent gets additionaltime to live from
another agent, and the path assuming the originaltime to live is removed. The optimizations
make it impossible to terminate a specific agent.

The interesting point though is that it doesn’t matter for the termination of the whole group of
agents. If the termination message is sent to all known proxies, then these proxies forward the
termination message along all of the paths they are part of. Ultimately this termination message
reaches all of the agents, even those no longer directly known to the shadow. The path segment
for an agent exists exactly for the then currenttime to live of the agent. So if it got additional
time, than at that location the agent proxy holds the path from that location for that remaining
time. Every time an agent gets additional time from another agent, there exists a valid path for
that other agent. So, by first following the path to the other agent, and then the still valid path to
our agent, every agent gets the termination message.

This way, all of the mentioned optimizations can be used without compromising functionality.

8 Comparison of the Protocols
In this section we compare the energy concept, the path concept, and the shadow protocol in the
light of the requirements defined in section 4.

In table 1 the capacity of the different concepts to conform to the requirements is presented. It
can easily be seen that all of the protocols conform to the basic requirements of distributed sys-
tems. The shadow concept trades communication cost for flexibility and functionality compared
to both energy and path concept.

Table 1: The different Concepts in the light of the Requirements

Requirement Energy Concept Path Concept Shadow Concept

Restrictions concerning the communication model No No No

Restrictions concerning the order of messages No No No

Acknowledgement of every single message No No No

Restrictions concerning the topology of the agent system No No No

Global time necessary No No No

Freezing necessary to obtain necessary knowledge No No No

Well-defined fault semantics Yes No Yes

Communication cost when terminating low high middle

Communication cost otherwise middle low middle

The algorithm has loopholes No No No



9 Related Work 17

The shadow concept is less fault sensitive than the path concept, because the agent proxy paths
are pruned in regular intervals. This adds communication costs. Depending on the usage of
agents this can even be substantial compared to the energy concept (e.g. an agent that only
wakes every other week). But in normal applications (e.g. information retrieval or electronic
commerce scenarios) the communication cost will be alike. When actively terminating, the
communication cost with the shadow concept is lower than with the path concept. The energy
concept cannot actively terminate. In the case of passive termination, for the shadow concept
upper bound for the time until all agents are terminated, can be given. This is not possible with
the energy concept. Furthermore the shadow concept is very flexible and can easily adopted to
different policies. Short-lived agents can be created without additional communication (as long
as the life of the agent is shorter than thetime to live of the creating agent). The shadow concept
provides orphan detection and termination as a system service that is transparent to the program-
mer. This greatly simplifies the implementation of agents using this concept.

9 Related Work
In the area of distributed systems the term termination has a slightly different meaning. But
many mechanisms have been developed in that area to determine if distributed processes have
terminated (see e.g. [Mattern89]).

The problem of orphan detection in agent systems has some similarities to the problem of dis-
tributed garbage collection (see e.g. the work on Stub Scion Pair Chains [Shapiro92]). While the
distributed garbage collection can already rely on some kind of relationship, e.g. through point-
ers or references, and thus has not to artificially create a structure, there are some similar prob-
lems to that in the area of mobile agents (see e.g. [BagPiu96]).

In [BauRad97] the use of a group concept for, among other things, termination and orphan de-
tection purposes has been discussed.

10 Conclusion and Future Work
In this paper we discussed three concepts, the energy concept, the path concept, and the shadow
concept. While the energy concept is a concept for orphan detection and passive termination,
the path concept is a concept for finding agents and for actively terminating them. By combining
both concepts in the shadow concept, we eliminate the disadvantages, and at the same time
maintain the advantages of both concepts. Nevertheless, the shadow concept has still some dis-

An agent can create other agents Yes Yes Yes

The system checks if an agent is an orphan Yes No Yes

An agent has a limited life span Yes No Yes

It is possible to extend the life span of an agent Yes - Yes

Application has to be reachable to extend life span Yes - Yes

Type of Termination Passive Active Passive/Active

Table 1: The different Concepts in the light of the Requirements

Requirement Energy Concept Path Concept Shadow Concept



10 Conclusion and Future Work 18

advantages: it introduces additional communication into the system and resources are bound
(memory) to store the different path information. But the advantages outweigh the disadvantag-
es by far: the mechanism is robust against malicious or faulty agents, the path information is
updated without additional communication costs (no outdated path information exists), and the
time until all agents are terminated in the worst case, can be determined exactly. All presented
protocols have been implemented in our agent system Mole (for a description of Mole see
[StBaHo96, BaumEA97]).

In the future we will try to add the energy concept to the shadows on still another level. Instead
of terminating the agent after a certain delay, the agent will get an amount of energy to use until
the shadow can be connected again. This would allow the agent to decide on its own if it goes
on with its work, either hoping the shadow is reachable before its energy is used up, or to sleep
and play it safe. By using the energy concept only when a failure occurs (network partitioning
or system crash), the agent gets more autonomy without compromising the shadow concept.

Fault tolerance is another area that has to be investigated in detail. The presented mechanism
allows for short time network partitioning and system faults, but does not cope well with long
time faults. We will investigate in which way the shadow concept can be made fault resilient by
replication of the control structures.

The shadow structure could additionally hold some rules that determine if the goal of the agents
belonging to this shadow can still be accomplished, e.g. the so-called AND-groups and OR-
groups. In an AND-group all agents have to succeed in their task for the whole group to be suc-
cessful. In an OR-group only one of the agents has to succeed for the group to be successful. As
soon as the success or failure of the group can be determined, the other participating agents can
either be terminated actively by sending a termination message, or passively by simply remov-
ing the shadow. This would however suppose a means to communicate additional information
to the shadow: the exit state of the participating agents (success or failure).

We will also try to model termination and orphan detection, of single agents and of agent
groups, with distributed event services, as defined e.g. by OMG’s event service specification
(see [BaumEA97, BauRad97] for details).

In the area of distributed systems and in the area of distributed garbage collection many mech-
anisms have been developed. We will investigate further, if these mechanism might be put to use
in the area of mobile agents.

Acknowledgements: The described protocols have been implemented mostly by Eric Jochum
[Jochum97] and Matthias Zepf [Zepf96]. The comments of Fritz Hohl and Markus Straßer
greatly improved the quality of this paper.



10 Conclusion and Future Work 19

A The Protocols
In this appendix the protocols are listed as a whole. Each of them is presented as methods in a
pseudo object-oriented fashion. Some basic object types, e.g. lists are assumed existing. Meth-
ods can be called asynchronously, e.g.

• startTimer (time, agentId) will call a methodonTimer(agentId) aftertime.

• sendMessage(location, „Hello“ ) is sent tolocation and callsreceiveMessage(„Hello“ ).

Methods bodies containing [implement policy] can be used to implement a specific policy, e.g.
for reacting to a message asking for more energy (in the energy concept). The presented imple-
mentation is one of the possible policies.

A.1 Energy Concept: The Protocol

Location: Methods
Regular Intervals:

for each agent
agent.energy = agent.energty +agent.livingCost;
if (livingAgents.find(agent) != null)

checkLowEnergy(agent);
if(agent.energy == 0) remove agent;

onArrival(agent)
receiveAgent(agent);
wake(agent);
agent.start();

onLeaving(agent, target)
livingAgents.remove(agent);
SendAgent(target, agent);

SystemMethod(method, agent)
if agent.energy < method.cost

throw NotEnoughEnergy;
agent.energy = agent.energy - method.cost;
method.callMethod(agent);
checkLowEnergy(agent);

receiveEnergy(agentId, amount)
agent = getAgent(agentId);
agent.energy = agent.energy + amount;
agent.receiveEnergy();
if (agent.energy > agent.lowEnergy)

agent.refilling = false;
wake(agent);

receiveMessage(„energyLow“, agentId)
[implement policy];

checkLowEnergy(agent)
if (agent.energy < agent.lowEnergy

AND agent.refilling == false)
agent.energyLow();
agent.refilling = true;

sleep(agent)
livingAgents.remove(agent);
agent.livingCost = location.sleepCost();

wake(agent)
livingAgents.add(agent);
agent.livingCost = location.livingCost();

Agent: Methods
EnergyLow()
[implement policy]

sendMessage(home, “energyLow”, id);
sleep();

ReceiveEnergy(amount)
[implement policy]

Needed Objects
Object Method

Method callMethod(Agent);
Attribute cost:Integert;
...

Object Agent
Method energyLow();
Method receiveEnergy(Amount);
Attribute id:AgentId;
Attribute maxEnergy:Energy;
Attribute energy:Energy;
Attribute lowEnergy:Energy;
Attribute refilling:boolean;
Attribute livingCost:Energy;
Attribute home:LocationName;
...



10 Conclusion and Future Work 20

A.2 Paths: The Protocol

A.2.1 Basic Protocol

Needed Objects

Object PathProxy
Attribute id:AgentId;
Attribute target:LocationName;

Object Agent
Attribute id:AgentId;
Attribute home:LocationName;
...

Location: Methods

onArrival(agent)
agentList.add(agent);

onLeaving(agent, target)
agentList.remove(agent);
pathProxyList.add(new PathProxy(agent.id, target));
SendAgent(target, agent);

find(agentId)
if (agentList.find(agentId) != null)

return(this)
pathProxy = pathProxyList.find(agentId);
if(pathProxy != null)

sendFind(pathProxy.target, this, agentId);
else

return(notFoundError);
receiveFind(searcher, agentId)

if (agentList.find(agentId) != null)
sendFound(searcher, this, agentId);

if(pathProxyList.find(agentId) != null)
sendFind(pathProxy.target, searcher, agentId);

else
sendError(searcher, notFoundError, agentId);

receiveFound(from, agentId)
return(from);

receiveError(notFoundError, agentId)
return(error);

A.2.2 Shortening Paths

Location: Additional and extended Methods

receiveFound(from, agentId)
pathProxy = pathProxyList.find(agentId);
sendMessage(pathProxy.target, shortenPath,

agentId);
pathProx.target = from;
return(from);

receiveError(from, error, agentId)
if (error == notFoundError)

shortenPath(from, agentId);
return(error);

shortenPath(target, agentId)
pathProxy = pathProxyList.find(agentId);
if(target != this AND pathProxy != null)

sendMessage(pathProxy.target, shortenPath, agentId);
pathProxyList.remove(pathProxy);



10 Conclusion and Future Work 21

A.3 Shadows: The Protocol

A.3.1 Objects needed

Needed Objects

Object Shadow
Method timeToLive(AgentId);
Method remove(AgentId);
Attribute listOfProxies:List of AgentProxy;
Attribute timeToLive:Integer;
Attribute timeOut:Integer;
...

Object AgentProxy
Attribute id:AgentId;
Attribute timeToLive:Integer;
Attribute target:LocationName;

Object Proxy
Attribute agents:List of AgentProxy;

Object Agent
Attribute id:AgentId;
Attribute timeToLive:Integer;
Attribute timeOut:Integer;
Attribute proxy:Proxy;
Attribute shadowId:ShadowId;
Attribute shadowHome:LocationName;
Attribute home:LocationName;
...

A.3.2 Methods in the Object Shadow

Shadow

timeToLive(from, agentId)
[implement policy]

agentProxy = listOfProxies.find(agentId);
if(agentProxy != null)

agentProxy.target = from;
else

agentProxy = new AgentProxy(from, agentId, timeToLive);
return agentProxy.timeToLive;

remove(agentId)
agentProxy = listOfProxies.find(agentId);
listOfProxies.remove(agentProxy);



10 Conclusion and Future Work 22

A.3.3 Basic Protocol with Proxies

Location: Methods

Regular Intervals:
for each agent

agent.timeToLive - -;
if (agent.timeToLive == 0)

sendCheck(agent.shadowHome, this, agent.shadowId, agent.id);
startTimer(min(localTimeOut, agent.timeOut), agent.proxy, agent);

onArrival(agent)
proxy = proxyList.find(agent.shadowId);
if(proxy == null)

proxy = new Proxy(agent.id, agent.timeToLive, agent.shadowHome, this);
proxyList.add(proxy);

else
proxy.add(agent.agentId, agent.timeToLive);

agent.proxy = proxy;
agentList.add(agent);
agent.start();

onLeaving(agent, target)
if (agent.timeToLive > 0)

agentList.remove(agent);
agent.proxy.setTarget(agent.id, target));
startTimer(agent.timeToLive + agent.timeOut, agent.proxy, agent.id);
SendAgent(target, agent);

onTimer(proxy, agent) // called if agent has not been sent allowance in time
[implement policy]

agentList.remove(agent);
proxy.remove(agentId);
if(proxy.entries() == 0)

proxyList.remove(proxy);

onTimer(proxy, agentId) // called if the time for the proxy path has ended
proxy.remove(agentId);
if(proxy.entries() == 0)

proxyList.remove(proxy);

onTimer(shadow, agentId) // called if the agent has been killed due to timeout
shadow.remove(agentId);

receiveAllowance(agentId, timeToLive)
stopTimer(agentId);
agent = agentList.findAgent(agentId);
agent.timeToLive = timeToLive;
proxyList.setTime(agentId, timeToLive);

receiveCheck(from, shadowId, agentId)
stopTimer(agentId);
shadow = shadowList.find(shadowId);
timeToLive = shadow.timeToLive(from, agentId);
if (timeToLive > 0)

startTimer(timeToLive + shadow.getTimeOut(agentId), shadow, agentId);
sendAllowance(from, agentId, timeToLive);

createAgent(creatingAgent, AgentClass, parameterList)
newAgent = new AgentClass(parameterList);
newAgent.id = createId();
newAgent.timeToLive= creatingAgent.timeToLive;
newAgent.timeOut= creatingAgent.timeOut;
newAgent.shadowId= creatingAgent.shadowId;
newAgent.shadowHome= creatingAgent.shadowHome;
newAgent.home= this.name;
onArrival(newAgent);



10 Conclusion and Future Work 23

A.3.4 Finding Agents

Location: Methods

find(agentId)
if (agentList.find(agentId) != null)

return(this);
if(shadowList.find(agentId) != null)

sendFind(proxy.target, this, agentId);
else

return(notFoundError);

receiveFind(searcher, agentId)
if (agentList.find(agentId) != null)

sendFound(searcher, this, agentId);
if(proxyList.find(agentId) != null)

sendFind(proxy.target, searcher, agentId);
else

sendError(searcher, notFoundError, agentId);

receiveFound(from, agentId)
return(from);

receiveError(error, agentId)
if (error == notFoundError)

return(error);

A.3.5 Mobile Shadows

Shadow: Additional Attrib utes

Object Shadow
Method move(LocationName);
Attribute currentLocation:LocationName;
Attribute homeLocation:LocationName;
Attribute timeToLive:Integer;

Shadow: Additional Methods

move(target)
if(timeToLive != 0)

sendShadow(target, this);
if(currentLocation != null)// this is not the first time, we are part of the path

startTimer(timeToLive + timeOut, shadow);
currentLocation = target;

terminateShadow()
if (currentLocation != null)// the shadow has moved out

sendTerminate(currentLocation, id);
delete(this);

Location: Additional and Extended Methods

Regular Intervals:
for each agent

agent.timeToLive - -;
if (agent.timeToLive == 0)

sendCheck(agent.shadowHome, this, agent.shadowId, agent.id);
startTimer(min(localTimeOut, agent.timeOut), agent.proxy, agent);

for each shadow
if (shadow.homeLocation != location.name())// only if not at home location

shadow.timeToLive--;
if (shadow.timeToLive == 0)

sendCheck(shadow.homeLocation, shadow.id);
startTimer(shadow.timeOut, shadow);



10 Conclusion and Future Work 24

onTimer(shadow, agentId) // called if the agent has been killed due to timeout
shadow.remove(agentId);
if (shadow.currentLocation != location.name() )

sendRemoved(currentLocation, shadowId, agentId);

onTimer(shadow)
shadowList.remove(shadow); // called when the shadow path can be removed

receiveAllowance(shadowLocation, agentId, timeToLive)
stopTimer(agentId);
agent = agentList.findAgent(agentId);
agent.timeToLive = timeToLive;
agent.shadowHome = shadowLocation;
proxyList.setTime(agentId, timeToLive);

receiveAllowance(shadowId, timeToLive)
shadow = shadowList.find(shadowId);
stopTimer(shadow);
shadow.timeToLive = timeToLive;

receiveCheck(from, shadowId, agentId)
stopTimer(agentId);
if(currentLocation != location.name()) // we are not the current shadow

sendCheck(currentLocation, from, shadowId, agentId);
else

shadow = shadowList.find(shadowId);
timeToLive = shadow.timeToLive(from, agentId);
if (timeToLive > 0)

startTimer(timeToLive + shadow.getTimeOut(agentId), shadow, agentId);
sendAllowance(from, location.name(), agentId, timeToLive);

receiveCheck(from, shadowId)
shadow = shadowList.find(shadowId);
if(shadow != null)

shadow.currentLocation = location;
sendAllowance(from, shadowId, shadow.timeToLive);

receiveShadow(shadow)
if(shadow.timeToLive != 0)

if(shadow.homeLocation != location.name())
shadow.currentLocation = location.name();
shadowList.add(shadow);

else // shadow comes back home
shadowList.find(shadow.shadowId);
shadowList.remove(orig_shadow);
shadowList.add(shadow);
shadow.currentLocation = null;

receiveRemoved(shadowId, agentId)
shadow = shadowList.find(shadowId);
if(shadow != null)

if(shadow.currentLocation != location.name())
sendRemoved(currentLocation, shadowId, agentId);

else
shadow = shadowList.find(shadowId);
shadow.remove(agentId);



10 Conclusion and Future Work 25

B References
[BaumEA97] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, M. Straßer.

“Communication Concepts for Mobile Agent Systems”, in Proc. Mobile Agents
‘97, Springer Verlag, 1997.

[BagPiu96]] A. Baggio, I. Piumarta. “Mobile host tracking and resource discovery”, in Proc.
of the 7th ACM SIGOPS European Workshop”, 1996.

[BauRad97] J. Baumann, N. Radouniklis. „Agent Groups for Mobile Agent Systems“, in
Proc. DAIS ’97, to appear.

[BaTsVi96] J. Baumann, C. Tschudin, J. Vitek. “Mobile Object Systems: Workshop
Summary”, Workshop Proceedings for the 2nd Workshop on Mobile Object
Systems, in Workshop Reader ECOOP ’96, d-punkt.verlag

[ComSte93] D. E. Comer, D. L. Stevens. “Internetworking with TCP-IP: 3. Client-server
programming and applications”, Prentice-Hall, 1993.

[GenMag97] General Magic, “Odyssey Web Site”. URL: http://www.genmagic.com/agents/
[Goscin91] A. Goscinski. “Distributed Operating Systems - The Logical Design”, Addison-

Wesley, 1991.
[Aglets97] IBM, “The Aglets Workbench”. URL: http://www.trl.ibm.co.jp/aglets/
[JulEA88] E. Jul, H. Levy, N. Hutchinson, A. Black. “Fine-Grained Mobility in the Emerald

System”, ACM Transactions on Computer Systems, Vol. 6(1), P. 109-133, 1988.
[Jochum97] E. Jochum. “Design and Implementation of the Energy Concept for Mobile

Agent Systems”, Student Thesis (in german), University of Stuttgart, 1997.
[Matter89] F. Mattern. “Distributed Algorithms” (in german), Springer Verlag, 1989.
[Mole97] “Mole Project Pages”. University of Stuttgart,

http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html
[ShDiPl92] M. Shapiro, P. Dickman, D. Plainfossé. “SSP Chains: Robust, Distributed

References supporting acyclic Garbage Collection”, Technical Report No. 1799,
INRIA, Rocquencourt, Frankreich, 1992.

[StBaHo96] M. Straßer, J. Baumann, F.Hohl. “Mole - A Java Based Mobile Agent System”,
in Workshop Reader ECOOP ’96, d-punkt, 1996.

[Tanenb96] A. S. Tanenbaum. “Computer Networks”, 3rd Edition, Prentice-Hall, 1996.
[Tanenb95] A. S. Tanenbaum. “Distributed Operating Systems”, Prentice-Hall, 1995.
[White94a] J. E. White. “Telescript Technology: The Foundation of the Electronic

Marketplace”, General Magic, 1994.
[White94a] J. E. White. “Telescript Technology: Scenes from the Electronic Marketplace”,

General Magic, 1994.
[Zepf96] M. Zepf. “Design and Implementation of a simple Orphan Detection Mechanism

for a Mobile Agent System”, Student Thesis (in german), University of Stuttgart,
1996.


