290 research outputs found

    Sequent Calculus in the Topos of Trees

    Full text link
    Nakano's "later" modality, inspired by G\"{o}del-L\"{o}b provability logic, has been applied in type systems and program logics to capture guarded recursion. Birkedal et al modelled this modality via the internal logic of the topos of trees. We show that the semantics of the propositional fragment of this logic can be given by linear converse-well-founded intuitionistic Kripke frames, so this logic is a marriage of the intuitionistic modal logic KM and the intermediate logic LC. We therefore call this logic KMlin\mathrm{KM}_{\mathrm{lin}}. We give a sound and cut-free complete sequent calculus for KMlin\mathrm{KM}_{\mathrm{lin}} via a strategy that decomposes implication into its static and irreflexive components. Our calculus provides deterministic and terminating backward proof-search, yields decidability of the logic and the coNP-completeness of its validity problem. Our calculus and decision procedure can be restricted to drop linearity and hence capture KM.Comment: Extended version, with full proof details, of a paper accepted to FoSSaCS 2015 (this version edited to fix some minor typos

    A new calculus for intuitionistic Strong L\"ob logic: strong termination and cut-elimination, formalised

    Full text link
    We provide a new sequent calculus that enjoys syntactic cut-elimination and strongly terminating backward proof search for the intuitionistic Strong L\"ob logic iSL\sf{iSL}, an intuitionistic modal logic with a provability interpretation. A novel measure on sequents is used to prove both the termination of the naive backward proof search strategy, and the admissibility of cut in a syntactic and direct way, leading to a straightforward cut-elimination procedure. All proofs have been formalised in the interactive theorem prover Coq.Comment: 21-page conference paper + 4-page appendix with proof

    Proof Theory for Intuitionistic Strong L\"ob Logic

    Full text link
    This paper introduces two sequent calculi for intuitionistic strong L\"ob logic iSLâ–ˇ{\sf iSL}_\Box: a terminating sequent calculus G4iSLâ–ˇ{\sf G4iSL}_\Box based on the terminating sequent calculus G4ip{\sf G4ip} for intuitionistic propositional logic IPC{\sf IPC} and an extension G3iSLâ–ˇ{\sf G3iSL}_\Box of the standard cut-free sequent calculus G3ip{\sf G3ip} without structural rules for IPC{\sf IPC}. One of the main results is a syntactic proof of the cut-elimination theorem for G3iSLâ–ˇ{\sf G3iSL}_\Box. In addition, equivalences between the sequent calculi and Hilbert systems for iSLâ–ˇ{\sf iSL}_\Box are established. It is known from the literature that iSLâ–ˇ{\sf iSL}_\Box is complete with respect to the class of intuitionistic modal Kripke models in which the modal relation is transitive, conversely well-founded and a subset of the intuitionistic relation. Here a constructive proof of this fact is obtained by using a countermodel construction based on a variant of G4iSLâ–ˇ{\sf G4iSL}_\Box. The paper thus contains two proofs of cut-elimination, a semantic and a syntactic proof.Comment: 29 pages, 4 figures, submitted to the Special Volume of the Workshop Proofs! held in Paris in 201

    Proof Theory for Lax Logic

    Full text link
    In this paper some proof theory for propositional Lax Logic is developed. A cut free terminating sequent calculus is introduced for the logic, and based on that calculus it is shown that the logic has uniform interpolation. Furthermore, a separate, simple proof of interpolation is provided that also uses the sequent calculus. From the literature it is known that Lax Logic has interpolation, but all known proofs use models rather than proof systems

    Intuitionistic Gödel-Löb Logic, à la Simpson:Labelled Systems and Birelational Semantics

    Get PDF
    We derive an intuitionistic version of Gödel-Löb modal logic (GL) in the style of Simpson, via proof theoretic techniques. We recover a labelled system, ℓIGL, by restricting a non-wellfounded labelled system for GL to have only one formula on the right. The latter is obtained using techniques from cyclic proof theory, sidestepping the barrier that GL’s usual frame condition (converse well-foundedness) is not first-order definable. While existing intuitionistic versions of GL are typically defined over only the box (and not the diamond), our presentation includes both modalities. Our main result is that ℓIGL coincides with a corresponding semantic condition in birelational semantics: the composition of the modal relation and the intuitionistic relation is conversely well-founded. We call the resulting logic IGL. While the soundness direction is proved using standard ideas, the completeness direction is more complex and necessitates a detour through several intermediate characterisations of IGL

    Intuitionistic G\"odel-L\"ob logic, \`a la Simpson: labelled systems and birelational semantics

    Full text link
    We derive an intuitionistic version of G\"odel-L\"ob modal logic (GL\sf{GL}) in the style of Simpson, via proof theoretic techniques. We recover a labelled system, â„“IGL\sf{\ell IGL}, by restricting a non-wellfounded labelled system for GL\sf{GL} to have only one formula on the right. The latter is obtained using techniques from cyclic proof theory, sidestepping the barrier that GL\sf{GL}'s usual frame condition (converse well-foundedness) is not first-order definable. While existing intuitionistic versions of GL\sf{GL} are typically defined over only the box (and not the diamond), our presentation includes both modalities. Our main result is that â„“IGL\sf{\ell IGL} coincides with a corresponding semantic condition in birelational semantics: the composition of the modal relation and the intuitionistic relation is conversely well-founded. We call the resulting logic IGL\sf{IGL}. While the soundness direction is proved using standard ideas, the completeness direction is more complex and necessitates a detour through several intermediate characterisations of IGL\sf{IGL}.Comment: 25 pages including 8 pages appendix, 4 figure

    Ecumenical modal logic

    Full text link
    The discussion about how to put together Gentzen's systems for classical and intuitionistic logic in a single unified system is back in fashion. Indeed, recently Prawitz and others have been discussing the so called Ecumenical Systems, where connectives from these logics can co-exist in peace. In Prawitz' system, the classical logician and the intuitionistic logician would share the universal quantifier, conjunction, negation, and the constant for the absurd, but they would each have their own existential quantifier, disjunction, and implication, with different meanings. Prawitz' main idea is that these different meanings are given by a semantical framework that can be accepted by both parties. In a recent work, Ecumenical sequent calculi and a nested system were presented, and some very interesting proof theoretical properties of the systems were established. In this work we extend Prawitz' Ecumenical idea to alethic K-modalities

    Two loop detection mechanisms: a comparison

    Get PDF
    In order to compare two loop detection mechanisms we describe two calculi for theorem proving in intuitionistic propositional logic. We call them both MJ Hist, and distinguish between them by description as `Swiss' or `Scottish'. These calculi combine in different ways the ideas on focused proof search of Herbelin and Dyckhoff & Pinto with the work of Heuerding emphet al on loop detection. The Scottish calculus detects loops earlier than the Swiss calculus but at the expense of modest extra storage in the history. A comparison of the two approaches is then given, both on a theoretic and on an implementational level
    • …
    corecore