519 research outputs found

    Computing Distances between Probabilistic Automata

    Full text link
    We present relaxed notions of simulation and bisimulation on Probabilistic Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve the usual notions of bisimulation and simulation on PAs. We give logical characterisations of these notions by choosing suitable logics which differ from the elementary ones, L with negation and L without negation, by the modal operator. Using flow networks, we show how to compute the relations in PTIME. This allows the definition of an efficiently computable non-discounted distance between the states of a PA. A natural modification of this distance is introduced, to obtain a discounted distance, which weakens the influence of long term transitions. We compare our notions of distance to others previously defined and illustrate our approach on various examples. We also show that our distance is not expansive with respect to process algebra operators. Although L without negation is a suitable logic to characterise epsilon-(bi)simulation on deterministic PAs, it is not for general PAs; interestingly, we prove that it does characterise weaker notions, called a priori epsilon-(bi)simulation, which we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Characteristic Logics for Behavioural Metrics via Fuzzy Lax Extensions

    Get PDF
    Behavioural distances provide a fine-grained measure of equivalence in systems involving quantitative data, such as probabilistic, fuzzy, or metric systems. Like in the classical setting of crisp bisimulation-type equivalences, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy bisimulations that need not themselves be (pseudo-)metrics, in analogy to classical bisimulations (which need not be equivalence relations). The known instances of generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For non-expansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness of a quantitative version of Moss\u27 coalgebraic logic

    Operads and Phylogenetic Trees

    Full text link
    We construct an operad Phyl\mathrm{Phyl} whose operations are the edge-labelled trees used in phylogenetics. This operad is the coproduct of Com\mathrm{Com}, the operad for commutative semigroups, and [0,∞)[0,\infty), the operad with unary operations corresponding to nonnegative real numbers, where composition is addition. We show that there is a homeomorphism between the space of nn-ary operations of Phyl\mathrm{Phyl} and Tn×[0,∞)n+1\mathcal{T}_n\times [0,\infty)^{n+1}, where Tn\mathcal{T}_n is the space of metric nn-trees introduced by Billera, Holmes and Vogtmann. Furthermore, we show that the Markov models used to reconstruct phylogenetic trees from genome data give coalgebras of Phyl\mathrm{Phyl}. These always extend to coalgebras of the larger operad Com+[0,∞]\mathrm{Com} + [0,\infty], since Markov processes on finite sets converge to an equilibrium as time approaches infinity. We show that for any operad OO, its coproduct with [0,∞][0,\infty] contains the operad W(O)W(O) constucted by Boardman and Vogt. To prove these results, we explicitly describe the coproduct of operads in terms of labelled trees.Comment: 48 pages, 3 figure

    Coalgebraic Behavioral Metrics

    Get PDF
    We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra α ⁣:X→HX\alpha\colon X \to HX for a functor H ⁣:Set→SetH \colon \mathrm{Set}\to \mathrm{Set}, we define a framework for deriving pseudometrics on XX which measure the behavioral distance of states. A crucial step is the lifting of the functor HH on Set\mathrm{Set} to a functor H‟\overline{H} on the category PMet\mathrm{PMet} of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If HH has a final coalgebra, every lifting H‟\overline{H} yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction

    Well-Pointed Coalgebras

    Get PDF
    For endofunctors of varieties preserving intersections, a new description of the final coalgebra and the initial algebra is presented: the former consists of all well-pointed coalgebras. These are the pointed coalgebras having no proper subobject and no proper quotient. The initial algebra consists of all well-pointed coalgebras that are well-founded in the sense of Osius and Taylor. And initial algebras are precisely the final well-founded coalgebras. Finally, the initial iterative algebra consists of all finite well-pointed coalgebras. Numerous examples are discussed e.g. automata, graphs, and labeled transition systems

    (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

    Get PDF
    Behavioural equivalences can be characterized via bisimulations, modal logics and spoiler-defender games. In this paper we review these three perspectives in a coalgebraic setting, which allows us to generalize from the particular branching type of a transition system. We are interested in qualitative notions (classical bisimulation) as well as quantitative notions (bisimulation metrics). Our first contribution is to introduce a spoiler-defender bisimulation game for coalgebras in the classical case. Second, we introduce such games for the metric case and furthermore define a real-valued modal coalgebraic logic, from which we can derive the strategy of the spoiler. For this logic we show a quantitative version of the Hennessy-Milner theorem

    Characteristic Logics for Behavioural Hemimetrics via Fuzzy Lax Extensions

    Get PDF
    In systems involving quantitative data, such as probabilistic, fuzzy, or metric systems, behavioural distances provide a more fine-grained comparison of states than two-valued notions of behavioural equivalence or behaviour inclusion. Like in the two-valued case, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy (bi-)simulations that need not themselves be hemi- or pseudometrics; this is analogous to classical simulations and bisimulations, which need not be preorders or equivalence relations, respectively. The known generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For nonexpansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness of a quantitative version of Moss' coalgebraic logic. All our results explicitly hold also for asymmetric distances (hemimetrics), i.e. notions of quantitative simulation
    • 

    corecore