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—— Abstract

Behavioural distances provide a fine-grained measure of equivalence in systems involving quantitative
data, such as probabilistic, fuzzy, or metric systems. Like in the classical setting of crisp bisimulation-
type equivalences, the wide variation found in system types creates a need for generic methods that
apply to many system types at once. Approaches of this kind are emerging within the paradigm of
universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general
real-valued (fuzzy) relations along functors by means of fuzzy laz extensions. An immediate benefit
of the latter is that they allow bounding behavioural distance by means of fuzzy bisimulations that
need not themselves be (pseudo-)metrics, in analogy to classical bisimulations (which need not be
equivalence relations). The known instances of generic pseudometric liftings, specifically the generic
Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using
the fact that both are effectively given by a choice of quantitative modalities. Our central result
then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of
quantitative modalities, the so-called Moss modalities. For non-expansive fuzzy lax extensions, this
allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e.
satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness
of a quantitative version of Moss’ coalgebraic logic.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics
Keywords and phrases Modal logic, behavioural distance, coalgebra, bisimulation, lax extension
Digital Object ldentifier 10.4230/LIPIcs. CONCUR.2020.27

Related Version A full version of the paper is available at https://arxiv.org/abs/2007.01033.

Funding Work forms part of the DFG project Probabilistic description logics as a fragment of
probabilistic first-order logic (SCHR 1118/6-2).

1 Introduction

Branching-time equivalences on reactive systems are typically governed by notions of bisimil-
arity [43, 37]. For systems involving quantitative data, such as transition probabilities, fuzzy
truth values, or labellings in metric spaces, it is often appropriate to use more fine-grained,
quantitative measures of behavioural similarity, arriving at notions of behavioural distance.
Distance-based approaches in particular avoid the problem that small quantitative deviations
in behaviour will typically render two given systems inequivalent under two-valued notions
of equivalence, losing information about their similarity.

Behavioural distances serve evident purposes in system verification, allowing as they
do for a reasonable notion of a specification being satisfied up to an acceptable margin of
deviation (e.g. [24]). Applications have also been proposed in differential privacy [9] and
conformance testing of hybrid systems [30]. Like their two-valued counterparts, behavioural
distances have been introduced for quite a range of system types, such as various forms of
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probabilistic labelled transition systems or labelled Markov processes [25, 53, 14, 16]; systems
combining nondeterministic and probabilistic branching variously known as nondeterministic
probabilistic transition systems [8], probabilistic automata [13], and Markov decision pro-
cesses [22]; weighted automata [3]; fuzzy transition systems [7] and fuzzy Kripke models [21];
and various forms of metric transition systems [12, 20, 19]. This range of variation creates a
need for unifying concepts and methods. The present work contributes to developing such a
unified view within the framework of universal coalgebra, which is based on abstracting a
wide range of system types (including all the mentioned ones) as set functors.

Specifically, we fix a generic notion of quantitative bisimulation via the key notion of
non-expansive (fuzzy) lax extension of a functor. While existing coalgebraic approaches to
behavioural pseudometrics rely on pseudometric liftings of functors [2], fuzzy lax extensions act
on unrestricted quantitative relations. Hence, quantitative bisimulations need not themselves
be pseudometrics, in analogy to classical bisimulations not needing to be equivalence relations,
and thus may serve as small certificates for low behavioural distance. We show that two
known systematic constructions of functor liftings from chosen sets of modalities, the generic
Wasserstein and Kantorovich liftings, both extend to yield non-expansive fuzzy lax extensions
(it is essentially known that the Wasserstein lifting yields a fuzzy lax extension [26]). As
our main result, we then establish that every fuzzy lax extension of a finitary functor is a
Kantorovich extension induced by a suitable set of modalities, the so-called Moss modalities.

This result may be seen as a quantitative version of previous results asserting the existence
of separating sets of two-valued modalities for finitary functors [47, 32, 35], which allow
for generic Hennessy-Milner-type theorems stating that states in finitely branching systems
(coalgebras) are behaviourally equivalent iff they satisfy the same modal formulae [44, 47].
Indeed our main result similarly allows extracting characteristic quantitative modal logics from
given behavioural metrics, where a logic is characteristic or expressive if the induced logical
distance of states coincides with behavioural distance. This result may equivalently be phrased
as expressiveness of a quantitative version of Moss’ coalgebraic logic [42], which provides
a coalgebraic generalization of the classical relational V-modality (which e.g. underlies the
a — U notation used in Walukiewicz’s p-calculus completeness proof [55]). We relax the
standard requirement of finite branching, i.e. use of finitary functors, to an approximability
condition called finitary separability, and hence in particular cover countable probabilistic
branching.

Organization. We recall basic concepts on pseudometrics, coalgebraic bisimilarity, and
coalgebraic logic in Section 2. The central notion of (nonexpansive) fuzzy lax extension is
introduced in Section 3, and the arising principle of quantitative bisimulation in Section 4. The
generic Kantorovich and Wasserstein liftings are discussed in Sections 5 and 6, respectively.
Our central result showing that every lax extension is a Kantorovich lifting is established
in Section 7. In Section 8, we show how our results amount to extracting characteristic
modal logics from given non-expansive lax extensions. Proofs are sometimes omitted or
only sketched; some additional proofs are in Appendix A, a full version with all proofs is
available [56].

Related Work. Probabilistic quantitative characteristic modal logics go back to Desharnais
et al. [16]; they relate to fragments of quantitative p-calculi [29, 38, 40]. A further well-known
class of quantitative modal logics are fuzzy modal and description logics (e.g. [41, 23, 49, 34]).
Van Breugel and Worrell [53] prove a Hennessy-Milner theorem for quantitative probabilistic
modal logic. Quantitative Hennessy-Milner-type theorems have since been established for
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fuzzy modal logic with Godel semantics [21], for systems combining probability and non-
determinism [17], and for Heyting-valued modal logics [18] as introduced by Fitting [23].
Konig and Mika-Michalski [31] provide a quantitative Hennessy-Milner theorem in coalgebraic
generality for the case where behavioural distance is induced by the pseudometric Kantorovich
lifting defined by the same set of modalities as the logic, a result that we complement by
showing that in fact all fuzzy lax extensions are Kantorovich.

Fuzzy lax extensions are a quantitative version of lax extensions [35, 50, 33], which in
turn belong to an extended strand of research on relation liftings [28, 50, 33]. They appear
to go back to work on monoidal topology [27], and have been used in work on applicative
bisimulation [24]; as indicated above, Hofmann [26] effectively already introduces the generic
Wasserstein lax extension (without using the term but proving the relevant properties,
except non-expansiveness). Our notion of non-expansive lax extension, which is central to
the connection with characteristic logics, appears to be new. Our method of extracting
quantitative modalities from fuzzy lax extensions generalizes the construction of two-valued
Moss liftings for (two-valued) lax extensions [32, 35].

2 Preliminaries

We recall basic notions on pseudometrics, universal coalgebra [46], and the generic treatment
of two-valued bisimilarity. Basic knowledge of category theory (e.g. [1]) will be helpful.

Pseudometric Spaces. A (1-bounded) pseudometric on a set X is a function d: X x X — [0,1]
satisfying d(z, x) = 0 (veflexivity), d(x,y) = d(y,x) (symmetry), and d(z, z) < d(x,y) +d(y, 2)
(triangle inequality) for x,y, 2z € X. If moreover d(z,y) = 0 implies = = y, then d is a metric.
The pair (X,d) is a (pseudo-)metric space. The unit interval [0,1] is a metric space under
Euclidean distance dg(x,y) = |x —y|- The supremum distance of functions f,g: X — [0,1] is
[f = 9glloo =supgex |f () —g(z)]. Amap f:X - Y of pseudometric spaces (X,d;), (Y,dz), is
nonexpansive (notation: f:(X,dy) =1 (Y,dg)) if da(f(x), f(y)) < di(z,y) for all z,y e X.

Universal Coalgebra is a uniform framework for a broad range of state-based system types.
It is based on encapsulating the transition type of a system as an (endo-)functor, for the
present purposes on the category of sets: A functor T assigns to each set X a set TX, and
to each map f: X =Y amap Tf:TX - TY, preserving identities and composition. We may
think of TX as a parametrized datatype; e.g. the (covariant) powerset functor P assigns to
each set X its powerset PX, and to f: X - Y the direct image map Pf: PX — PY, A~ f[A];
and the distribution functor D maps each set X to the set of discrete probability distributions
on X. Recall that a discrete probability distribution on X is given by a probability mass
function p: X — [0,1] such that ¥ .x p(z) =1 (implying that the support {x € X | u(x) >0}
of u is at most countable); we abuse p to denote also the induced probability measure, writing
u(A) = ¥ eap(x) for A< X. Moreover, D maps f:X - Y to Df:DX — DY, p+ pf?
where the image measure uf~' is given by uf'(B) = u(f[B]) for BCY.

Systems of a transition type T are then cast as T-coalgebras (A, ), consisting of a set A of
states and a transition function c: A - T A, thought of as assigning to each state a structured
collection of successors. E.g. a P-coalgebra a: A — P A assigns to each state a a set a(a) of
successors, so is just a (non-deterministic) transition system. Similarly, a D-coalgebra assigns
to each state a distribution over successor states, and thus is a probabilistic transition system
or a Markov chain. A morphism f:(A,a) - (B, ) of T-coalgebras (A,«) and (B, ) is a
map f: A — B such that o f =Tf o«, where o denotes the usual (applicative) composition
of functions; e.g. morphisms of P-coalgebras are functional bisimulations.
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A functor T is finitary if for each set X and each ¢t € T X, there exists a finite subset Y ¢ X
such that ¢ = Ti(¢") for some t' € TY, where :Y — X is the inclusion map. Intuitively, T is
finitary if every element of T X mentions only finitely many elements of X. Every set functor T'
has a finitary part T,, given by T,,X = U{Ti[TY]|Y ¢ X finite,#:Y - X inclusion}. E.g. P,
the finite powerset functor, maps a set to the set of its finite subsets, and D,, the finite
distribution functor, maps a set X to the set of discrete probability distributions on X with
finite support. Coalgebras for finitary functors generalize finitely branching systems, and
hence feature in Hennessy-Milner type theorems, which typically fail under infinite branching.

Bisimilarity and Lax Extensions. Coalgebras come with a canonical notion of observable
equivalence: States a € A, b e B in T-coalgebras (A4, «), (B, ) are behaviourally equivalent if
there exist a coalgebra (C,v) and morphisms f: (A4, a) - (C,~), g:(B, ) = (C,~) such that
f(a) = g(b). Behavioural equivalence can often be characterized in terms of bisimulation
relations, which may provide small witnesses for behavioural equivalence of states and in
particular need not form equivalence relations. The most general known way of treating
bisimulation coalgebraically is via lax extensions L of the functor T', which map relations
Rc X xY to LRcTX xTY subject to a number of axioms (monotonicity, preservation of
relational converse, lax preservation of composition, extension of function graphs) [35]; L
preserves diagonals if LAx = Arx for each set X, where for any set Y, Ay denotes the
diagonal {(y,y) |y € Y}. The Barr extension T of T [4, 51] is defined by

TR={(Tm(r), Tna(r)) | r e TR}

for Rc X xY, where m: R - X and 7: R - Y are the projections; T preserves diagonals,
and is a lax extension if T preserves weak pullbacks. E.g., the Barr extension P of the
powerset functor P is the well-known Egli-Milner extension, given by

(V,W)eP(R) < (VoeV.3yeW.(z,y) e R) A (Yye W.3z e V.(z,y) € R)

for RE X xY, VeP(X), WeP(). An L-bisimulation between T-coalgebras (A, a),
(B, ) is a relation R € A x B such that (a(a),3(b)) € LR for all (a,b) € R; e.g. for L =P,
we obtain exactly Park/Milner bisimulation on transition systems. If L preserves diagonals,

then two states are behaviourally equivalent iff they are related by some L-bisimulation [35].

Coalgebraic Logic serves as a generic framework for the specification of state-based sys-
tems [11]. It is based on interpreting custom modalities of given finite arity over coalgebras
for a functor T' as n-ary predicate liftings, which are families of maps

)\X: (QX)n N 2TX

(subject to a naturality condition) where 2 = {1, T} and for any set Y, 2 is the set of 2-valued
predicates on Y. We do not distinguish notationally between modalities and the associated

predicate liftings. Satisfaction of a formula of the form A(¢1,...,¢,) (in some ambient logic)
in a state a € A of a T-coalgebra (A, «) is then defined inductively by
aE NP1, ..., 0n) iff ala) e Aa([d1],- -, [dn]) (1)

where for any formula ¢, [¢] = {c € A | ¢ = ¢}. E.g. the standard diamond modality <
is interpreted over the powerset functor P by the predicate lifting G x (V) = {Z € P(X) |
Jx € Z.Y(x) = T}, which according to (1) induces precisely the usual semantics of & over
transition systems (P-coalgebras). The standard Hennessy-Milner theorem is generalized
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coalgebraically [44, 47] as saying that two states in T-coalgebras are behaviourally equivalent
iff they satisfy the same A-formulae, provided that T is finitary (which corresponds to the
usual assumption of finite branching) and A is separating, i.e. for any set X, every t € TX is
uniquely determined (within TX) by the set

s X1,0..,Yp € n-ary,Yi,...,rn € ,tE 1yev-sdn)y.
)Y, Y,) | AeA Y; Y, € 2% te A(Y; Y,

For finitary T', a separating set of modalities always exists [47].

3 Fuzzy Relations and Lax Extensions

We next introduce the central notion of the paper, concerning extensions of fuzzy (or real-
valued) relations along a set functor T, which we fiz for the remainder of the paper. We
begin by fixing basic concepts and notation on fuzzy relations. Pseudometrics can be viewed
as particular fuzzy relations, forming a quantitative analogue of equivalence relations.

» Definition 3.1. Let A and B be sets. A fuzzy relation between A and B is a map
R:Ax B - [0,1], also written R:A + B. We say that R is crisp if R(a,b) € {0,1} for
all a € A,b e B (and generally apply the term crisp to concepts that live in the standard
two-valued setting). The converse relation R°: B + A is given by R°(b,a) = R(a,b). For
R,S: A+ B, we write R< S if R(a,b) < S(a,b) for all ae A,be B.

» Convention 3.2. Crisp relations are just ordinary relations. However, since we are working
in a pseudometric setting, it will be more natural to use the convention that elements
a € A,be B are related by a crisp relation R if R(a,b) =0, in which case we write aRb.

» Convention 3.3 (Composition). We write composition of fuzzy relations diagrammatically,
using ;. Explicitly, the composite Ry; Ry: A -+ C of R1: A+ B and Ry: B + C' is defined by

(R1; R2)(a,c) = infpep Ri(a,b) ® Ra(b,c),

where @ denotes Lukasiewicz disjunction: z @ y = min(x +y,1). We reserve the applicative
composition operator o for composition of functions. In particular, R: A + B is viewed as a
function A x B — [0, 1] whenever o is applied to R.

» Definition 3.4 (Functions as relations). The e-graph of a function f: A — B is the fuzzy
relation Gr, ;: A+ B given by Gre f(a,b) = € if f(a) =b, and Gr¢ f(a,b) =1 otherwise. The
e-graph of the identity function id4 is also called the e-diagonal of A, and denoted by A 4.
We refer to Gro ; simply as the graph of f, also denoted Gry, and to Ag 4 as the diagonal
of A, which we continue to denote as A 4.

Using the notation assembled, we can rephrase the definition of pseudometric as follows.

» Lemma 3.5. A fuzzy relation d: X + X is a pseudometric iff

d<Ax (reflexivity)
d°=d (symmetry)
d<d;d (triangle inequality).

We now introduce our central notion of non-expansive lax extension:

27:5
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» Definition 3.6 (Fuzzy lax extensions). A (fuzzy) relation lifting L of T maps each fuzzy
relation R: A + B to a fuzzy relation LR:T A + T B such that

(LO) L(R°)=(LR)°
for all R. We say that L is a fuzzy lax extension if it additionally satisfies

(Ll) Ri<Ry=LR; <LRy
(L2) L(R;S)<LR;LS
(L3) LGI“f < GI“Tf

for all sets A, B, and R,R;,R: A+ B, S:B+C, f:A - B. A fuzzy lax extension L is
non-expansive, and then briefly called a non-expansive lax extension, if

(L4) LAca<Acra
for all sets A and ¢ > 0.

Axioms (L0)—(L3) are straightforward quantitative generalizations of the axiomatization
of two-valued lax extensions [35]; fuzzy lax extensions in this sense have also been called
[0, 1]-relators [24, 27] (in the more general setting of quantale-valued relations). Axiom (L4)
has no two-valued analogue; its role and the terminology are explained by the following
characterization:

» Lemma 3.7. Let L be a fuzzy lax extension of T. Then the following are equivalent.

1. L satisfies Aziom (L4) (i.e. is non-expansive).

2. For all functions f:A— B and all € >0, LGre § < Gre 7y

3. For all sets A, B, the map R — LR is non-expansive w.r.t. the supremum metric on A+ B.
This characterization is an important prerequisite for the Hennessy-Milner theorem. Its proof
relies on the following basic property [27, Corollary III.1.4.4]:

» Lemma 3.8 (Naturality). Let L be a fuzzy lax extension of T, let R: A" + B’ be a fuzzy
relation, and let f:A— A’,g:B — B'. Then L(Ro(f xg))=LRo(TfxTg).

As indicated previously, existing approaches to behavioural metrics (e.g. [53, 2]) are based on
lifting functors to pseudometric spaces. Every lax extension induces such a functor lifting:

» Lemma 3.9. Let L be a fuzzy lax extension, and let d: X + X be a pseudometric. Then
Ld is a pseudometric on TX. Moreover, for every non-expansive map f:(X,d1) — (Y, ds)
of pseudometric spaces, the map T f:(TX, Ldy) - (TY, Ldy) is non-expansive.

That is, every fuzzy lax extension of T:Set — Set gives rise to a functor T: PMet — PMet on
the category PMet of pseudometric spaces and nonexpansive maps that lifts T in the sense
that U o T =T o U, where U:PMet — Set is the functor that forgets the pseudometric.

Much of the development will be based on finitary functors; for instance, we need a
finitary functor so we can give an explicit syntax for the characterizing logic of a lax extension.
The following notion captures a broader class of functors than just the finitary ones.

» Definition 3.10. A fuzzy lax extension L for the functor T is finitarily separable if for
every set X, T, X is a dense subset of TX wrt. the pseudometric LA x.

Clearly, any lax extension of a finitary functor is finitarily separable. The prototypical
example of a finitarily separable lax extension of a non-finitary functor is the Kantorovich
lifting of the discrete distribution functor D (Example 5.8.1). We conclude the section with
a basic example of a non-expansive lax extension, deferring further examples to the sections
on systematic constructions of such extensions (Sections 5 and 6):
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» Example 3.11 (Hausdorff lifting). The Hausdorff lifting is the relation lifting H for the
powerset functor P, defined for fuzzy relations R: A + B by

HR(U,V) = max(supinf R(a,b), supinf R(a,b)).
aeU beV beV aeU
for U ¢ A,V ¢ B. The Hausdorft lifting can be viewed as a quantitative analogue of the
Egli-Milner extension (Section 2), where sup replaces universal quantification and inf replaces
existential quantification. It is shown already in [27] that H is a fuzzy lax extension. Indeed,
it is easy to see that H is also non-expansive. These properties will also follow from the
results of Section 6, where we show that H is in fact an instance of the Wasserstein lifting.
H is not finitarily separable, because for every set X we have HAx = Apx.

4  Quantitative Bisimulations

We next identify a notion of bisimulation based on a lax extension L of the functor T
similar concepts appear in work on quantitative applicative bisimilarity [24]. We define
behavioural distance based on this notion, and show coincidence with the distance defined
via the pseudometric lifting induced by L according to Lemma 3.9.

» Definition 4.1. Let L be a lax extension of T, and let atA - T A and 5:B — T'B be
coalgebras.

1. A fuzzy relation R: A+ B is an L-bisimulation if LRo (ax ) < R.

2. We define L-behavioural distance dé, 5: A+ B to be the infimum of all L-bisimulations:

diﬁ =inf{R: A+ B| R is an L-bisimulation}.
If a = 3, we write d- = dé,ﬁ instead.

» Remark 4.2. Putting Definition 4.1 in other words, an L-bisimulation is precisely a prefix
point for the map F(R) = LR o (a x 3). Note that F is monotone by (L1). This means
that, according to the Knaster-Tarski fixpoint theorem, dé g Is itself a prefix point (i.e. an
L-bisimulation), and also the least fixpoint of F, i.e. dg,ﬂ = Ldéﬁ o(axf).

As L-behavioural distance is the least L-bisimulation, we get:
» Lemma 4.3. For every coalgebra oz A - TA, d% is a pseudometric.

» Remark 4.4. As announced above, existing generic notions of behavioural distance defined
via functor liftings [2] agree with the one given above (when both apply). Specifically, when
applied to the functor lifting induced by a lax extension L of T according to Lemma 3.9,
the definition of behavioural distance via functor liftings amounts to taking the same least
fixpoint as in Definition 4.1 but only over pseudometrics instead of over fuzzy relations.

» Remark 4.5. Every fuzzy lax extension L induces a crisp lax extension L., where for any
crisp relation R, L.R = (LR)™'[{0}] € TA x T B (recall Convention 3.2). It is easily checked
that L. preserves diagonals (Section 2) iff

LA 4 is a metric for each set A. (2)

By results on lax extensions cited in Section 2, L.-bisimilarity coincides with behavioural equi-
valence in this case, i.e. if L satisfies (2), then L characterizes behavioural equivalence: Two
states a € A, b € B in coalgebras (A, «), (B, 3) are behaviourally equivalent iff déyﬁ(a, b)= 0.

27:7
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» Example 4.6 (Small bisimulations). We give an example for the functor TX = [0,1] x PX.
Coalgebras for T' are Kripke frames where each state is labelled with a number from the unit
interval. This T has a non-expansive lax extension L, defined for fuzzy relations R: A + B by

LR((p,U),(¢,V)) = 3(Ip— gl + HR(U,V)),

where p,q € [0,1],U € A,V ¢ B, and H is the Hausdorff lifting (Example 3.11). The
motivating idea behind this definition is that the L-behavioural distance of two states is the
supremum of the accumulated branching-time differences between state labels over all runs
of a process starting at these states. The factor % ensures that the total distance is at most 1
by discounting the differences at later stages with exponentially decreasing factors.

Now consider the T-coalgebras (A, a) and (B, ) below:

/b

az 0.2 as 0.8 by 0.7

a1 0.7 1

0.4
b3

We put R(ai,b1) = 0.2, R(az,b3) = 0.1, R(as,b2) = 0.05 and R(a;,b;) =1 in all other cases.
Then R is an L-bisimulation witnessing that diﬂ(al, b1) < 0.2, but is neither reflexive nor
symmetric, nor transitive on the disjoint union of the systems.

As indicated previously, quantitative Hennessy-Milner theorems can only be expected to hold
for non-expansive lax extensions. The key observation is the following. By standard fixpoint
theory, L-behavioural distance can be approximated from below by an ordinal-indexed
increasing chain. Crucially, if L is non-expansive and finitarily separable, then this chain
stabilizes after w steps. Formally:

» Theorem 4.7. Let L be a non-expansive finitarily separable lax extension of T. Given
T-coalgebras (A, a), (B, ), define a sequence (dn: A+ B)p<, and d,: A+ B by

do =0, dps1 = Ldy o (ax B), dy = sup,,.,, dn.

Then
(i) Ld,o(axpB)=d,, and
(ii) L-behavioural distance dgﬁ equals d,.

Proof (sketch). In case T is finitary, we can exploit the fact that under restriction to a finite
subset of A x B the pointwise convergence of (dy,)n<, becomes uniform, so (i) follows from
nonexpansivity of L using Lemma 3.7.3. To generalize to the non-finitary case, one can use
an unravelling construction and approximate the unravelled T-coalgebra by a T,,-coalgebra
such that the series of accumulated errors converges to a fixed e. Claim (ii) is immediate
from (i) by the fixpoint definition of diy L <

5 The Kantorovich Lifting

As a pseudometric lifting, the Kantorovich lifting is standard in the probabilistic setting:
Given a metric d on a set X, the Kantorovich distance Kd(u1,u2) between discrete distribu-
tions 1, o on X is defined by

Kd(pa, p2) = sup{By, (f) = Ep, (£) | f: (X, d) > ([0,1], dz) nonexpansive}
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where E takes expected values. The coalgebraic generalization of the Kantorovich lifting,
both in the pseudometric setting [31] and in the present setting of fuzzy relations, is based on
fuzzy predicate liftings, a quantitative analogue of two-valued predicate liftings (Section 2)
that goes back to work on coalgebraic fuzzy description logics [48]. Fuzzy predicate liftings
will feature in the generic quantitative modal logics that we extract from fuzzy lax extensions
(Section 8).

Recall that the contravariant fuzzy powerset functor Q:Set — Set is defined on sets X as
QX =(X - [0,1]) and on functions f: X - Y as Qf(h)=ho f.

» Definition 5.1 (Fuzzy predicate liftings). Let n € N.
1. An n-ary (fuzzy) predicate lifting is a natural transformation

Q"= QoT,

where the exponent n denotes n-fold cartesian product.
2. The dual of A is the n-ary predicate lifting A given by A(f1,..., fn) = 1-A(1=f1,...,1=fn).
3. We call A monotone if for all sets X and all functions fi,..., fn,91,...,9n € QX such

that f; < g; for all 4, Ax(f1,---, fn) < Ax(91,---,9n)-
4. We call X\ nonexpansive if for all sets X and all functions fi,..., fn,91,--.,9n € QX,

[Ax (frseos fn) = Ax (9155 gn) oo < max([f1 = g1floos s | fn = gnlleo)-

» Remark 5.2. By the Yoneda lemma, unary predicate liftings are equivalent to the evaluation
functions e: T[0,1] - [0,1] used in work on pseudometric functor liftings [2, 47] and on the
generic Wasserstein lifting [26]; more generally, an n-ary predicate lifting is equivalent to a
generalized form of evaluation function, of type T[0,1]™ — [0,1] [47].

Before we can prove that the Kantorovich lifting is a lax extension, we first need to generalize
it so that it lifts arbitrary fuzzy relations instead of just pseudometrics. To this end, we
introduce the notion of nonexpansive pairs (a similar idea appears already in [54, Section 5)):

» Definition 5.3. Let R: A+ B. A pair (f,g) of functions f: A - [0,1] and ¢: B - [0,1] is
R-nonexpansive if f(a) - g(b) < R(a,b) for all a € A,be B.

Given a function and a fuzzy relation, we can construct a nonexpansive companion:

» Definition 5.4. Let R: A+ B and f: A — [0,1]. Then we define R[f]: B — [0,1] by

R[f](b) = SUPgeA f(a) S R(a, b)u
where for z,y € [0,1], z © y = max(x - y,0).

» Definition 5.5. Let A be a set of monotone predicate liftings that is closed under duals.
The Kantorovich lifting K, is defined as follows: for R: A+ B, KaR:TA + TB is given by

KAR(tlatQ) = Sup{)‘A(fla RN fn)(tl) - )‘B(glv (R agn)(t2) |
AeAn-ary, (f1,91),- .. (fn,9n) R-nonexpansive}.
We show in the appendix that closure under duals guarantees that Ky R(t1,t2) > 0 always.

» Theorem 5.6. Let A be a set of monotone predicate liftings that is closed under duals.
The Kantorovich lifting Ka is a lax extension. If all X € A are nonexpansive, then Ky is
nonexpansive as well.
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Proof (sketch). We sketch the proofs for (L2) and (L4). For (L2), one observes that given
a nonexpansive pair (f,h) for R;S, one can obtain nonexpansive pairs (f,g) for R and
(g,h) for S using the nonexpansive companion g = R[f]. For (L4), we note that A, a-
nonexpansivity of (f,g) implies that f(a) - g(a) < € for all a € A. By monotonicity of
predicate liftings, we can assume that w.l.o.g. g(a) = f(a) ©e. In this case, for every A € A
(for simplicity, unary) and t € T A,

AN @) = M9 (@) <A =A@ ]eo < [ = glloe <€ <

» Remark 5.7 (Kantorovich for pseudometrics). On pseudometrics, the Kantorovich lifting K
as given by Definition 5.5 agrees with the usual Kantorovich distance —!7 [2, Definition 5.4]
defined for pseudometrics. If d: A + A is a pseudometric, then d'? (¢1,t5) equals

Sup{p\A(fh' . ufn)(tl) - >\A(f17 cee 7fn)(t2)| | A€ A7f17 .. ‘7f’ﬂ:(A7 d) 1 ([07 1]7dE)}

» Example 5.8 (Kantorovich liftings).

1. The standard Kantorovich lifting K of the discrete distribution functor D is an instance of
the generic one, for the single predicate lifting &(f) (1) = E,(f). Crucially, K is finitarily
separable, by the observation that for every discrete distribution p € DX and every € > 0,
there are only finitely many points z with u(z) > e.

2. The fuzzy neighbourhood functor is the (covariant) functor N = Q o Q; the elements of
NX are called fuzzy neighbourhood systems, and their coalgebras fuzzy neighbourhood
frames [45, 10]. The monotone (nonexpansive) fuzzy neighbourhood functor M is the
subfunctor M of A given by MX consisting of the fuzzy neighbourhood systems that
are monotone and nonexpansive as maps A: QX — [0,1]. We put

LR(A, B) = max(supseox A(f) © B(R[f]),sup,e0x B(g) © A(R°[9]))

for R:A+ B, A e MX, B € MY (recall Definition 5.4). Then L is a nonexpansive
lax extension of M; specifically, L = K;yy where X is the predicate lifting given by

Ax ()(A) = A(S)-

6 The Wasserstein Lifting

The other generic construction for lax extensions arises in a similar way, by generalizing the
generic Wasserstein lifting for pseudometrics [2] to lift arbitrary fuzzy relations instead of just
pseudometrics; our construction slightly generalizes one given by Hofmann [26]. Compared
to the case of the Kantorovich lifting, where we needed to work with nonexpansive pairs,
the generalization from pseudometric lifting to relation lifting is much more direct. In the
same way as for the original construction of pseudometric Wasserstein liftings, additional
constraints, both on the functor and the set of predicate liftings involved, are needed for the
Wasserstein lifting to be a lax extension. Indeed, the Wasserstein lifting may be seen as a
quantitative analogue of the two-valued Barr extension (Section 2), and like the latter works
only for functors that preserve weak pullbacks. In particular, Wasserstein liftings are based
on the central notion of coupling:

» Definition 6.1. Let t; € TA,t; € TB for sets A, B. The set of couplings of t; and ts is
Cpl(t1,t2) ={t e T(Ax B) | Tmi(t) = t1,Tm2(t) = t2}.

Like the Kantorovich lifting, the Wasserstein lifting is based on a choice of predicate liftings.
It is, however, built in a quite different manner, and in particular appears to make sense
only for unary predicate liftings, so unlike in some other places in the paper, the restriction
to unary liftings in the next definition is not just for readability.
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» Definition 6.2 (Wasserstein lifting). Let A be a set of unary predicate liftings. The generic
Wasserstein lifting is the relation lifting Wy of T defined for R: A + B by

WAR(tl,tQ) = SUPxeA inf{)\Axg(R)(t) | te Cp'(tl,tg)}.

This construction is similar to [26, Definition 3.4] except that we admit more than one
modality. On pseudometrics, the Wasserstein lifting coincides with the pseudometric lifting
4T as defined in [2, Definition 5.12]. We will see that the following conditions ensure that
the Wasserstein lifting is a fuzzy lax extension:

» Definition 6.3. Let A be a unary predicate lifting.
1. X\ is subadditive if for all sets X and all f,ge€ QX, Ax(f®g) <Ax(f)® Ax(g9).
2. X preserves the zero function if for all sets X, Ax(0x) = Orx, where Ox:z — 0.

3. \is standard if it is monotone, subadditive, and preserves the zero function.

» Remark 6.4. Baldan et al. give conditions under which the Wasserstein lifting arising from
some set of evaluation functions (Remark 5.2) preserves pseudometrics. For this purpose
they consider the notion of a well-behaved evaluation function [2, Definition 5.14]. We show
in Appendix A that this amounts to a slightly stronger condition than standardness of the
corresponding predicate lifting. Similar conditions also feature in Hofmann’s topological
theories [26, Definition 3.1], which consist of a monad acting on a quantale via an evaluation
function and on which his generic Wasserstein extension is based. We show in the appendix
that, ignoring some monad-specific axioms, the conditions imposed on the functor and
evaluation function are equivalent to standardness of the associated predicate lifting.

Now indeed we have

» Theorem 6.5. If T preserves weak pullbacks and A is a set of standard predicate liftings,
then the Wasserstein lifting Wy is a lax extension. If additionally all A € A are nonexpansive,
then Wy is nonexpansive as well.

Proof (sketch). The proofs of (L0)—(L3) are similar to [26, Theorem 3.5]. In particular, (L3)
follows by preservation of the zero function, and(L2) is based on subadditivity of predicate
liftings and weak pullback preservation of 7. The latter is a prerequisite for the so-called
gluing lemma (e.g. [2, Lemma 5.18]), which gives a canonical way of producing couplings
t13 € Cpl(t1,t3) from couplings t12 € Cpl(t1,t2) and to3 € Cpl(ta,t3). The proof of (L4) is by
nonexpansivity of predicate liftings. |

» Example 6.6 (Wasserstein liftings).

1. The Hausdorff lifting H (Example 3.11) is the Wasserstein lifting Wy,; for P, where
Ax (f)(A) =sup f[A] for Ac X.

2. The convex powerset functor C, whose coalgebras combine probabilistic branching and
nondeterminism [6], maps a set X to the set of nonempty convex subsets of DX. The
Wasserstein lifting Wyyy, where Ax (f)(A) =sup,e4 E,(f) for A€ CX, is a non-expansive
lax extension of C. Of course, A is just the composite of the predicate liftings respectively
defining the standard Kantorovich and Hausdorff liftings. As we show in the appendix,
Wiy indeed coincides with the composite of these liftings (for which a quantitative
equational axiomatization has recently been given by Mio and Vignudelli [39]).

27:11
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7 Lax Extensions as Kantorovich Liftings

We proceed to establish the central result that every fuzzy lax extension is a Kantorovich
lifting for some suitable set A of predicate liftings, and moreover we characterize the
Kantorovich liftings induced by non-expansive predicate liftings as precisely the non-expansive
lax extensions. For a given fuzzy lax extension L, the equality Ky R = LR splits into two
inequalities, one of which is characterized straightforwardly:

» Definition 7.1. An n-ary predicate lifting A preserves nonexpansivity if for
all fuzzy relations R and all R-nonexpansive pairs (f1,91),...,(fn,9n), the pair
(Aa(f1s---, fn), AB(g1,---,9n)) is LR-nonexpansive. A set A of predicate liftings preserves
nonexpansivity if all X\ € A preserve nonexpansivity.

» Lemma 7.2. We have KpyR < LR if and only if A preserves nonexpansivity.

» Definition 7.3 (Separation). A set A of predicate liftings is separating for L if KR > LR
for all fuzzy relations R.

To motivate Definition 7.3, recall from Section 2 that in the two-valued setting a set A of
predicate liftings (for simplicity, assumed to be unary) is separating if

t1 £ty = I € A,A, ¢ A such that tq € )\A(A’) <7L> to € )\A(A,)

for t1,to € TA. Analogously, unfolding definitions in the inequality Ka R > LR (and again
assuming unary liftings), we arrive at the condition that for all t; e TA,t2 € TB, € > 0,

LR(t1,t2) >e = 3IX e A, (f,g) R-nonexpansive such that Aa(f)(¢t1) - Ag(g)(t2) > €.
We are now ready to state our main result, which says that all lax extensions are Kantorovich:

» Theorem 7.4. If L is a finitarily separable lax extension of T, then there exists a set A
of monotone predicate liftings that preserves nonexpansivity and is separating for L, i.e.
L = K5. Moreover, L is nonexpansive iff A can be chosen in such a way that all A € A are
NONETPANSIve.

This result can be seen as a fuzzy version of the statements that every finitary functor has a
separating set of two-valued modalities (and hence an expressive two-valued coalgebraic modal
logic) [47, Corollary 45], and that more specifically, every finitary functor equipped with
a diagonal-preserving lax extension has a separating set of two-valued monotone predicate
liftings [35, Theorem 14]. We will detail in Section 8 how Theorem 7.4 implies the existence
of characteristic modal logics. The proof of Theorem 7.4 uses a quantitative version of the
so-called Moss modalities [32, 35]. The construction of these modalities relies on the fact
that T, can be presented by algebraic operations of finite arity:

» Definition 7.5. A finitary presentation of T,, consists of a signature ¥ of operations with
given finite arities, and for each o € ¥ of arity n a natural transformation o:(-)" = T,, such
that every element of T,,X has the form ox(x1,...,2,) for some o € 3.

For the remainder of this section, we fix a finitary presentation of T,, (such a presentation
always exists) and assume a finitarily separable fuzzy lax extension L of T'.

» Definition 7.6. Let 0 € ¥ be n-ary. The Moss lifting u°: Q" = Qo T is defined by

p%(frs- oo fa)(t) = Levx (o0ox (f1,- -+ fn), 1),

where evx: QX + X is given by evx (f,z) = f(z).
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We take A to be the set of all Moss liftings and their duals:
A={n |oeS)u i |ocs)
Now Theorem 7.4 is immediate from

» Lemma 7.7. A is a set of monotone predicate liftings that preserves nonexpansivity and is
separating for L. If L is nonexpansive, then so are all predicate liftings in A.

Proof (sketch).
A is separating: Let s:B — QA,s(b)(a) = R(a,b) and ¢ > 0. Because the set of X-
terms over QA generates T,,QA and L is finitarily separable, there exists some o € %
(for simplicity unary) and some f € QA such that LAga(a(f),Ts(t2)) < e. If we put
g =R[f], then |p?(f)(t1) - LR(t1,t2)| < € and u?(g)(t2) < e. Then let € — 0.
Nonexpansivity of Moss liftings: This is based on the observation that for any set A and
any f,ge€ QA, |f - gl <€ iff both (f,g) and (g, f) are A, 4-nonexpansive pairs.

For the remaining properties we refer to the full version of this paper [56]. <

8 Real-valued Coalgebraic Modal Logic

We next recall the generic framework of real-valued coalgebraic modal logic, which lifts
two-valued coalgebraic modal logic (Section 2) to the quantitative setting, and will yield
characteristic quantitative modal logics for all non-expansive lax extensions. The framework
goes back to work on fuzzy description logics [48]. The present version, characterized by a
specific choice of propositional operators, appears in work on the coalgebraic quantitative
Hennessy-Milner theorem [31], and generalizes quantitative probabilistic modal logic [53].
Given a set A of (fuzzy) predicate liftings, the set £, of modal (A)-formulae is given by

gbaw:::C'qsec'_‘¢|¢/\w|)\(¢1a'-’7¢n) (3)

where c€e QN [0,1] and X € A has arity n. The semantics assigns to each formula ¢ and each
coalgebra (A, o) a real-valued map [¢]a,qo: A — [0,1], or just [¢], defined by

[e](a) = ¢ [¢ A ¢](a) = min([¢](a), [¢](a))
[¢ e cl(a) = max([¢](a) - ¢,0) [A(61; - dn)l(a) = Aa([n], - - [9n]) (ala))
[-¢](a) =1 -[¢](a)

» Remark 8.1. We thus adopt what is often called Zadeh semantics for the propositional
operators. This choice is pervasive in characteristic logics for behavioural distances (in-
cluding [53, 31, 57]) — in particular, the more general Lukasiewiecz semantics fails to be
nonexpansive w.r.t. behavioural distance, and indeed induces a discrete logical distance [57].

In the two-valued setting, one can sometimes restrict the propositional base in character-
istic logics; notably, two-valued probabilistic modal logic characterizes (event) bisimilarity
of probabilistic transition systems even with conjunction as the only propositional connect-
ive [15]. No similar results appear to be known in the quantitative case; e.g. van Breugel and
Worrell’s characteristic logic for behavioural distance of probabilistic transition systems [53]
does feature essentially the same propositional operators as our grammar (3).

» Example 8.2.

1. Fuzzy modal logic may be seen as a basic fuzzy description logic [34]. Eliding propositional
atoms for brevity (they may be added as nullary modalities), we take A = {&}. Models are
fuzzy relational structures, i.e. coalgebras for the covariant fuzzy powerset functor F given
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by FX =[0,1]% and Ff(g9)(y) = SUP f(z)=y 9(2), and < is interpreted as the predicate
lifting G A(f)(g) = sup,eq min(g(a), f(a)). Hennessy-Milner-type results necessarily
apply only to finitely branching models, i.e. coalgebras for F,,.

2. Probabilistic modal logic: Take models to be probabilistic transition systems with possible
deadlocks, i.e. coalgebras for the functor 1+ D, where DA is the set of discrete probability
distributions on A (Section 2); and A = {<}, with

Qa(f)(x)=0 forxel,and  Oa(f)(1) =Eu(f) = Laean(a) - f(a).

When extended with propositional atoms, this induces (up to restricting to discrete prob-

abilities) van Breugel et al’s contraction-free quantitative probabilistic modal logic [52].
In the two-valued setting, modal logic is typically invariant under bisimulation, i.e. bisimilar
states satisfy the same modal formulae. In the quantitative setting, this corresponds to
non-expansiveness of formula evaluation, which may be phrased as saying that logical distance
is below behavioural distance:

» Definition 8.3. The A-logical distance between states a € A, b e B in T-coalgebras (A, a),
(B,B) is d*(a,b) = sup{|[¢](a) - [](b)| | ¢ € L}

» Lemma 8.4 (Non-expansiveness of quantitative modal logic). If A preserves non-
ezpansiveness w.r.t. a lax extension L, then d® < d".

Finally, we show how the characterization of lax extensions as Kantorovich extensions can be
used to define characteristic logics for nonexpansive lax extensions. We use a Hennessy-Milner
result by Koénig and Mika-Michalski [31], for the (pseudometric) Kantorovich lifting:

» Theorem 8.5. Let A be a set of predicate liftings such that iterative approximation of the
fizpoint d** as in Theorem 4.7 stabilizes in w steps. Then d® > d¥».

We combine this result with our Theorems 4.7 and 5.6 to obtain, complementing Lemma 8.4,
a criterion phrased directly in terms of conditions on the lax extension and the modalities:

» Corollary 8.6 (Coalgebraic quantitative Hennessy-Milner theorem). Let L be a finitarily
separable fuzzy lax extension, and let A be a separating set of monotone non-expansive
predicate liftings for L. Then d® > d*.

» Example 8.7. Since we only require L to be finitarily separable (rather than T finitary),
Example 5.8.1 implies that we recover expressiveness [52, 53] of quantitative probabilistic
modal logic over countably branching discrete probabilistic transition systems (Example 8.2.2)
as an instance of Corollary 8.6.

» Remark 8.8. In [31], Theorem 8.5 is in fact only shown for the case of distances d% defined
on a single coalgebra. The general case of distances di 5 between two possibly distinct
coalgebras can be recovered by working on their coproduct (disjoint union), using that both
L-behavioural distance and formula evaluation are preserved under morphisms.

Applying Lemma 8.4 and Corollary 8.6 to L = K and using our result that all lax extensions
are Kantorovich extensions for their Moss liftings (Theorem 7.4), which moreover are
monotone and nonexpansive in case L is nonexpansive (Lemma 7.7), we obtain expressive
logics for finitarily separable nonexpansive lax extensions:

» Corollary 8.9. If L is a finitarily separable nonexpansive lax extension of a functor T,
then d¥ = d™ for the set A of Moss liftings.
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We can see the coalgebraic modal logic of Moss liftings as concrete syntax for a more abstract
logic where we incorporate functor elements into the syntax directly, as in Moss’ coalgebraic
logic [42]. The set Ly, of formulae in the arising quantitative Moss logic is generated by the
same propositional operators as above, and additionally by a modality A that applies to
® e TLy for finite Ly € L, with semantics

[A®](a) = Leva(®P,a(a)).

The dual of A is denoted V, and behaves like a quantitative analogue of Moss’ two-valued V.

From Corollary 8.9, it is immediate that this logic is expressive:

» Corollary 8.10 (Expressiveness of quantitative Moss logic). Let L be a finitarily separable
nonexpansive lax extension of a functor T. Then L-behavioural distance d* coincides with
logical distance in quantitative Moss logic, i.e. for all states a€ A, be B in (A, «),(B,B) of
coalgebras, and all a € A,be B, df 5(a,b) = sup{|[¢](a) - [¢](D)| | ¢ € L1}.

» Example 8.11.

1. We equip the finite fuzzy powerset functor F,, with the Wasserstein lifting W, for & as
in Example 8.2.1, in analogy to the Hausdorff lifting (Example 6.6.1). Then V applies to
finite fuzzy sets ® of formulae, and

[[V@]](a) = SuptECpl(CD,a(a)) inf(¢,a’)€LL x A max(l - t(¢7 a,)v (b(a,))

for a state a in an F-coalgebra (A, a), i.e. in a finitely branching fuzzy relational structure.

2. Let Cf; be the subfunctor of the convex powerset functor C given by the finitely generated
convex sets of (not necessarily finite) discrete distributions, equipped with the Wasserstein
lifting described in Example 6.6.2. Then V applies to finite sets of finite distributions
on formulae, understood as spanning a convex polytope. By Corollary 8.10, the arising
instance of quantitative Moss logic is expressive for all Cg-coalgebras.

9 Conclusions

We have developed a systematic theory of behavioural distances based on fuzzy lax extensions,
identifying the key notion of non-expansive lax extension, which we believe has good claims
to being the right notion of quantitative relation lifting in this context. We give two
general constructions of non-expansive lax extensions, respectively generalizing the classical
Kantorovich and Wasserstein distances and strengthening previous generalizations where
only pseudometrics are lifted [2]. Our construction of the Kantorovich lifting is based in
particular on the key notion of non-expansive pair (implicit in recent work on optimal
transportation [54]). Our main result shows that every non-expansive lax extension is
a Kantorovich lifting for a suitable choice of modalities, the so-called Moss modalities.
Moreover, one can extract from a given non-expansive lax extension a characteristic modal
logic satisfying a strong form of quantitative Hennessy-Milner property. Future work will
concern the extension of the systematic study of behavioural distances beyond branching-
time distances as exemplified in previous work on the concrete case of metric transition
systems [20], possibly using a quantitative variant of graded monads [36]; as well as a further
generalization to quantale-valued metrics.
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1.= 3.: Let Ry, R2: A+ B and € > 0 such that |R; — Ra]e < €; we need to show that
|LR1 — LR2| s < €. The assumption implies Ry < Ra; A g, hence LRy < L(R2; A g) <
LRy; LA, g < LRy; Ac rp using (L1), (L2), and (L4). Symmetrically, we show LRy <
LR1;Acrp, so that |[LRy — LR e < €.

3. = 1.: We have |A, 4 —A4]e =€, and hence by assumption |LA, 4 - LA4]e <€. In
particular, LA, 4 — LA 4 <A, 74, S0

LA A< LAA A <A Acra=AcTa

using (L3).

Proof of Theorem 4.7

By the fixpoint definition of dﬁﬁ, (ii) is immediate from (i). We prove (i), i.e. that
Ld,(a(a),B(b)) = d,(a,b) for all a € A, b € B. We begin by assuming that T is finit-
ary, and generalise to the non-finitary case later.

Since T is finitary, there exist finite subsets Ag € A, By € B and s € T Ay, t € T By such
that a(a) =Ti(s) and B(b) = Tj(t), where i: Ag > A and j: By — B are the inclusion maps.
We then have Ld,(a(a),5(b)) = L(d, o (i x j))(s,t) by naturality (Lemma 3.8). Now the
dp, o (i x j) converge to d, o (i x j) pointwise, and therefore also under the supremum metric
(i.e. uniformly), since Ag x By is finite. Since the assumptions imply that L is continuous
w.r.t. the supremum metric, it follows that

L(d, o (ixj))(s,t)

=sup,,.,, L(d, o (i xj))(s,t)

= SUp,,«, Ldn (a(a), B(b)) (naturality)
=sup,,.,, dn+1(a,b) = d,(a,b).

For non-finitary 7', we refer to the full version.

Details for Remark 5.2

An evaluation function e:T[0,1] — [0, 1] gives rise to a unary predicate lifting A, by putting
Ae(f) = eoTf. Conversely, an evaluation function for \: @ = Qo T can be defined via

e\ = A[O,l](id).

Generalizing to higher arities, an n-ary evaluation function is a map e:T'([0,1]™) - [0, 1],
and gives rise to a predicate lifting A.(f1,...,fn) = eo T{(f1,... fn), while for each n-ary
predicate lifting A the corresponding evaluation function is ex = Ajg,13» (71, ..., 7).

Details for Definition 5.5

From the definition it is clear that KxR(t1,t2) € [-1,1] for all ¢; and ¢5. To see that
KAR(t1,t2) >0, consider the maps hx: X — [0,1],2 — % for any set X. The pair (ha,hp)
is clearly R-nonexpansive and so, for some arbitrary unary A € A

KAR(t]_,tQ) > max()\A(hA)(tl) - )\B(hB)(tQ),;\A(hA)(tl) — j\B(hB)(tQ))
=|Aa(ha)(t1) - Ag(hp)(t2)| > 0.

(If A has higher arity, just supply more copies of h4 and hp.)
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Proof of Theorem 5.6
The following lemma will be used in the proof of (L2):

» Lemma A.l. Let R:A—+ B,S:B + C. Then for every (R;S)-nonexpansive pair (f,h)
there exists some function g:B — [0,1] such that (f,g) is R-nonexpansive and (g,h) is
S-nonexpansive.

Proof. For each b € B the value g(b) can be chosen arbitrarily in the interval
[sup f(a) © R(a,b), inf h(c) ® S(b, )],
acA ceC

so for instance we can use the nonexpansive companion g := R[f] (Definition 5.4). This
interval is non-empty because by assumption

f(a) = h(c) < (R;S)(a,c)
< bilrelg R(a,b") +S(b,c)

< R(a,b) + S(b,c)

for all a € A,c e C, so f(a) - R(a,b) < h(c) + S(b,c) by rearranging. Similar rearranging
also shows that choosing g(b) in this way ensures that (f,g) is R-nonexpansive and (g, h) is
S-nonexpansive. <

Now we are ready for the main proof.

Proof. For readability, we pretend that all A\ € A are unary although the proof works just as
well for unrestricted arities, whose treatment requires no more than adding indices. We show
the five properties one by one:

(LO): Let R:A+ B and t; € TA,ty e TB. Note that a pair (g, f) is R°-nonexpansive iff
(1-f,1-g) is R-nonexpansive. Now, using that A is closed under duals,

KA (R)(t2,t1) = sup{As(g)(t2) = Aa(f)(t1) [ A € A, (g, f) R°-nonexp.}
=sup{Aa(f)(t1) = Ap(9)(t2) | A € A, (f,g) R-nonexp.} = KxR(t1,ts)
(L1): Let Ry < Ry. Then every Rj-nonexpansive pair is also Rg-nonexpansive. Thus
KAR1 < KpAR5, because the supremum on the left side is taken over a subset of that on

the right side.
(L2): Let R:A—+ B,S:B—+C and t; € TA,t; € TB,t3 € TC. Let A€ A and let (f,h) be

(R; S)-nonexpansive. Let g be given by Lemma A.1. Then it is enough to observe that:
Aa(£)(t1) = Ac(h)(t3) = (Aa(f)(t1) = As(9)(t2)) + (AB(9)(t2) — Ac(R)(t3))
< KaR(t1,t2) + KaS(ta,t3).
(L3): Let h: A - B and t € TA. We need to show that KyGry(¢,Th(t)) =0. Let Ae A
and let (f,g) be Grp-nonexpansive, implying f < g o h. Then

Aa(F) (1) < Aalgeh)(t) = Ap(g)(Th(1)),

by monotonicity and naturality of A.

(L4): Let A be a set, t € TA and € > 0. We need to show that KyA, a(t,t) <e. Let
A e A and let (f,g) be A, a-nonexpansive, implying f(a) — g(a) < € for all a € A. By
monotonicity of A, we can restrict our attention to the case g(a) = f(a) © . In this case,

MA@ = M) (@) < A = M9 eo < [ = glleo <€ <
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Details for Remark 5.7

First, note that if (f,g) with f,g: A > [0,1] is d-nonexpansive, then f(a)-g(a) < d(a,a) =0
foralla € A, so f < g. By monotonicity of the A € A the value of the supremum in Definition 5.5
does not change if we restrict the choice of (f,g) to the case f =g. Finally, in the case f = g,
d-nonexpansivity implies that f(a)- f(b) < d(a,b) and f(b)-f(a) < d(b,a) = d(a,b) for every
a,b e A, which means that f is in fact a nonexpansive map f:(A,d) -1 ([0,1],dg). Also the
supremum does not change when taking the absolute value, because f is nonexpansive iff
1 - fis and A is closed under duals.

Details for Example 5.8.1

We show that K is finitarily separable. Let u € DX and € > 0. We need to find u. € DX
with finite support such that KAx (i, te) < €. Note that a pair (f,g) is Ax-nonexpansive
iff f < g, so by monotonicity

KAx (ps pie) = sup{pex f(2) (@) = pe(2)) | f: X = [0,1]} < Bpex |u(z) — pe()]-

Because 1 is discrete, there exists a finite set Y ¢ X with ¥, p(z) 21-5. If Y = X,
then we can just put pe = p. Otherwise, let zg € X \Y. Then we define u. as follows:

te(xo) = w(Y), pe(x) = u(zx) for x €Y, and p.(x) = 0 otherwise. In this case,
Ywex [1(x) = pe(@)] < 2u(Y) <e.

Details for Remark 6.4
We recall the definition of well-behaved evaluation functions from [2]:

» Definition A.2. An evaluation function e:T[0,1] — [0, 1] is well-behaved if it satisfies the

following:

1. The predicate lifting A, is monotone.

2. For all t € T([0,1]%), we have dg(e(t1),e(t2)) < Ae(dg)(t), where t; = T'mi(t) and
t2 = T7T2(t).

3. e '[{0}] = Ti[T{0}], where i: {0} - [0,1] is the inclusion map.

This notion is almost equivalent to that of a standard predicate lifting in the following sense:

» Lemma A.3. ¢ is a well-behaved evaluation function iff the predicate lifting A, is standard
and e 1[{0}] c Ti[T{0}].

Proof. First, note that monotonicity of A\, features in both notions and A, preserves zero iff

e 1[{0}] 2 T4[T{0}]. It remains to relate Item 2 of Definition A.2 with subadditivity of .

Reformulating in terms of A, gives
e (1) () = Ae(m2) ()] < Ae(dp)(t)  for ¢ € T([0,1]%). (4)

We show that (4) is equivalent to subadditivity of A., given that A, is monotone:
“=™ Let f,ge QX,teTX. Put t' :=T(f ® g, f)(t) € T([0,1]?). Then, by naturality, we
have Ae(m1)(t') = Ae(f @ g) (1) and Ae(m2)(t') = Ae(f) () and

Ae(dp)(t') = Ae(dp o (f @ g, £)) (1) < Ae(9) (1),

where we used monotonicity of A, in the last step. Therefore, A(f @ g)(¢) — A(f)(t) <
A(g)(t) by (4).
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“<”: Put f=dg,g=m:[0,1]*> = [0,1]. Then it is easily checked that f @ g > 7y and
therefore

Ae(m2) S A(f ®9) < Ae(f) + Ae(g) = Ae(dE) + Ae(m1)

by monotonicity and subadditivity of Ae, s0 Ae(7m1) — Ae(72) < Ae(dEg). Similarly, we can
show that Ae(m2) — Ae(71) < Ae(dE) by swapping the roles of 71 and . <
In [26, Definition 3.1], topological theories are defined as triples consisting of a monad T', a
quantale V| and a map &:TV — V satisfying a number of axioms. We only consider the case
of the quantale [0,1]°P, with the order given by > and the monoid structure by ®. The first
two axioms state that £ is a T-algebra and can be ignored for our purposes. The remaining

axioms instantiate as follows, where as usual A¢(f) = o T f is the predicate lifting associated
with &:

(Qe)  ®o(Ae(m1), Ae(m2)) 2 Ae(®)
(Qr) 0> Ae(01)(t) for every t € T1, where 1 is a singleton set

(Q) A¢ is a monotone natural transformation

Using a similar idea as in Lemma A.3, we see that (Qg) is equivalent to subadditivity of Ag
and (Qy) is equivalent to preservation of the zero function. Finally note that [26, Theorem
3.5 (d)] (which states that the Wasserstein lifting satisfies (L2)) requires that the functor
satisfies the Beck-Chevalley condition, i.e. preserves weak pullbacks.

Proof of Example 6.6.1

Let R:A—+ B, and let U ¢ A and V ¢ B. We show HR(U,V') = W,y R(U, V). There are two
inequalities:
“<”: Let Z € Cpl(U,V). Then for every a € U there exists b € V such that (a,b) € Z,
so infpey R(a,b) < sup R[Z]. Thus, we have sup,; infpev R(a,b) < sup R[Z], and, by a
symmetrical argument, supy.y infqc R(a,b) < sup R[Z].
“>7: Tt is enough to find for each € > 0 a coupling Z € Cpl(U, V') such that sup R[Z] <
HR(U,V) +e. So let € >0. We construct functions f:U — V and ¢:V — U as follows:
For each a € U choose f(a) € V such that R(a, f(a)) < infpey R(a,b) + e¢. Similarly,
for each b € V choose g(b) € U such that R(g(b),b) < inf,cy R(a,b) +¢. Now put
Z ={(a, f(a))|acU}u{(g(b),b) |beV}. Clearly, Z € Cpl(U,V) and by construction,

sup R[Z] = max(sup,epy R(a, f(a)), supyey R(g(b),0)) < HR(U, V) +e.

Details for Example 6.6.2

We denote the Wasserstein lifting of the distribution functor D by W. Let R: A + B, and let
UeCAand V eCB. We show Wiy (R)(U,V) = HW(R)(U,V). There are two inequalities:
“>7: Let Z € Cplo(U,V). We put Y = P(Dmy,Dm2)(Z). Then Pmi(Y) = PDmi(2) =
Cm1(Z) = U and similarly Pm(Y) =V, so that Y € Cplp (U, V). Now, note that for every
1€ D(A x B) we have that E,(R) > WR(Dmi (1), Dra(p)) and therefore
supE,(R) > sup WR(u1, p2) 2 HW(R)(U,V).
nez (p1,p2)eY
“<”: Let Y € Cplp (U, V). It is enough to find for each € > 0 some Z € Cple(p1, p2) such
that

supE,(R) < sup  WR(p,p2) +e.
nez (p1,p2)eY
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For every (p1,p2) € DA x DB there exists some p € Cply(U, V) such that E,(R) <
W R(u1,u2) + €. Let Z' be a set consisting of one such u for every pair (u1,u2) € Y and
put Z = conv(Z'), where conv is convex hull. Then we have

Cr1(Z) = PDmi(conv(Z")) = conv(PDry(Z")) = conv(U) = U.

Here we made use of the fact that Dy is linear when considered as a map R4*® — R4, and
linear maps preserve convex sets. We similarly get Cmo(Z) =V, so that Z € Cpl.(U, V).
Finally, we note that taking expected values is a linear operation, so if u = Y7, pip
is a convex combination of probability measures, then E, = ¥ p;E,, < maxj, E,,.
Therefore we have, as desired,

supE,(R) =supE,(R) < sup WR(u1,p2)+e
nez pez’ (p1,p2)eY
Proof of Lemma 8.4

Immediate from the following lemmas:

» Lemma A.4. Let ¢ be a modal A-formula, and let a € A, be B be states in T-coalgebras
(4,0), (B.B). Then [¢]a.a(a) - [¢]p,s(b)| < d(a,b).

Proof. Induction on ¢, with trivial Boolean cases (in Zadeh semantics, all propositional
operators on [0, 1] are non-expansive). For the modal case, we have (for readability, restricting
to unary A € A and omitting subscripts)

[IA(@)] (@) = M) (D)] = [Aa([¢]) (a(a)) = Ap([#](8(b))]
< Kpxd®*(a(a), B(b)) (definition, TH)
= d**(a,b) (definitionup) <

Proof of Corollary 8.10

Immediate from Corollary 8.9 once one notes that the closure under duals incorporated in the
Definition of the Kantorovich distance is ensured by the presence of negation in quantitative
Moss logic.
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