5 research outputs found

    Facilitating Design-by-Analogy: Development of a Complete Functional Vocabulary and Functional Vector Approach to Analogical Search

    Get PDF
    Design-by-analogy is an effective approach to innovative concept generation, but can be elusive at times due to the fact that few methods and tools exist to assist designers in systematically seeking and identifying analogies from general data sources, databases, or repositories, such as patent databases. A new method for extracting analogies from data sources has been developed to provide this capability. Building on past research, we utilize a functional vector space model to quantify analogous similarity between a design problem and the data source of potential analogies. We quantitatively evaluate the functional similarity between represented design problems and, in this case, patent descriptions of products. We develop a complete functional vocabulary to map the patent database to applicable functionally critical terms, using document parsing algorithms to reduce text descriptions of the data sources down to the key functions, and applying Zipf’s law on word count order reduction to reduce the words within the documents. The reduction of a document (in this case a patent) into functional analogous words enables the matching to novel ideas that are functionally similar, which can be customized in various ways. This approach thereby provides relevant sources of design-by-analogy inspiration. Although our implementation of the technique focuses on functional descriptions of patents and the mapping of these functions to those of the design problem, resulting in a set of analogies, we believe that this technique is applicable to other analogy data sources as well. As a verification of the approach, an original design problem for an automated window washer illustrates the distance range of analogical solutions that can be extracted, extending from very near-field, literal solutions to far-field cross-domain analogies. Finally, a comparison with a current patent search tool is performed to draw a contrast to the status quo and evaluate the effectiveness of this work.National Science Foundation (U.S.) (grant number CMMI-0855510)National Science Foundation (U.S.) (grant number CMMI-0855326)National Science Foundation (U.S.) (grant number CMMI-0855293)SUTD-MIT International Design Centre (IDC

    Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search

    Get PDF
    Design-by-analogy is a powerful approach to augment traditional concept generation methods by expanding the set of generated ideas using similarity relationships from solutions to analogous problems. While the concept of design-by-analogy has been known for some time, few actual methods and tools exist to assist designers in systematically seeking and identifying analogies from general data sources, databases, or repositories, such as patent databases. A new method for extracting functional analogies from data sources has been developed to provide this capability, here based on a functional basis rather than form or conflict descriptions. Building on past research, we utilize a functional vector space model (VSM) to quantify analogous similarity of an idea's functionality. We quantitatively evaluate the functional similarity between represented design problems and, in this case, patent descriptions of products. We also develop document parsing algorithms to reduce text descriptions of the data sources down to the key functions, for use in the functional similarity analysis and functional vector space modeling. To do this, we apply Zipf's law on word count order reduction to reduce the words within the documents down to the applicable functionally critical terms, thus providing a mapping process for function based search. The reduction of a document into functional analogous words enables the matching to novel ideas that are functionally similar, which can be customized various ways. This approach thereby provides relevant sources of design-by-analogy inspiration. As a verification of the approach, two original design problem case studies illustrate the distance range of analogical solutions that can be extracted. This range extends from very near-field, literal solutions to far-field cross-domain analogies.National Science Foundation (U.S.) (Grant CMMI-0855326)National Science Foundation (U.S.) (Grant CMMI-0855510)National Science Foundation (U.S.) (Grant CMMI-0855293)SUTD-MIT International Design Centre (IDC

    On the Use of Self-Organizing Map for Text Clustering in Engineering Change Process Analysis: A Case Study

    Get PDF
    In modern industry, the development of complex products involves engineering changes that frequently require redesigning or altering the products or their components. In an engineering change process, engineering change requests (ECRs) are documents (forms) with parts written in natural language describing a suggested enhancement or a problem with a product or a component. ECRs initiate the change process and promote discussions within an organization to help to determine the impact of a change and the best possible solution. Although ECRs can contain important details, that is, recurring problems or examples of good practice repeated across a number of projects, they are often stored but not consulted, missing important opportunities to learn from previous projects. This paper explores the use of Self-Organizing Map (SOM) to the problem of unsupervised clustering of ECR texts. A case study is presented in which ECRs collected during the engineering change process of a railways industry are analyzed. The results show that SOM text clustering has a good potential to improve overall knowledge reuse and exploitation

    Term Relevance Weights in On-Line Information Retrieval

    Full text link
    Considerable evidence exists to show that the use of term relevance weights is beneficial in interactive information retrieval. Various term weighting systems are reviewed. An experiment is then described in which information retrieval users are asked to rank query terms in decreasing order of presumed importance prior to actual search and retrieval. The experimental design is examined, and various relevance ranking systems are evaluated, including fully automatic systems based on inverse document frequency parameters, human rankings performed by the user population, and combinations of the two

    Term Relevance Weights in On-Line Information Retrieval

    Full text link
    Considerable evidence exists to show that the use of term relevance weights is beneficial in interactive information retrieval. Various term weighting systems are reviewed. An experiment is then described in which information retrieval users are asked to rank query terms in decreasing order of presumed importance prior to actual search and retrieval. The experimental design is examined, and various relevance ranking systems are evaluated, including fully automatic systems based on inverse document frequency parameters, human rankings performed by the user population, and combinations of the two
    corecore