11 research outputs found

    Can process mining automatically describe care pathways of patients with long-term conditions in UK primary care? A study protocol

    Get PDF
    Introduction In the UK, primary care is seen as the optimal context for delivering care to an ageing population with a growing number of long-term conditions. However, if it is to meet these demands effectively and efficiently, a more precise understanding of existing care processes is required to ensure their configuration is based on robust evidence. This need to understand and optimise organisational performance is not unique to healthcare, and in industries such as telecommunications or finance, a methodology known as ‘process mining’ has become an established and successful method to identify how an organisation can best deploy resources to meet the needs of its clients and customers. Here and for the first time in the UK, we will apply it to primary care settings to gain a greater understanding of how patients with two of the most common chronic conditions are managed. Methods and analysis The study will be conducted in three phases; first, we will apply process mining algorithms to the data held on the clinical management system of four practices of varying characteristics in the West Midlands to determine how each interacts with patients with hypertension or type 2 diabetes. Second, we will use traditional process mapping exercises at each practice to manually produce maps of care processes for the selected condition. Third, with the aid of staff and patients at each practice, we will compare and contrast the process models produced by process mining with the process maps produced via manual techniques, review differences and similarities between them and the relative importance of each. The first pilot study will be on hypertension and the second for patients diagnosed with type 2 diabetes

    Modified Needleman-Wunsch algorithm for clinical pathway clustering

    Get PDF
    Clinical pathways are used to guide clinicians to provide a standardised delivery of care. Because of their standardisation, the aim of clinical pathways is to reduce variation in both care process and patient outcomes. When learning clinical pathways from data through data mining, it is common practice to represent each patient pathway as a string corresponding to their movements through activities. Clustering techniques are popular methods for pathway mining, and therefore this paper focuses on distance metrics applied to string data for k-medoids clustering. The two main aims are to firstly, develop a technique that seamlessly integrates expert information with data and secondly, to develop a string distance metric for the purpose of process data. The overall goal was to allow for more meaningful clustering results to be found by adding context into the string similarity calculation. Eight common distance metrics and their applicability are discussed. These distance metrics prove to give an arbitrary distance, without consideration for context, and each produce different results. As a result, this paper describes the development of a new distance metric, the modified Needleman–Wunsch algorithm, that allows for expert interaction with the calculation by assigning groupings and rankings to activities, which provide context to the strings. This algorithm has been developed in partnership with UK’s National Health Service (NHS) with the focus on a lung cancer pathway, however the handling of the data and algorithm allows for application to any disease type. This method is contained within Sim.Pro.Flow, a publicly available decision support tool

    Visual Analytics for Performing Complex Tasks with Electronic Health Records

    Get PDF
    Electronic health record systems (EHRs) facilitate the storage, retrieval, and sharing of patient health data; however, the availability of data does not directly translate to support for tasks that healthcare providers encounter every day. In recent years, healthcare providers employ a large volume of clinical data stored in EHRs to perform various complex data-intensive tasks. The overwhelming volume of clinical data stored in EHRs and a lack of support for the execution of EHR-driven tasks are, but a few problems healthcare providers face while working with EHR-based systems. Thus, there is a demand for computational systems that can facilitate the performance of complex tasks that involve the use and working with the vast amount of data stored in EHRs. Visual analytics (VA) offers great promise in handling such information overload challenges by integrating advanced analytics techniques with interactive visualizations. The user-controlled environment that VA systems provide allows healthcare providers to guide the analytics techniques on analyzing and managing EHR data through interactive visualizations. The goal of this research is to demonstrate how VA systems can be designed systematically to support the performance of complex EHR-driven tasks. In light of this, we present an activity and task analysis framework to analyze EHR-driven tasks in the context of interactive visualization systems. We also conduct a systematic literature review of EHR-based VA systems and identify the primary dimensions of the VA design space to evaluate these systems and identify the gaps. Two novel EHR-based VA systems (SUNRISE and VERONICA) are then designed to bridge the gaps. SUNRISE incorporates frequent itemset mining, extreme gradient boosting, and interactive visualizations to allow users to interactively explore the relationships between laboratory test results and a disease outcome. The other proposed system, VERONICA, uses a representative set of supervised machine learning techniques to find the group of features with the strongest predictive power and make the analytic results accessible through an interactive visual interface. We demonstrate the usefulness of these systems through a usage scenario with acute kidney injury using large provincial healthcare databases from Ontario, Canada, stored at ICES

    HEALTH INFORMATION STANDARDISATION AS A BASIS FOR LEARNING HEALTH SYSTEMS

    Get PDF
    PhD ThesisStandardisation of healthcare has been the focus of hospital management and clinicians since the 1990’s. Electronic health records were already intended to provide clinicians with real-time access to clinical knowledge and care plans while also recording and storing vast amounts of patient data. It took more than three decades for electronic health records to start to become ubiquitous in all aspects of healthcare. Learning health systems are the next stage in health information systems whose potential benefits have been promoted for more than a decade - yet few are seen in clinical practice. Clinical care process specifications are a primary form of clinical documentation used in all aspects of healthcare, but they lack standardisation. This thesis contends that this lack of standardisation was inherited by electronic health records and that this is a significant issue holding back the development and adoption of learning health systems. Standardisation of clinical documents is used to mitigate issues in electronic health records as a basis for enabling learning health systems. One type of clinical document, the caremap, is standardised in order to achieve an effective approach to containing resources and ensuring consistency and quality. This led not only to improved clinicians’ comprehension and acceptance of the clinical document, but also to reduced time expended in developing complicated learning health systems built using the input of clinical experts

    Identifying Clinical Phenotypes of Type 1 Diabetes for the Co-Optimization of Weight and Glycemic Control

    Get PDF
    Obesity is an increasing concern in the clinical care of youth with type 1 diabetes (T1D). Standard approaches to co-optimize weight and glycemic control are challenged by profound population-level heterogeneity. Therefore, the goal of the dissertation was to apply novel analytic methods to understand heterogeneity in the co-occurrence of weight, glycemia, and underlying patterns of minute-to-minute dysglycemia among youth with T1D. Data from the SEARCH for Diabetes in Youth study were used to characterize subgroups of youth with T1D showing similar weight status and level of glycemic control as distinct ‘weight-glycemia phenotypes’ of T1D. Cross-sectional weight-glycemia phenotypes were identified at the 5+ year follow-up visit (n=1,817) using hierarchical clustering on five measures summarizing the joint distribution of body mass index z-score (BMIz) and hemoglobin A1c (HbA1c), generated by reinforcement learning tree predictions. Longitudinal weight-glycemia phenotypes spanning eight years were identified with longitudinal k-means clustering using baseline and follow-up BMIz and HbA1c measures (n=570). Logistic regression modeling tested for differences in the emergence of early/subclinical diabetes complications across subgroups. Seven-day blinded continuous glucose monitoring (CGM) data from baseline of the Flexible Lifestyles Empowering Change randomized trial (n=234, 13-16 years, HbA1c 8-13%) was clustered with a neural network approach to identify subgroups of adolescents with T1D and elevated HbA1c sharing patterns in their CGM data as ‘dysglycemia phenotypes.’ We identified six cross-sectional weight-glycemia phenotypes, including four normal-weight, one overweight, and one subgroup with obesity. Subgroups showed striking differences in other sociodemographic and clinical characteristics suggesting underlying health inequity. We identified four longitudinal weight-glycemia phenotypes associated with different patterns of early/subclinical complications, providing evidence that exposure to co-occurring obesity and worsening glycemic control may accelerate the development and increase the burden of co-morbid complications. We identified three dysglycemia phenotypes with significantly different patterns in hypoglycemia, hyperglycemia, glycemic variability, and 18-month changes in HbA1c. Patient-level drivers of the dysglycemia phenotypes appear to be different from risk factors for poor glycemic control as measured by HbA1c. These studies provide pragmatic, clinically-relevant examples of how novel statistics may be applied to data from T1D to derive patient subgroups for tailored interventions to improve weight alongside glycemic control.Doctor of Philosoph

    Smart simulation and modelling for complex cancer systems

    Get PDF
    Clinical pathways are an effective and effcient approach in standardising the progression of treatment, to support patient care and facilitate clinical decision making. This research project was funded by KESS2 in collaboration with a company partner - Velindre Cancer Centre (VCC). This thesis develops effcient and sustainable methods for pathway mapping, modelling and improving, within the context of developing a state-of-the-art decision support tool. A particular focus on lung cancer is considered for method construction and investigations. The clinical pathways are mapped through representing each pathway as a string of letters. This enabled the development of the modifed Needleman-Wunsch metric, to allow for consideration of both data and medical expert information, for the use with k-medoids clustering. The key contribution of automating the simulation build and necessary input parameters, is developed. Models can be constructed for four routing procedures, namely Raw Pathways, Full Transitions, Cluster Transitions and Process Medoids, that explore progressively less complex and varied interpretations of the clinical pathways. Improvements can then be investigated for aligning capacity and demand. Combining this amounted to the development of Sim.Pro.Flow, an open access decision support tool, that contains all methods discussed in this thesis. The generalised approach allows for these methods, and Sim.Pro.Flow, to be suitably exible for application with process data from both healthcare and other industries

    A dashboard-based system for supporting diabetes care

    Full text link
    [EN] Objective To describe the development, as part of the European Union MOSAIC (Models and Simulation Techniques for Discovering Diabetes Influence Factors) project, of a dashboard-based system for the management of type 2 diabetes and assess its impact on clinical practice. Methods The MOSAIC dashboard system is based on predictive modeling, longitudinal data analytics, and the reuse and integration of data from hospitals and public health repositories. Data are merged into an i2b2 data warehouse, which feeds a set of advanced temporal analytic models, including temporal abstractions, care-flow mining, drug exposure pattern detection, and risk-prediction models for type 2 diabetes complications. The dashboard has 2 components, designed for (1) clinical decision support during follow-up consultations and (2) outcome assessment on populations of interest. To assess the impact of the clinical decision support component, a pre-post study was conducted considering visit duration, number of screening examinations, and lifestyle interventions. A pilot sample of 700 Italian patients was investigated. Judgments on the outcome assessment component were obtained via focus groups with clinicians and health care managers. Results The use of the decision support component in clinical activities produced a reduction in visit duration (P¿¿¿.01) and an increase in the number of screening exams for complications (P¿<¿.01). We also observed a relevant, although nonstatistically significant, increase in the proportion of patients receiving lifestyle interventions (from 69% to 77%). Regarding the outcome assessment component, focus groups highlighted the system¿s capability of identifying and understanding the characteristics of patient subgroups treated at the center. Conclusion Our study demonstrates that decision support tools based on the integration of multiple-source data and visual and predictive analytics do improve the management of a chronic disease such as type 2 diabetes by enacting a successful implementation of the learning health care system cycle.This work was supported by the European Union in the Seventh Framework Programme, grant number 600914.Dagliati, A.; Sacchi, L.; Tibollo, V.; Cogni, G.; Teliti, M.; Martinez-Millana, A.; Traver Salcedo, V.... (2018). A dashboard-based system for supporting diabetes care. Journal of the American Medical Informatics Association. 25(5):538-547. https://doi.org/10.1093/jamia/ocx159S538547255Sim, I., Gorman, P., Greenes, R. A., Haynes, R. B., Kaplan, B., Lehmann, H., & Tang, P. C. (2001). Clinical Decision Support Systems for the Practice of Evidence-based Medicine. Journal of the American Medical Informatics Association, 8(6), 527-534. doi:10.1136/jamia.2001.0080527Palmer, A. J., Roze, S., Valentine, W. J., Minshall, M. E., Foos, V., Lurati, F. M., … Spinas, G. A. (2004). The CORE Diabetes Model: Projecting Long-term Clinical Outcomes, Costs and Costeffectiveness of Interventions in Diabetes Mellitus (Types 1 and 2) to Support Clinical and Reimbursement Decision-making. Current Medical Research and Opinion, 20(sup1), S5-S26. doi:10.1185/030079904x1980O’Connor, P. J., Bodkin, N. L., Fradkin, J., Glasgow, R. E., Greenfield, S., Gregg, E., … Wysham, C. H. (2011). Diabetes Performance Measures: Current Status and Future Directions. Diabetes Care, 34(7), 1651-1659. doi:10.2337/dc11-0735Donsa, K., Beck, P., Höll, B., Mader, J. K., Schaupp, L., Plank, J., … Pieber, T. R. (2016). Impact of errors in paper-based and computerized diabetes management with decision support for hospitalized patients with type 2 diabetes. A post-hoc analysis of a before and after study. International Journal of Medical Informatics, 90, 58-67. doi:10.1016/j.ijmedinf.2016.03.007Sáenz, A., Brito, M., Morón, I., Torralba, A., García-Sanz, E., & Redondo, J. (2012). Development and Validation of a Computer Application to Aid the Physician’s Decision-Making Process at the Start of and during Treatment with Insulin in Type 2 Diabetes: A Randomized and Controlled Trial. Journal of Diabetes Science and Technology, 6(3), 581-588. doi:10.1177/193229681200600313Ampudia-Blasco, F. J., Benhamou, P. Y., Charpentier, G., Consoli, A., Diamant, M., Gallwitz, B., … Stoevelaar, H. (2015). A Decision Support Tool for Appropriate Glucose-Lowering Therapy in Patients with Type 2 Diabetes. Diabetes Technology & Therapeutics, 17(3), 194-202. doi:10.1089/dia.2014.0260Lim, S., Kang, S. M., Shin, H., Lee, H. J., Won Yoon, J., Yu, S. H., … Jang, H. C. (2011). Improved Glycemic Control Without Hypoglycemia in Elderly Diabetic Patients Using the Ubiquitous Healthcare Service, a New Medical Information System. Diabetes Care, 34(2), 308-313. doi:10.2337/dc10-1447Lipton, J. A., Barendse, R. J., Akkerhuis, K. M., Schinkel, A. F. L., & Simoons, M. L. (2010). Evaluation of a Clinical Decision Support System for Glucose Control. Critical Pathways in Cardiology: A Journal of Evidence-Based Medicine, 9(3), 140-147. doi:10.1097/hpc.0b013e3181e7d7caNeubauer, K. M., Mader, J. K., Höll, B., Aberer, F., Donsa, K., Augustin, T., … Pieber, T. R. (2015). Standardized Glycemic Management with a Computerized Workflow and Decision Support System for Hospitalized Patients with Type 2 Diabetes on Different Wards. Diabetes Technology & Therapeutics, 17(10), 685-692. doi:10.1089/dia.2015.0027Rodbard, D., & Vigersky, R. A. (2011). Design of a Decision Support System to Help Clinicians Manage Glycemia in Patients with Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 5(2), 402-411. doi:10.1177/193229681100500230Augstein, P., Vogt, L., Kohnert, K.-D., Heinke, P., & Salzsieder, E. (2010). Translation of Personalized Decision Support into Routine Diabetes Care. Journal of Diabetes Science and Technology, 4(6), 1532-1539. doi:10.1177/193229681000400631Reza, A. W., & Eswaran, C. (2009). A Decision Support System for Automatic Screening of Non-proliferative Diabetic Retinopathy. Journal of Medical Systems, 35(1), 17-24. doi:10.1007/s10916-009-9337-yKumar, S. J. J., & Madheswaran, M. (2012). An Improved Medical Decision Support System to Identify the Diabetic Retinopathy Using Fundus Images. Journal of Medical Systems, 36(6), 3573-3581. doi:10.1007/s10916-012-9833-3Cho, B. H., Yu, H., Kim, K.-W., Kim, T. H., Kim, I. Y., & Kim, S. I. (2008). Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine, 42(1), 37-53. doi:10.1016/j.artmed.2007.09.005Cleveringa, F. G. W., Gorter, K. J., van den Donk, M., & Rutten, G. E. H. M. (2008). Combined Task Delegation, Computerized Decision Support, and Feedback Improve Cardiovascular Risk for Type 2 Diabetic Patients: A cluster randomized trial in primary care. Diabetes Care, 31(12), 2273-2275. doi:10.2337/dc08-0312Haussler, B., Fischer, G. C., Meyer, S., & Sturm, D. (2007). Risk assessment in diabetes management: how do general practitioners estimate risks due to diabetes? Quality and Safety in Health Care, 16(3), 208-212. doi:10.1136/qshc.2006.019539Heselmans, A., Van de Velde, S., Ramaekers, D., Vander Stichele, R., & Aertgeerts, B. (2013). Feasibility and impact of an evidence-based electronic decision support system for diabetes care in family medicine: protocol for a cluster randomized controlled trial. Implementation Science, 8(1). doi:10.1186/1748-5908-8-83Koopman, R. J., Kochendorfer, K. M., Moore, J. L., Mehr, D. R., Wakefield, D. S., Yadamsuren, B., … Belden, J. L. (2011). A Diabetes Dashboard and Physician Efficiency and Accuracy in Accessing Data Needed for High-Quality Diabetes Care. The Annals of Family Medicine, 9(5), 398-405. doi:10.1370/afm.1286Den Ouden, H., Vos, R. C., Reidsma, C., & Rutten, G. E. (2015). Shared decision making in type 2 diabetes with a support decision tool that takes into account clinical factors, the intensity of treatment and patient preferences: design of a cluster randomised (OPTIMAL) trial. BMC Family Practice, 16(1). doi:10.1186/s12875-015-0230-0Holbrook, A., Thabane, L., Keshavjee, K., Dolovich, L., Bernstein, B., … Chan, D. (2009). Individualized electronic decision support and reminders to improve diabetes care in the community: COMPETE II randomized trial. Canadian Medical Association Journal, 181(1-2), 37-44. doi:10.1503/cmaj.081272O’Reilly, D., Holbrook, A., Blackhouse, G., Troyan, S., & Goeree, R. (2012). Cost-effectiveness of a shared computerized decision support system for diabetes linked to electronic medical records. Journal of the American Medical Informatics Association, 19(3), 341-345. doi:10.1136/amiajnl-2011-000371Parker, R. F., Mohamed, A. Z., Hassoun, S. A., Miles, S., & Fernando, D. J. S. (2014). The Effect of Using a Shared Electronic Health Record on Quality of Care in People With Type 2 Diabetes. Journal of Diabetes Science and Technology, 8(5), 1064-1065. doi:10.1177/1932296814536880Caban, J. J., & Gotz, D. (2015). Visual analytics in healthcare - opportunities and research challenges. Journal of the American Medical Informatics Association, 22(2), 260-262. doi:10.1093/jamia/ocv006Mick, J. (2011). Data-Driven Decision Making. JONA: The Journal of Nursing Administration, 41(10), 391-393. doi:10.1097/nna.0b013e31822edb8cBatley, N. J., Osman, H. O., Kazzi, A. A., & Musallam, K. M. (2011). Implementation of an Emergency Department Computer System: Design Features That Users Value. The Journal of Emergency Medicine, 41(6), 693-700. doi:10.1016/j.jemermed.2010.05.014Sprague, A. E., Dunn, S. I., Fell, D. B., Harrold, J., Walker, M. C., Kelly, S., & Smith, G. N. (2013). Measuring Quality in Maternal-Newborn Care: Developing a Clinical Dashboard. Journal of Obstetrics and Gynaecology Canada, 35(1), 29-38. doi:10.1016/s1701-2163(15)31045-8WILBANKS, B. A., & LANGFORD, P. A. (2014). A Review of Dashboards for Data Analytics in Nursing. CIN: Computers, Informatics, Nursing, 32(11), 545-549. doi:10.1097/cin.0000000000000106Hartzler, A. L., Izard, J. P., Dalkin, B. L., Mikles, S. P., & Gore, J. L. (2015). Design and feasibility of integrating personalized PRO dashboards into prostate cancer care. Journal of the American Medical Informatics Association, 23(1), 38-47. doi:10.1093/jamia/ocv101Dixon, B. E., Jabour, A. M., Phillips, E. O., & Marrero, D. G. (2014). An informatics approach to medication adherence assessment and improvement using clinical, billing, and patient-entered data. Journal of the American Medical Informatics Association, 21(3), 517-521. doi:10.1136/amiajnl-2013-001959Murphy, S. N., Weber, G., Mendis, M., Gainer, V., Chueh, H. C., Churchill, S., & Kohane, I. (2010). Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). Journal of the American Medical Informatics Association, 17(2), 124-130. doi:10.1136/jamia.2009.000893Shahar, Y., & Musen, M. A. (1996). Knowledge-based temporal abstraction in clinical domains. Artificial Intelligence in Medicine, 8(3), 267-298. doi:10.1016/0933-3657(95)00036-4Sacchi, L., Capozzi, D., Bellazzi, R., & Larizza, C. (2015). JTSA: An open source framework for time series abstractions. Computer Methods and Programs in Biomedicine, 121(3), 175-188. doi:10.1016/j.cmpb.2015.05.006Dagliati, A., Sacchi, L., Zambelli, A., Tibollo, V., Pavesi, L., Holmes, J. H., & Bellazzi, R. (2017). Temporal electronic phenotyping by mining careflows of breast cancer patients. Journal of Biomedical Informatics, 66, 136-147. doi:10.1016/j.jbi.2016.12.012Hripcsak, G., & Albers, D. J. (2013). Next-generation phenotyping of electronic health records. Journal of the American Medical Informatics Association, 20(1), 117-121. doi:10.1136/amiajnl-2012-001145Bijlsma, M. J., Janssen, F., & Hak, E. (2015). Estimating time-varying drug adherence using electronic records: extending the proportion of days covered (PDC) method. Pharmacoepidemiology and Drug Safety, 25(3), 325-332. doi:10.1002/pds.3935Robusto, F., Lepore, V., D’Ettorre, A., Lucisano, G., De Berardis, G., Bisceglia, L., … Nicolucci, A. (2016). The Drug Derived Complexity Index (DDCI) Predicts Mortality, Unplanned Hospitalization and Hospital Readmissions at the Population Level. PLOS ONE, 11(2), e0149203. doi:10.1371/journal.pone.0149203De Berardis, G., D’Ettorre, A., Graziano, G., Lucisano, G., Pellegrini, F., Cammarota, S., … Nicolucci, A. (2012). The burden of hospitalization related to diabetes mellitus: A population-based study. Nutrition, Metabolism and Cardiovascular Diseases, 22(7), 605-612. doi:10.1016/j.numecd.2010.10.016Van Gemert-Pijnen, J. E., Nijland, N., van Limburg, M., Ossebaard, H. C., Kelders, S. M., Eysenbach, G., & Seydel, E. R. (2011). A Holistic Framework to Improve the Uptake and Impact of eHealth Technologies. Journal of Medical Internet Research, 13(4), e111. doi:10.2196/jmir.1672Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1-2), 79-133. doi:10.1016/s0004-3702(96)00025-2Tenenbaum, J. D., Avillach, P., Benham-Hutchins, M., Breitenstein, M. K., Crowgey, E. L., Hoffman, M. A., … Freimuth, R. R. (2016). An informatics research agenda to support precision medicine: seven key areas. Journal of the American Medical Informatics Association, 23(4), 791-795. doi:10.1093/jamia/ocv213Bottomly, D., McWeeney, S. K., & Wilmot, B. (2015). HitWalker2: visual analytics for precision medicine and beyond. Bioinformatics, 32(8), 1253-1255. doi:10.1093/bioinformatics/btv739Fabris, C., Facchinetti, A., Fico, G., Sambo, F., Arredondo, M. T., & Cobelli, C. (2015). Parsimonious Description of Glucose Variability in Type 2 Diabetes by Sparse Principal Component Analysis. Journal of Diabetes Science and Technology, 10(1), 119-124. doi:10.1177/1932296815596173Hassenzahl, M., Wiklund-Engblom, A., Bengs, A., Hägglund, S., & Diefenbach, S. (2015). Experience-Oriented and Product-Oriented Evaluation: Psychological Need Fulfillment, Positive Affect, and Product Perception. International Journal of Human-Computer Interaction, 31(8), 530-544. doi:10.1080/10447318.2015.106466
    corecore