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Abstract—Prescription of conflicting concurrent medications,
polypharmacy, is recognised as a significant problem in the
UK, but its extent is not fully known. We combined a process
mining approach with text analytics, to discover prescription
processes for patients from five primary care sites in the UK West
Midlands. Free-text prescription instructions were combined with
online knowledge about drug interactions to reveal that almost
62% of patients were prescribed with medication with some
level of interaction, during a two year period. We describe a
novel domain-specific approach to reduce the complexity of the
mined processes, which will nevertheless be applicable to other
flexible environments such as knowledge work. We also highlight
difficulties encountered in accessing, interpreting and processing
the data, which may be significantly mitigated through wider
adoption of a mindset of curating data for automated analysis.

Index Terms—Process mining, text analysis, polypharmacy,
health informatics, big data, web scraping.

I. INTRODUCTION

Polypharmacy refers to the concurrent prescription of mul-

tiple medications for a single patient [18], [22]. It is a growing

problem [5], in particular due to increasing numbers of patients

suffering from multiple chronic diseases (multimorbidity),

arising from factors including ageing populations and im-

proved treatment of chronic disease [46]. The increased burden

of treatment is a particular concern for those with multimor-

bidity as they frequently take many medications related to each

individual condition. Polypharmacy has the potential to reduce

treatment adherence [34], [58], and is associated with negative

health outcomes such as cognitive impairment [31] or hospital

stays due to adverse drug events [36]. These negative outcomes

are most evident amongst the elderly [57], [44] where they are

compounded by the drug-drug interactions found when three

or more sets of clinical guidance are combined [14]. When not

carefully monitored and regularly reviewed, polypharmacy can

result in adverse interactions between a patient’s medications,

reducing their effectiveness or causing additional problems.

These problems are recognised in the UK, but their extent is

not fully known.

Prescribing occurs as part of following the care pathway (or

process) for treating a patient for a particular condition, and

polypharmacy is just one of the problems that can occur in

following several such pathways concurrently. Understanding

these processes would give insight into the root causes leading

to problems and enable effective improvements to be put

into place. We are formally modelling care pathways using

process notations [60], in order to detect and resolve conflicts

including between medication, lifestyle recommendations and

scheduling. Such resolutions have the potential to improve

the effectiveness and efficiency of pathways, reduce the cost

and patient burden from unnecessary medication and resultant

complications, and improve patient experience.

Process mining [51] enables the discovery and analysis of

processes, such as those found in service industries [48] or

healthcare [32], [41], from data. We describe a pilot study

using process mining principles and text analytics to analyse

the drug prescription aspect of care processes, using prescrip-

tion data from primary care sites in the UK West Midlands

region, to gain insight into the prevalence of polypharmacy.

In this study we focus only on patients with six common

chronic conditions1; there will be a much greater extent of

interactions and polypharmacy across UK primary care as a

whole. We ask two main questions: firstly, which conflicting

drugs are prescribed together, how often, and how severe

are any potential interactions? Secondly, what frequently-

occurring patterns of prescription can be identified to give

insight into the underlying causes of polypharmacy and enable

mitigations to be developed? More details of the clinical

rationale can be found in the study protocol [5].

Process mining was developed to discover and analyse a

business’ processes using ‘event data’ routinely recorded by

its information systems. It has been successfully applied in

healthcare [32], [41], e.g. to model hospital workflows [38].

While many graph mining methods exist for learning patterns

of connections and causal relationships between entities [56],

process mining can account for activities occurring in parallel

(concurrency) and with non-zero duration, both of which are

crucial for our analysis. We conduct our analysis with a

process mining mindset, considering the medication that a

1Chronic Obstructive Pulmonary Disease (COPD), Coronary Heart Disease
(CHD), Hypertension, Osteoarthritis, Type 2 Diabetes and Depression.



patient takes as an ‘activity’ occurring over a period of time,

prescriptions as ‘events’ indicating the start of an activity, and

asking questions about the amount and type of concurrency

and how the pattern of prescriptions (process) evolves over

time. Mining complex, noisy and low-structured processes is

an active area of process mining research, to which this work

may contribute.

In Section II we introduce process mining and how it applies

to the analysis of prescription data. We then describe (Section

III) our data analysis process to investigate the polypharmacy

question. We focus on text processing to transform unstruc-

tured clinical records into suitable data for process mining;

a process mining, generalisation and visualisation approach

appropriate for the medication prescription data; and obtaining

initial results on polypharmacy (Section IV). We found that

almost 62% of patients in our sample received medication with

some level of interaction, which our clinical study [5] will

explore in more detail. We provide initial analysis in Section

V, and briefly discuss some of the problems we encountered in

obtaining and processing the data, which could be significantly

mitigated by relatively simple changes and adopting a mindset

of curating data for the purposes of automated analysis. The

final section (VII) outlines future research to integrate the

analysis into the wider question of discovering and resolving

conflicts between care pathways, and to extend the process

mining ideas to flexible and noisy processes more generally.

II. PROCESS MINING APPROACH

Process mining [51] uses ‘event’ data routinely collated by

an organisation’s computer systems to learn models of its

business processes, and to represent and reason about them

both visually and formally. It is related to data mining but

distinguished by considering the process as a whole. A similar

methodological approach is often needed, i.e. select and pre-

process data, carry out mining, and interpret the results [40].

Typical data mining techniques seek to identify relationships

between variables statically (association rule mining), over

time series (e.g. trends), or find patterns over sequences of

measurements (sequential or structural pattern mining). Pro-

cess mining in contrast explicitly considers whole processes

and the activities involved, especially the relationships (causal,

concurrent, cyclical or mutually exclusive) between them. A

recent hybrid approach, Local Process Mining [47], applies

similar methods to discover frequent process fragments, con-

ceptually closer to sequence mining. Further aspects include

comparing processes, modelling resource usage or perfor-

mance, or discovering logical inconsistencies in the process.

Whereas the goal of data mining is often predictions of the

future states or trends, process mining initially focusses on

modelling and visualising the current state of the process.

Data mining concepts may then be employed alongside human

interpretation, for subsequent processing such as clustering or

prediction of process outcomes.

Defining criteria of process mining are the expectation

that activities may take time, be concurrent (overlap in time)

[53], data and processes may be complex or ‘noisy’ [21],

[61], and may be of interest from several viewpoints (e.g.

causal relationships, organisational structures, or ‘resources’).

Since we are interested in the interaction between concurrent

medication, defined by the events of prescription, and patterns

of prescription that may lead to such interactions, process

mining seems an appropriate approach to this analysis.

A process mining algorithm requires a minimum of three

pieces of information to be recorded for each event:

(1) An activity ID specifies what activity took place, which

might be receipt of an invoice or repair made. We use

the name of the medication prescribed.

(2) A case ID links related activities, e.g. for a particular

invoice or fault call. Patient IDs serve this purpose in our

analysis since we are interested in relations between all

medications prescribed to each patient.

(3) A timestamp specifies when the activity occurred, ideally

at a high level of granularity. We have the date the

prescription was issued.

From ‘traces’ (sequences) of these events a process discovery

algorithm attempts to infer so-called ‘dependency relations’

between activities, and thus a process model showing the

patterns in which activities can occur, i.e. in sequence, parallel,

mutually exclusive, or cyclically. Models have been repre-

sented in various languages such as Petri nets [54], but the

use of Business Process Model and Notation (BPMN) [37] is

becoming a de facto standard. Following discovery, models

can be analysed for conformance to (similarity with) other

processes or business rules [43], [3], [13], performance or

bottlenecks [2], [52], interaction between resources [7], or to

predict outcomes or simulate process changes [55], [39], [27].

Although many process mining techniques require these

three pieces of data for an event, other approaches try to

determine a process from less [16], while many use additional

data to ether improve discovery, e.g. using both activity start

and end times [9], [28], or to ‘enrich’ the process model. For

example a clinical process might be enhanced with clinician

names, results of tests or GP comments, especially any com-

ments relating to shared decision making with the patient.

Process mining has been successfully used in secondary

care [41], [32], [38], but to the best of our knowledge not

to investigate patterns of medical prescription. We view the

sequence of prescribing medications to patients as a type of

process. A typical business process, for example for processing

an invoice, has a defined start and end point (receipt and

payment of the invoice), and a model of the process defines

the possible sequences of activities. The steps taken for a

particular invoice describe one process ‘case’. Our situation

differs in that the start and end point of each case (a single

patient) is artificially imposed by the data extract. However, we

face similar challenges: concurrency, ‘noisy’ and diverse data

(many medications and feasible combinations), and complex

models within which we want to find the most frequent

behaviour. We consider each prescription of a medication as

an ‘activity’ taking place for a given time, associated with

start (issuing the prescription) and end (completing the course)



CSV/HTML report:

- patient demographic

- prescription

  (drug + start date)

cleaned CSV data parsed data:

medication &

start/end dates

process models

& statistics

process mining:

infer con�icts

and patterns

Bespoke report:

EMIS

data cleaning:

remove

uninterpretable data

text analysis:

infer end dates

statistical analysis:

polypharmacy

Web scraping:

British National Formulary

databases of drugs and interactions

Graph

database

commercial & generic names

medication groups

interactions

Fig. 1: Data processing pipeline for analysis of prescription data for polypharmacy.

events. Different medication may be prescribed sequentially,

concurrently (polypharmacy) or as alternative paths through

the process (e.g. for treating different conditions).

A particular problem faced in process mining in healthcare

contexts is that processes tend to be complex and dynamic,

involve multiple disciplines or departments, and may be ad-

hoc [40], [29], allowing many variants. Process discovery then

results in so-called ‘spaghetti’ models [50], [15] – too complex

to interpret or visualise. Numerous approaches to manage

such models have been proposed, from focussing on the

most-followed activities and paths [21], [28], to pre-clustering

process traces [40], [17], [6], to semantic interpretation of

activity names [11], [35]. It is, however, still an open problem,

with no universally-applicable solutions. The most appropri-

ate approaches may be data- or application-dependent. We

propose a representation appropriate for the prescription data,

which represents concurrency (between multiple medications)

implicitly.

III. DATA ANALYSIS

In the next sections we describe the steps taken to obtain,

clean and process prescriptions and interactions data into a

form suitable for the analysis. The process is summarised

in Fig. 1. We broadly follow what is becoming the standard

approach to process mining projects; obtain and pre-process

log files, carry out control-flow process discovery, further

analysis, and report results [8], [40]2.

A. Data specification and extraction

Five primary care sites (General Practitioner (GP) surgeries)

were selected, having a variety of demographic characteristics

(Table I). Each site has a PC running Windows XP and the

Egton Medical Information Systems (EMIS) Web3 application

and database providing access to real-time patient data and

care process management. A custom report4 was used to

extract prescription data covering a period of just over 2 years

(27 months, from 2 Dec 2014 to 28 Feb 2017), for patients

diagnosed with at least one of the six major chronic diseases

chosen. Data were extracted for between 515 and 2,940

2Code at https://bitbucket.org/uobmitcon/ichi2018/.
3https://www.emishealth.com/products/emis-web/.
4Report and data extract by PRIMIS http://www.nottingham.ac.uk/primis/.

Raw Event Log Processed Data
Site Patients Prescriptions Patients Prescriptions

Bo 515 36,940 507 29,064
Ma 1,259 158,953 1,238 126,851
QB 1,343 125,441 1,339 107,786
EH 2,541 268,696 2,502 215,243
KN 2,940 208,557 2,895 160,694

Total 8,598 798,587 8,481 639,638

TABLE I: Prescription data extracted from five sites, showing patient
counts and number of prescriptions in the source data, and after pre-
processing to extract prescription end dates where feasible.

patients per site (8,598 in total), 36,940–268,696 prescriptions

(total 798,587). Ethical approval was granted for this work

by the University of Birmingham Research Ethics Committee,

with reference number ERN_16-0074.

Each record details the issuing of a prescription for a

single medication to a patient. In four cases the extract was

formatted as an Excel spreadsheet; in the final case the PC was

underpowered and the extract was made to HTML and post-

processed. The final output was converted to comma-separated

(CSV) format for subsequent processing. The fields extracted

are listed in Table II. The data includes pseudonymised patient

identifiers, demographics (gender and age at date of extract),

date of issuing the prescription, structured text specifying the

medication, quantity, and free text from the GP to the patient

specifying the amount of medication and prescription regimen.

Data were also extracted to enable future analysis by the

demographics of the practice and by medical condition, but

are not the subject of the analysis described in this paper.

B. Determine Prescription End Dates

To assess polypharmacy, we require knowledge of when

prescriptions were made, and either how long a medication

was being taken by a patient, or prescription end dates. The

latter can be inferred in many cases from four key fields listed

in Table II: (1) Name, Dose and Quantity (NDQ), (2) Dose,

(3) Quantity, (4) Quantity Unit.

‘NDQ’ is relatively structured and includes medication name

and information such as tablet size (e.g. ‘Metformin

850mg tablets’, ‘Aciclovir 5% cream’).



Field(s) Example Fields Description

Demographics QB, e777ab. . ., Male, 67,
EH, 945ba6. . ., Female, 51,

Site code, anonymised patient ID, gender and age (18–104).

Date of Issue 11-Feb-15 Date the prescription was issued to the patient.

Name, Dosage and Quantity
(NDQ)

‘Metformin 850mg tablets’
‘Zerobase 11% cream (Thornton & Ross Ltd)’

Medication name and details (structured).

Dose ‘Take one three times a day for a week’
‘To be taken as directed’

GP instructions to the patient (unstructured).

Quantity 168 Number of tablets supplied, volume of liquid, etc.

Quantity Unit tablet Tablet, gram, unit, etc.

EH, 6ce8921. . ., Female, 68, 03-Aug-16, ‘Metformin 850mg tablets’, ‘Two Tablets Daily At The Same Time Each Day’, 56, tablet
EH, cbac5a6. . ., Male, 75, 30-Dec-16, ‘Zerobase 11% cream (Thornton & Ross Ltd)’, ‘use as moisturiser as often as necessary’, 500, gram

TABLE II: Summary of the data fields extracted, and two example records.

‘Dose’ is the critical field, containing free-text notes from the

GP specifying how much medication is prescribed, when

and how it should be taken, and how often.

‘Quantity’ indicates how much medication was prescribed

(number of tablets or volume), and

‘Quantity Unit’ specifies the method of delivery from about

30 options including ‘tablet’, ‘ml’, ‘spray’, ‘syringe’.

Although ‘Dose’ is free text, there is some limited structure,

perhaps due to the constrained domain (prescribing) and the

EMIS Web application remembering previously-entered data.

Thus we can construct a grammar to parse many of the entries

for the required information.

We infer prescription end dates using a sequence of data

cleaning and parsing as follows, to extract the quantity of

medication to be taken per dose, and frequency, from which

to infer the number of days the medication will last, and thus

the end date.

1) Data Cleaning (Pre-processing): Before parsing, data

cleaning was necessary due to the unstructured format of

the ‘Dose’ field in particular, data missing by design or

inappropriate for automated processing, and for simplification

for further processing:

(1) Free-text entry leads to typographical errors and inconsis-

tent use of grammar such as plurals. These were identified

and corrected. We also removed text redundant for the

task at hand, such as GP instructions (e.g. ‘dissolve the

contents of’, ‘for subcutaneous injection’).

(2) In almost 9% of cases it is impossible to determine the

amount of medication used, and hence the end date: med-

ication specified with a non-specific dose (‘emollient’,

‘shampoo’ and similar); ‘Quantity Unit’ such as ‘device’

or ‘spray’ without specification of the size of the device

or amount of medication delivered; and prescriptions with

vague instructions, especially all variations of ‘use as

directed’. These were all excluded, together with records

with data errors such as unexpectedly empty fields, or

basic data problems such as non-numeric quantities.

These records were excluded from subsequent processing.

(3) Text such as ‘into both eyes’, ‘in each nostril’ was

used to determine a multiplier to simplify the final dose

calculation.

2) Text Processing to Obtain End Dates: A grammar was

developed to parse the unstructured ‘Dose’ to extract quantity

and time information5. The basic form of the field is

Dose ::- <directive> <quantity> <unit>

<frequency> <time-spec>

as seen in the examples in Table II. These main elements

can however be combined in the data in many ways to

convey similar information (‘take one tablet daily’ vs ‘one

tablet to be taken each morning’), some may be omitted (‘1

tablet mane’) or other information included (‘one tablet daily

with food’). We combine several sub-grammars for processing

broad categories of medication which differ in general format,

e.g. according to prescription by volume (liquids), by discrete

unit (e.g. tablets) or other (syringes) as identified by the

‘Quantity Unit’ field.

In outline the parser recognises numeric values as digits,

fractions, words or ranges; time specifications given numer-

ically, using clinical abbreviations (‘o.d.’, ‘mane’) or collo-

quially (‘every morning’, ‘with evening meal’); and amounts

given numerically or approximately (‘half a mil’, ‘1 tea-

spoon’). These are converted to a numeric quantity of medi-

cation per dose (e.g. number of tablets or volume of liquid)

and frequency, from which a nominal amount of medication,

possibly fractional, per day is calculated. This is combined

with the ‘Quantity’ field to give the duration of the prescription

and hence the end date. The more structured ‘NDQ’ field

provides additional information, e.g. the volume per dose of

medication administered by syringe.

In the first example in Table II, 56 tablets were prescribed

on 3 Aug 2016, ‘Two Tablets Daily At The Same Time Each

5Grammar implemented using the Python pyparsing module.



Day’, so 2 tablets per day last for 28 days, thus ending on

31 Aug 2016. No end date can however be inferred from the

second example, since it is not known how much moisturiser

will be consumed per use, nor how often will be necessary,

so this record is excluded.

3) Remarks on the Learning Process: Since this is a real-

world dataset not created with automated processing in mind,

there is no ground truth which we can use to quantify the

precision or recall of the grammar against known training or

test corpora. Instead, qualitative assessment by experts was

used to iteratively refine the grammar to identify the main

text structures, test, refine to account for un-parsed records,

repeating until the returns in reduced exclusion rate no longer

justified the effort. (Future work could perhaps attempt to

create simulated data sets faithful to the observed data, but

these are likely to be overly noise-free, leading to artificially

positive evaluations of learning accuracy.)

We made various assumptions in interpreting the data, prin-

cipally to err in the direction of over-reporting polypharmacy

rather than risk omitting dangerous combinations of drugs.

Unclear dose or time specifications were simplified where pos-

sible to the value leading to the longest period of prescription

(e.g. ‘one or two’ tablets becomes ‘one’). Similarly, complex

specifications such as ‘every night for 2 weeks then twice a

week for 3 months’ were reduced to the first time specification

(assuming the rate of prescription reduces). Fixed-term time

specifications (actual dates) were ignored, and alternating

dose specifications such as ‘20mg/40mg alternate days’ were

simplified to the first. These and other limitations, including

‘outlier’ text structures outside the scope of the grammar,

could be resolved with additional development effort. Just

under 20% of the extracted records were removed as not

processable by the pre-processing (9%) and grammar (11%).

C. Inferring Medication Conflicts

Medication conflicts are sourced from an online presentation

of the British National Formulary (BNF)6. The BNF lists

details of medications, and ‘standard’ and ‘strong’ interactions

between individual and groups of medications7. We store the

interacting drugs as nodes in a graph database, creating two

relations: standard and strong interactions. Further relations

define groups of drugs, to record interactions inherited from

the group, and to map commercial to generic drug names. This

mapping is found at a different section of the website and is

necessary because the prescription data refers to drugs using

a mix of both generic and commercial names.

Graph databases provide appropriate mechanisms to record

a chain of relationships between two drugs:

{commercial name
synonym
−−−−→ generic name

belongs to
−−−−−→

medication group
interacts with
←−−−−−−→ medication group

belongs to
←−−−−− generic name

synonym
←−−−− commercial name}.

6BNF (https://www.bnf.org/) data was ‘scraped’ from https://bnf.nice.org.
uk/ using the Python lxml.etree module html. Data was stored in a Neo4j
(https://neo4j.com/) graph database accessed using the py2neo module.

7The most recent BNF allows for four levels of interaction.

A commercial name (e.g. ‘Nurofen’) may be a synonym for a

generic name (‘ibuprofen’) and perhaps a member of a group

of drugs (‘non-steroidal anti-inflammatory drugs’) which in-

teract with another group (‘corticosteroids’). A member of

the latter group (‘betamethasone valerate’) may also have a

commercial instantiation (‘Betnovate’). Medication may be

specified as, and interactions require identification between,

various of these links, e.g. ‘Nurofen’ prescribed with ‘anti-

inflammatory drugs’, or ‘ibuprofen’ with ‘Betnovate’. The

database query language enables such chains to be retrieved,

stored and queried efficiently so that the interactions can be

captured at whichever level they are specified.

We retrieved lists of drugs from two pages of the BNF,

firstly associating commercial with generic drug names, sec-

ondly linking to the interactions. These lists were inconsis-

tent, necessitating basic text pre-processing: to match plurals,

name variants (‘Hepatitis A vaccine’/‘Hepatitis vaccines’) and

remove chemical specifiers (‘hydroxide’, ‘acetate’, etc.). We

also reduce detailed commercial drug names to their basic

format as used in the prescription data, e.g. ‘Alecensa 150mg

capsules (Roche Products Ltd)’ becomes ‘Alecensa’).

In total 2,360 drug names (generic and commercial) were

extracted, 927 group relationships, 5,770 standard and 5,151

strong interactions, and 1,232 commercial drug names. Query-

ing the database to identify all unique interactions accounting

for name synonyms and groups results in 148,567 standard,

61,113 strong interactions.

D. Process Mining

As described in Section II, we take a process mining

approach to interpret the prescriptions data. The ‘activity’

that a patient is prescribed a medication occurs over a time

frame (between ‘Date of Issue’ and the inferred end date),

and multiple such ‘activities’ may overlap wholly or partially

(polypharmacy). Our present interest is to detect such overlaps

to analyse the prevalence of drug interactions, but a natural

extension is to identify frequent patterns of prescription and

understand the underlying causes. Therefore we build ‘process

models’ of the patterns of prescription, which may be inter-

preted formally and visually, and from these obtain the data

necessary for later statistical analysis.

1) Standard Process Mining: We first carried out an ex-

ploratory analysis of the prescription data using existing

process mining algorithms (Alpha [53], Heuristics Miner [61]

and Inductive Miner [28]) and tools (ProM8, Disco9 and

Apromore10). Process mining requires as a minimum the first

three data fields shown in Table III together with the mappings

from our data. We additionally provide the inferred end dates

to enable activity durations to be taken into account. We found

that the data was too heterogeneous to produce visually useful

models, producing classically ‘spaghetti’ visualisations [50],

[15]. While there exists much literature on dealing with this

problem, including separating multiple processes entangled in

8http://www.promtools.org/.
9https://fluxicon.com/products/.
10http://apromore.org/.



Required
Field

Mapped Data
Field

Process Mining Description

Case ID Patient ID Entity involved, typically
invoice or fault number, etc.

Event ID Drug Name Steps involved in the process.
Start Time Date of Issue Start time of the activity.

End Time Inferred End Date Activity end time.

TABLE III: Minimal fields for process mining. We regard a single
patient as a ‘case’, and the medications prescribed as the ‘activities’
in the process, indicated by the ‘events’ of their prescription. Note
that end times are not required by many process mining algorithms,
but are critical for our analysis.

the data (e.g. [20], [40], [17], [6]), and focusing on the most

frequent process patterns to produce manageable models [61],

[21], [28], these raise questions over interpretation and the

validity of the complexity-reducing decisions which are made.

Therefore we took a bespoke approach, described next.

2) Domain-Specific Complexity Reduction: To restrict the

complexity of the models resulting from process mining in a

manner which is faithful to the data domain and the questions

we investigate, we made two simplifying decisions:

(1) concentrate on per-patient models, and

(2) model concurrency implicitly, by merging concurrent

medication into single medication groups.

The first decision allows for simpler process models to

be produced while still collecting statistics on frequency of

medication interactions. The models allow visualisation of

basic patterns of prescription, and the method provides a

basis for domain-specific generalisation (Section III-D4) and

future analysis of patterns of prescription across the whole

patient cohort in a principled manner. The second decision

is driven by the fact that the entity of interest is groups of

medication prescribed at any one time, rather than the times

when individual drugs are prescribed or completed. Therefore

we aggregate concurrency into the nodes in our process maps,

representing a unique group of concurrent medication in each

node (Fig. 2). Each time a prescription is started or completed,

this group changes, and a new node is created and linked

appropriately. In this way there is no concurrency between

nodes in the model, which we represent as a type of finite state

machine and annotate with frequency, duration and interaction

information. Per-patient statistics on polypharmacy interaction

can be simply extracted from these models.

3) Domain-Specific Process Mining: We mine a ‘prescrip-

tion process’ for each patient:

(1) Extract and simplify medication names from ‘NDQ’

(remove information on tablet size etc.) to reduce the

granularity of activity names.

(2) Sort ‘Date of Issue’ and ‘End Date’ from each record

into an ordered list of start/end prescription events. On

clinician advice, we assume that no prescription lasts less

than one day, multiple contiguous prescriptions of the

same medication (re-issues) should be merged, and mul-

tiple simultaneous prescriptions (e.g. multiple boxes of

tablets) of the same drug should be treated as sequential.

(3) Build a Probabilistic Prefix Tree Automaton (PPTA) [10]

from this consolidated sequence of events. For a single

patient, this is simply a sequence of nodes representing

groups of concurrent drugs (Fig. 2(a), connected by arcs

when the group changes. Adding multiple patients into

the same structure produces a tree labelled with frequency

of change between the nodes.

(4) Naïvely construct a Probabilistic Deterministic Finite

Automaton (PDFA) [10], [59] from the PPTA, where no

state (group of medications) is repeated. The PPTA is

parsed depth-first from the start node, noting the groups

of medications represented by each node. When a node

n is encountered representing a group M of medications

already seen in node n
′, the target of its unique input arc

(n) and source of any output arcs are connected instead to

n
′, resulting in a reduced, connected, model with cycles

(Fig. 2(b)). Depending on the pattern of prescription for a

patient, the PDFA may be little different from the PPTA

(e.g. very varied groups of concurrent medications), or

much more similar to a traditional process model, with a

defined start and end node, showing a pattern of regular

prescription (Fig. 2(b). Although the PDFA is labelled

from the data with frequencies with which each node

and arc is passed, treating it as probabilistic allows for

future generalisation and analysis using methods from the

automata and regular language learning literature (e.g.

[10], [23]), e.g. for frequent patterns of prescription.

The resulting models are annotated for standard and strong

interactions, and duration of prescription, from which we

obtain statistics for analysing polypharmacy, summarised in

Table IV. Fig. 2(b) shows a relatively compact example of a

‘prescription process’ for a single patient, consolidated from

a long sequence of prescription combinations (Fig. 2(a)), sug-

gesting a relatively structured prescription process. Standard

(orange) and strong (red) interactions are highlighted. The

process is entered at the top, at the start of the time period

for which the data was collected, and exited at the double-

bordered (green) box which shows the prescription at the end

of the time period. The weights of nodes and arcs give some

indication of how much time was spent in each node, and how

often each arc was traversed. The dotted box indicates that

there were frequently gaps when no medication was prescribed

– although this may reflect data problems such as mismatch

between the date a prescription was issued and actually taken.

4) Domain-Specific Generalisation and Analysis: We ap-

ply methods to generalise, or reduce the complexity of the

model, in a manner which is sympathetic to the domain. At

present these methods are purely heuristic. Less significant

nodes (short-duration and small groups of medication) are

absorbed into their neighbours (Fig. 3(a)), according to some

thresholds, then strongly-overlapping neighbours (parent-child

and sibling nodes) merged (Fig. 3(b). Iteratively, this will

reduce a complex model to a very simple one – ultimately
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Fig. 2: (a) Sequence of prescription events for a single patient,
(b) mined ‘prescription process’ PDFA. Nodes represent a group of
concurrently-prescribed medications, annotated with the number of
times the combination occurred (in brackets) and total days duration
(‘130d’) Arcs have zero duration. Yellow (red) orange text indicates
standard (strong) interactions. The topmost node shows the drugs
prescribed at the start of the extract period; the double-bordered
(green) node those at the end (reached by following the arcs).

to be part of an interactive tool to allow clinicians to control

the useful level of generalisation.

We plan to develop more rigorous approaches to generalisa-

tion using metrics to measure the divergence in behaviour from

that recorded in the event (prescription) log as nodes and arcs

are removed or consolidated. This is the practice with other

process representations (e.g. [21], [43]) but will be adapted

to our probabilistic models and effect of grouping medication,

and closely related to generalising probabilistic automata [23].

IV. POLYPHARMACY RESULTS

We outline here the initial findings drawn from the data

analysis. An initially surprisingly high prevalence of polyphar-

macy is revealed. In total there were one or more interactions

for almost 62% of the patients (approximately 54% with

drugs with standard, 38% with strong interactions). These

represent up to 50 and 16 unique combinations of standard-

and strongly-interacting drugs respectively per patient. Overall

there were 2,672 distinct pairs of drugs prescribed having a
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Fig. 3: Example of domain-specific generalisation, for the prescrip-
tion process shown in Fig. 2(b): (a) after merging short-duration
and small-group nodes into their neighbours; (b) after also merging
neighbouring nodes representing similar groups of medications; and
(c) after repeated merging with reducing threshold of similarity
between groups.

standard interaction, 784 with a strong interaction. Although

these figures seem very large, there are clinical reasons why

some level of interaction between drugs may be necessary and

accepted by clinicians – for instance, tolerance by the patient

and mitigation of a more serious problem or interaction.

Uncertainties such as interpreting the exact time when a

prescription begins may also be responsible. Table V lists the

top ten strongly-interacting drugs, by the number of patients

prescribed and by the mean duration of prescription. The top

pair, Simvastatin and Amlodipine, are treatments to reduce

cholesterol and treat high blood pressure, respectively, and

guidelines exist on dose limitations when taken together. This

suggests that further information is needed to understand the

true severity and impact of the interactions reported. We

hypothesize that this may in some cases be obtainable from

the prescription text, and also from expert knowledge.

Table IV reports the main summary statistics. The cleaned

data contained 1,076 different drugs prescribed to 8,481

patients, with almost 95,000 different groups of concurrent

medication prescribed. 639,638 prescription records were con-

solidated to about 250,000 by merging sequential and du-

plicate prescriptions (Section III-D). Individual patients were

prescribed with between 1 and 45 different drugs, via up to



Per-Patient Min. Max. Mean Total

Prescription Events 1 1,568 75.42 639,638
Consolidated Prescriptions 1 268 29.54 250,513
Unique Medications 1 45 7.68 1,076
Unique Prescriptions 1 209 14.84 94,735
Standard Interactions 0 1,643 36.67 310,958
Strong Interactions 0 819 12.65 107,255
Unique Standard Interactions 0 50 2.39 2,672
Unique Strong Interactions 0 16 0.81 784

TABLE IV: Summary statistics for polypharmacy analysis. ‘Min.’,
‘Max.’ and ‘Mean’ are calculated per patient (from 8,481 patients),
‘Total’ across the whole patient cohort.

Drug Patients Drug Drug Days Drug

amlodipine 355 simvastatin alfuzosin 192.00 felodipine
furosemide 227 ramipril alfuzosin 146.50 cardioplen xl
bendroflu-

-methiazide 226 ramipril adizem-xl 104.12 nebivolol
amlodipine 147 doxazosin adizem-xl 88.67 metoprolol
indapamide 135 ramipril citalopram 87.25 warfarin
citalopram 116 naproxen eprosartan 82.60 indapamide
clarithromycin 111 simvastatin methadone 80.75 olanzapine
amitriptyline 110 tramadol eplerenone 77.00 valsartan
amitriptyline 107 gabapentin bendroflu-

-methiazide 76.00 valsartan
indapamide 106 simvastatin haloperidol 63.58 valproic acid

TABLE V: The ten most frequent strong interactions identified, by
total number of patients prescribed (left) and mean duration (right).

1,568 (unconsolidated) prescriptions.

Fig. 4(a) shows that there is a ‘short tail’ of such very large

numbers of prescriptions in the data set (occurring for each

site). A similar profile is seen for the numbers of interactions.

However although the patient with the largest number of

prescriptions over the time period of the data extract also has

the largest number of interactions, the Pearson’s coefficient of

correlation of standard (strong) interactions with prescription

count is only 0.52 (0.46). (Each data series in Fig. 4(a) is

sorted independently.) In this case, the 1,568 prescriptions

reflect up to 31 prescriptions issued on 157 days. Further

investigation is needed to determine underlying reasons.

Figs. 4(b) and (c) confirm that there is some correlation

between the number of prescriptions for a patient and the

number of unique interactions (no duplicates), and between the

numbers of standard and strong interactions for a patient. A

fuller analysis of these results, including by site, demographics

and patient condition, will be published elsewhere.

V. DISCUSSION

The analysis showed the feasibility of applying a process

mining approach to this type of data, despite the concept of

a ‘prescription process’ being loosely defined and differing

from the usual conception of a process, for example having

a start and end point defined only by the parameters of the

data extract. The resulting models exhibit a variety of process-

like structures, and the initial polypharmacy results are of

great interest to begin to answer the questions raised by the

protocol [5]. Detailed analysis will now be carried out, to

relate polypharmacy to different patient cohorts, sites, clinical

conditions, and to investigate root causes.

Our aim in using a probabilistic representation is that

machine learning methods can be applied in a well-founded

manner. We hope to apply clustering and clique detection to

per-patient and multi-patient models, respectively, to discover

common patterns of prescription that will be informative for

clinicians in understanding the underlying reasons leading to

polypharmacy. Our initial explorations in this direction have

shown that such patterns are elusive, as hinted by the large

numbers of different prescription and interaction combina-

tions. We hope that again the involvement of clinician process

and medication experts will enable appropriate methods to be

developed and conclusions drawn.

Effective application of process mining and analysis of

resultant models in the context of ‘noisy’ data and processes

remains an open question. In fields with particularly heteroge-

neous data, flexible and variable processes such as healthcare,

and more generally ‘knowledge work’ and Adaptive Case

Management, naïve application of process mining algorithms

results in ‘spaghetti’ (impossibly complex) models. We sug-

gest that data-specific complexity-reduction and generalisation

methods have a place in controlling complexity in a manner

sympathetic to the domain in which process mining is applied.

Our approach was to deal with concurrency implicitly for both

mining and visualisation/generalisation. We plan to develop

this as a more general method for dealing with loosely-defined

(goal-oriented) processes.

Despite the useful results obtained from our method, and the

promise of ‘big data’ [33] in healthcare [30], [26] more gen-

erally to enable evidence-based improvements to healthcare,

we encountered considerable difficulties in gathering, clean-

ing, processing and interpreting data from multiple sources.

Many of these difficulties seem symptomatic of a fragmented

and evolving approach to data collection, presentation and

storage, and could be significantly mitigated by relatively

simple changes and adopting a mindset of curating data for

the purposes of automated analysis. This can be seen in three

main areas.

Firstly, text analytics allow information to be retrieved

from free text, but a relatively large proportion (20% of

records) could not be processed, potentially reducing the

accuracy of the results. These issues included data errors,

diminishing returns in modelling all nuances of the free text

language used, and vague or missing information (such as

the instruction to ‘take as directed’). Adopting a data and

system design strategy of curating data for automated analysis

would allow these exclusions to be significantly reduced and

enable other useful analyses to be conducted more effectively

in the future. Secondly, the availability of online information

on drug interactions facilitated our analysis, but was hampered

by frequent changes to the websites, partly due to evolving

clinical information, but also again due to a lack of design

for automated analysis. An adoption of the expectation that

all data will be used (and useful) for automated analysis, stan-
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Fig. 4: Summary per-patient statistics on prescriptions: (a) scaled counts of prescriptions (before and after consolidation), standard and strong
interactions, (b) counts of interactions against prescriptions, (c) some correlation (Pearson=0.63) between standard and strong interactions.

dardisation of formats and control of data revision processes,

and consistency of naming conventions, would all improve

the accuracy and efficiency of the analysis. Finally, clearly

defined data semantics is also crucial. For example, at the

process mining stage we assumed prescriptions to start on

the ‘Date of Issue’, but this could be inaccurate, increasing

the complexity of the mined models. Expert knowledge may

mitigate this, but clear data descriptions should be provided to

preserve data decisions and interpretations for future analyses.

VI. LIMITATIONS AND FUTURE WORK

This study developed organically out of a need to answer

particular questions from a given data set. As such it has

several limitations which we aim to address in future work.

Firstly, without a ground truth for the text analysis the eval-

uation of the grammar, although by experts, is necessarily

subjective. The insights gained through this analysis would

enable generation of hand-annotated or simulated data sets.

Careful consideration will be necessary to ensure these are

not overly-optimistic of the quality of data generated.

Secondly, a quality metric is required to measure and

compare the generated process models, to enable well-founded

generalisation. Since concurrency is implicit in the nodes,

the present approaches to merging nodes to reduce visual

complexity increase the concurrency, which may not be valid.

Automata learning theory [10], [23] suggests starting points

for such metrics [59]. At present, clinical experts are evalu-

ating the medical conflicts retrieved, and will also guide the

development of the model representation and a tool to support

interactive visualisation of results. This assessment will be

formalised and brought into the wider context of detecting

and resolving conflicts between clinical pathways [60].

A limitation of the process mining techniques so far de-

veloped is the very large number of potential ‘activities’

(2,360 possible drugs, 1,076 seen in prescriptions). Even after

aggregation into nodes representing groups of drugs, we still

obtain ‘spaghetti’ models when mining models for multiple

patients’ prescriptions. Application to a wider set of condi-

tions, and also to secondary care will add further complexity,

not only in increased numbers of drugs and interactions, but

also due to different drug formularies. Process mining is a

visual technology, most usefully applied in close collaboration

between (in our case) clinical and process mining experts.

We plan to involve clinicians, pharmacists and other experts

in developing the most useful representations and visualisa-

tions. There may also be further domain-specific information

available from analysis of the GP comments, e.g. on shared

decision-making with the patient, which can be used to to

interpret the relevance of discovered polypharmacy and hence

potentially reduce complexity of the discovered processes.

Finally, additional data is needed to connect prescription

processes and drug interactions discovered, with changing

patient conditions. We hope to develop the analysis in this

way using longitudinal data on patient disease coding.

VII. CONCLUSION

Certain age groups and clusters of diseases place patients at

increased risk. Little is known of the effect of polypharmacy

and patterns of prescribing on multimorbid patients [49]. Our

initial analysis showed that almost 62% of patients in our

sample were prescribed drugs for which some form of inter-

action is known; strongly interacting for nearly 40%. Since

polypharmacy and difficulties in de-prescribing are widely

acknowledged [34], [58], [31], [14], this work and the further

analysis it enables have potentially enormous benefit for

healthcare providers, users and the wider healthcare economy.

We showed that process mining is a suitable approach

to identify the underlying prescription processes leading to

polypharmacy. Text and other data analytics tools enabled

data to be brought together and interpreted from a number of

sources, and shortcomings in data formats and documentation

to be, to an extent, circumvented. The full analysis will

facilitate a more tailored approach [24] relatable to groups

of patients or combinations of morbidities, to help support the

decision-making process of which drugs can be usefully de-

prescribed – there is evidence that patients want to reduce their



medication [19], [45], however previous attempts to reduce the

numbers of inappropriate prescriptions have failed [25].

We plan to integrate the analysis with our ongoing work

in detecting and resolving conflicts between care pathways

[60], to identify and use common patterns in prescription to

understand the root causes leading to polypharmacy, and to

recommend process changes to reduce its effect and improve

the efficiency of prescribing and patient experience. We also

plan to develop and apply the process mining approach for

wider application to loosely-defined, goal-oriented processes.
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