7 research outputs found

    Compositional Verification of a Lock-Free Stack with RGITL

    Get PDF
    This paper describes a compositional verification approach for concurrentalgorithms based on the logic Rely-Guarantee Interval Temporal Logic (RGITL),which is implemented in the interactive theorem prover KIV. The logic makes itpossible to mechanically derive and apply decomposition theorems for safety andliveness properties. Decomposition theorems for rely-guarantee reasoning, linearizability and lock-freedom are described and applied on a non-trivial running example,a lock-free data stack implementation that uses an explicit allocator stack for memory reuse. To deal with the heap, a lightweight approach that combines ownershipannotations and separation logic is taken

    Correctness and Progress Verification of Non-Blocking Programs

    Get PDF
    The progression of multi-core processors has inspired the development of concurrency libraries that guarantee safety and liveness properties of multiprocessor applications. The difficulty of reasoning about safety and liveness properties in a concurrent environment has led to the development of tools to verify that a concurrent data structure meets a correctness condition or progress guarantee. However, these tools possess shortcomings regarding the ability to verify a composition of data structure operations. Additionally, verification techniques for transactional memory evaluate correctness based on low-level read/write histories, which is not applicable to transactional data structures that use a high-level semantic conflict detection. In my dissertation, I present tools for checking the correctness of multiprocessor programs that overcome the limitations of previous correctness verification techniques. Correctness Condition Specification (CCSpec) is the first tool that automatically checks the correctness of a composition of concurrent multi-container operations performed in a non-atomic manner. Transactional Correctness tool for Abstract Data Types (TxC-ADT) is the first tool that can check the correctness of transactional data structures. TxC-ADT elevates the standard definitions of transactional correctness to be in terms of an abstract data type, an essential aspect for checking correctness of transactions that synchronize only for high-level semantic conflicts. Many practical concurrent data structures, transactional data structures, and algorithms to facilitate non-blocking programming all incorporate helping schemes to ensure that an operation comprising multiple atomic steps is completed according to the progress guarantee. The helping scheme introduces additional interference by the active threads in the system to achieve the designed progress guarantee. Previous progress verification techniques do not accommodate loops whose termination is dependent on complex behaviors of the interfering threads, making these approaches unsuitable. My dissertation presents the first progress verification technique for non-blocking algorithms that are dependent on descriptor-based helping mechanisms

    Verifying linearisability: A comparative survey

    Get PDF
    Linearisability is a key correctness criterion for concurrent data structures, ensuring that each history of the concurrent object under consideration is consistent with respect to a history of the corresponding abstract data structure. Linearisability allows concurrent (i.e., overlapping) operation calls to take effect in any order, but requires the real-time order of nonoverlapping to be preserved. The sophisticated nature of concurrent objects means that linearisability is difficult to judge, and hence, over the years, numerous techniques for verifying lineasizability have been developed using a variety of formal foundations such as data refinement, shape analysis, reduction, etc. However, because the underlying framework, nomenclature, and terminology for each method is different, it has become difficult for practitioners to evaluate the differences between each approach, and hence, evaluate the methodology most appropriate for verifying the data structure at hand. In this article, we compare the major of methods for verifying linearisability, describe the main contribution of each method, and compare their advantages and limitations
    corecore