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ABSTRACT

The progression of multi-core processors has inspired the development of concurrency

libraries that guarantee safety and liveness properties of multiprocessor applications. The

difficulty of reasoning about safety and liveness properties in a concurrent environment

has led to the development of tools to verify that a concurrent data structure meets a

correctness condition or progress guarantee. However, these tools possess shortcomings

regarding the ability to verify a composition of data structure operations. Additionally,

verification techniques for transactional memory evaluate correctness based on low-level

read/write histories, which is not applicable to transactional data structures that use a

high-level semantic conflict detection.

In my dissertation, I present tools for checking the correctness of multiprocessor programs

that overcome the limitations of previous correctness verification techniques. Correctness

Condition Specification (CCSpec) is the first tool that automatically checks the correctness

of a composition of concurrent multi-container operations performed in a non-atomic

manner. Transactional Correctness tool for Abstract Data Types (TxC-ADT) is the first

tool that can check the correctness of transactional data structures. TxC-ADT elevates

the standard definitions of transactional correctness to be in terms of an abstract data

type, an essential aspect for checking correctness of transactions that synchronize only for

high-level semantic conflicts.

Many practical concurrent data structures, transactional data structures, and algorithms

to facilitate non-blocking programming all incorporate helping schemes to ensure that an

operation comprising multiple atomic steps is completed according to the progress guar-

antee. The helping scheme introduces additional interference by the active threads in the
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system to achieve the designed progress guarantee. Previous progress verification tech-

niques do not accommodate loops whose termination is dependent on complex behaviors

of the interfering threads, making these approaches unsuitable. My dissertation presents

the first progress verification technique for non-blocking algorithms that are dependent

on descriptor-based helping mechanisms.
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CHAPTER 1: INTRODUCTION

Designing scalable multiprocessor programs is essential for achieving performance ben-

efits from the hardware developments in increasing the number of cores per chip. The

challenge with designing multiprocessor programs is preserving the safety and liveness

properties expected of a program operating in a multi-threaded environment. A safety

property defines correct behavior for a multiprocessor program. A liveness property

defines the progress guarantee for a multiprocessor program. Traditional multiproces-

sor programs maintain safety by protecting critical sections with a coarse-grained lock.

Since this solution limits scalability, fine-grained locking algorithms have been developed.

Fine-grained locking provides improved scalability over a coarse-grained lock because a

thread only acquires the locks protecting the memory locations that it accesses, allowing

threads that access different parts of the memory to run concurrently. However, the usage

of locks is vulnerable to violations of liveness such as deadlock (a thread fails to release a

lock, halting system-wide progress) or starvation (a thread never acquires a lock because

it is in use by other threads).

The liveness vulnerabilities associated with locks has inspired non-blocking data struc-

tures. Non-blocking data structures achieve safe memory accesses through Compare-And-

Swap (CAS). CAS is an atomic instruction that accepts a memory location, old value, and

new value as parameters. If the contents of a memory location is equivalent to the old

value, the memory location is updated to contain the new value and the boolean value

true is returned; otherwise, no change is made and false is returned. An update to a

memory location is achieved through a loop where CAS is continuously attempted until

it succeeds. Progress guarantees have been defined for non-blocking data structures to

express the level of progress expected in a multi-threaded system. A non-blocking data
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structure is lock-free if at least one thread is guaranteed to make progress. A non-blocking

data structure is wait-free if all threads are guaranteed to make progress.

The difficulty of reasoning about correctness and progress properties of non-blocking data

structures originates from all possible ways the threads may interleave. Verification tools

are therefore necessary to ensure that non-blocking data structures deliver the safety and

liveness properties they are designed to provide. This necessity motivates my thesis on

the verification of correctness and progress guarantees for non-blocking data structures.

Correctness

Several correctness conditions have been defined for non-blocking data structures. A legal

sequential history is a history such that the first event is an invocation, and each invocation,

except possibly the last, is immediately followed by a matching response [46]. Lineariz-

ability [47] is a correctness condition such that a history consisting of all invocation and

response events is equivalent to a legal sequential history, and each method appears to

take effect instantaneously at some moment between its invocation event and response

event, preserving real-time ordering. Sequential consistency is a correctness condition

such that a history consisting of all invocation and response events is equivalent to a legal

sequential history, and each method appears to take effect in program order [58]. Lineariz-

ability and sequential consistency are both appropriate correctness conditions for different

types of systems. Linearizability is more suitable for complex systems with multiple com-

ponents, while sequential consistency is more suitable for self-contained systems. Other

correctness conditions such as quiescent consistency [5] and quasi-linearizability [1] have

been introduced to complement the needs of counting networks and complex systems

with high performance demands, respectively.
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Although non-blocking data structures that are designed for the previously mentioned

correctness conditions guarantee safety at the granularity of the data structure operations,

the composition of operations may be vulnerable to undefined behavior. For example,

consider a linearizable concurrent adjacency list data structure that maintains a list of

vertices implemented using the set abstract data type. The code snippet listed in Figure 1.1

presents an example of a composition of the concurrent adjacency list operations that is

erroneous.

1 if(!graph.vertex_list.contains(key))
2 {

3 value = ... //compute vertex value

4 graph.vertex_list.insert(key, value);

5 }

Figure 1.1: Data Structure Composition Example

The code in Figure 1.1 checks the vertex list for a specific key on line 1. If the vertex list does

not contain the key of interest, then a new vertex with this key and computed value is in-

serted in the vertex list on line 4.The fallacy in this logic is that another thread may insert a

vertex with the same key of interest and different computed value between the instant that

contains returns and insert is invoked. The previously stored value would be uninten-

tionally overwritten due to the non-atomic composition of operations. To overcome this

challenge, my thesis presents Correctness Condition Specification (CCSpec), the first tool

that automatically checks the correctness of a composition of concurrent multi-container

operations performed in a non-atomic manner. A reference to a container is associated

with each method called in a concurrent history to enable the evaluation of correctness for

a composition of multiple containers. I develop a lightweight custom specification lan-

guage that allows the user to define a correctness condition associated with the concurrent

algorithm and a correctness condition associated with the concurrent data structures. CC-

Spec can check non-blocking data structures for a user-specified correctness condition, or
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for correctness conditions discussed in literature including linearizability [47], sequential

consistency [58], quiescent consistency [5], and quasi-linearizability [1].

The potential violation of data structure semantics associated with a composition of non-

blocking data structure operations has inspired transactional data structures. A data

structure is considered transactional if it supports executing operations atomically and in

isolation in a multi-threaded environment. Software Transactional Memory (STM) [91]

has been proposed to enable a composition of operations to be executed atomically and

in isolation as a software transaction. Using STM to construct transactional data struc-

tures is vulnerable to excessive aborts due to read/write conflicts on frequently accessed

memory locations such as the head of a linked list. State-of-the-art transactional data struc-

tures [107, 94] improve the concurrency control of traditional STM by using high-level

semantic conflict detection. Commutative operations are operations that when executed in

opposite order will yield the same abstract state of the data structure. Non-commutative

operations are operations that when executed in opposite order will yield a different ab-

stract state of the data structure. High-level semantic conflict detection leverages seman-

tic knowledge of the data structure to provide explicit transactional synchronization for

only non-commutative operations. Commutative operations are allowed to proceed con-

currently by utilizing atomic read, atomic write, and atomic read-modify-write (RMW)

operations for the thread-level synchronization of low-level read/write conflicts [44].

The exploitation of data structure semantics substantially improves performance by aban-

doning the isolation property of low-level reads and writes. Since the read/write histories

do not exhibit the isolation property expected from transactional memory systems, the

correctness of transactional data structures cannot be judged according to the histories of

low-level reads and writes. This presents a challenge for verification techniques [17, 36, 30]

that evaluate the correctness of transactional memory systems based on low-level reads
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and writes. My thesis addresses this challenge by presenting Transactional Correctness

tool for Abstract Data Types (TxC-ADT), the first tool that can check the correctness of

transactional data structures. TxC-ADT recasts the standard definitions of transactional

correctness in terms of an abstract data type, as introduced in [87]. To accommodate

a diverse assortment of transactional correctness conditions, correctness is defined as

a happens-before relation. Defining a correctness condition in this manner enables an

automated approach in which correctness is evaluated by generating and analyzing a

transactional happens-before graph during model checking. A transactional happens-

before graph is maintained on a per-thread basis, making the approach applicable to

transactional correctness conditions that do not enforce a total order on a transactional ex-

ecution. TxC-ADT accommodates a variety of widely-accepted transactional correctness

conditions including serializability [80], strict serializability [80], opacity [39], and causal

consistency [51].

Progress

The strategies for verifying lock-freedom [34, 49, 53] are centered on CAS-based loops.

Since a CAS return value of false indicates that some other thread made progress, the

CAS-based loop is capable of achieving lock-freedom. The techniques for verifying

lock-freedom assume that a thread exiting a CAS-based loop indicates that system-wide

progress is being made. However, data structures that are vulnerable to cyclic dependen-

cies require helping mechanisms to ensure lock-free progress and cannot be verified under

the same assumption. Additional reasoning must be applied to verify that the helping

mechanism allows lock-free progress.

Thread helping mechanisms are also fundamental for wait-free non-blocking data struc-
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tures. Wait-free progress is achieved by allowing a delayed thread to post their operation

in a shared array of descriptor objects [43]. Prior to starting their own operation, every

thread is required to check the array of descriptor objects to help complete a pending oper-

ation. In a worst case scenario, all threads will be recruited to assist the delayed operation

such that the helped thread is guaranteed to complete the operation in a finite number of

steps. Wait-freedom has previously been considered easier to verify than lock-freedom

since wait-freedom is a thread local property. However, the helping mechanism makes it

difficult to reason about wait-freedom in a thread local manner.

Progress guarantees for descriptor-based helping schemes such that loop termination

is dependent on the actions of the interfering threads are difficult to reason about by

existing verification techniques because progress is not ensured simply by the ability

of a thread to exit a CAS-based loop. To overcome this challenge, my thesis presents

the first progress verification technique that accounts for non-blocking algorithms that

require a descriptor-based helping mechanism to achieve the desired progress guarantee.

I provide algorithms for the communication through descriptor objects with interfering

threads and define a loop invariant specification to prove progress of descriptor-based

non-blocking data structures. To verify that all loops in a non-blocking data structure

terminate according to the specification, I implement a practical framework that enables

the semi-automatic verification of concurrent programs written in the C programming

language.

Leveraging Semantics to Increase Performance

Previous research on transactional memory has investigated relaxing atomicity and iso-

lation to address common problems associated with transactional memory. Strategies are
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presented that incorporate a cooperative transactional model [33, 74, 102, 54] that violates

atomicity and isolation with the benefit of reducing aborts for long-lived transactions. The

suspension of isolation is proposed in [82, 93, 65, 60, 64, 101] for transactions that utilize

synchronization primitives such as barriers or condition variables. These optimization

strategies, which are centered on traditional STM systems, have already been incorporated

into the semantic conflict detection of transactional data structures since permitting com-

mutative operations to proceed without transactional synchronization abandons atomicity

and isolation at the read/write level. However, the potential benefits of optimizing the

semantic conflict detection mechanism have not yet been explored in the literature.

In my dissertation, I present transactional merging, a technique that relaxes the semantic

conflict resolution of transactional data structures such that a transaction that conflicts

with another transaction will merge the conflicting operations into one operation rather

than aborting itself. I provide a function that can be configured by the designer to

specify which semantic conflicts are eligible to be eliminated by merging operations.

Transactional merging is the first technique to propose an optimization for the semantic

conflict detection scheme utilized by state-of-the-art transactional data structures. The

performance evaluation demonstrates that transactional merging significantly improves

the throughput of committed transactions by reducing the total number of aborts. Such

performance benefits make transactional merging ideal for high-performance transaction

processing required by domains such as in-memory databases [98, 16].

Outline

The remainder of the dissertation is organized as follows. In Chapter 2, I provide def-

initions for the terminology used within the dissertation. I then discuss related work
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regarding correctness and progress guarantees for non-blocking programs and cooper-

ative schemes for transactional applications. In Chapter 3, I present the methodology

for my correctness tools CCSpec and TXC-ADT, my progress verification technique and

framework for descriptor-based non-blocking programs, and the general approach for

the transactional merging technique. In Chapter 4, I provide the experimental results and

case studies used to evaluate CCSpec, TXC-ADT, the progress verification technique and

framework, and transactional merging. Concluding remarks are provided in Chapter 5.
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CHAPTER 2: BACKGROUND

Terminology

In this section, I provide definitions for the terms relevant to a concurrent execution, and

correctness and progress properties for the concurrent execution.

Concurrent Execution

An operation is a procedure that updates shared data. A concurrent data structure is a

shared container for data that provides a set of operations, also referred to as methods, to

manipulate the data [46]. Atomicity is a property over a set of operations such that either all

operations are committed to memory, or none of the operations are committed to memory.

Isolation is a property over a set of operations such that the operations appear to take effect

in sequential order. A transaction is a sequence of operations that appear to be performed

atomically and in isolation. An event is (1) a change in the status of a transaction including

transaction-begin, commit, or abort, or (2) a change in the status of a method including an

invocation or response. A history is a finite series of instantaneous events [46]. A sequential

history is a history such that the first event is an invocation, and each invocation, except

possibly the last, is immediately followed by a matching response [46]. A concurrent history

is a history in which the finite series of events are ordered according to a thread schedule.
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Correctness Property

Herlihy et al. [47] present a formal method for verifying the correctness of a concurrent

data structure which is based on Hoare’s [48] formal correctness proof method for data

representations. The concurrent data structure is defined in terms of an abstract type ABS

and its representation type REP. ABS defines the type being implemented and REP defines

the implementation of ABS. The rep invariant, denoted as I: REP→ BOOL, characterizes the

set of REP values that are legal representations. The abstraction function, denoted as A: REP

→ ABS, is a mapping function that maps REP values to ABS values, when the rep invariant

is satisfied.

An ABS operation, α, is implemented by a sequence of REP operations, ρ, that carries REP

to a legal value. The implementation, ρ, of ABS operation, α, is correct if there exists a rep

invariant, I, and abstract function, A, such that when ρ carries a legal REP value r to r′,

α caries the ABS value from A(r) to A(r′) [47]. Since concurrent operations are permitted

to make progress at any instant of the execution, the rep invariant and abstract function

must be satisfied continually at each REP operation, rather than satisfied only between ABS

operations [47].

Progress Property

Lock-freedom is a property over multiprocessor programs such that at least one thread is

guaranteed to make progress. Wait-freedom is a property over multiprocessor programs

such that all threads are guaranteed to make progress. A concurrent data structure is

blocking if the delay of any one thread can delay other threads. A concurrent data structure

is non-blocking if the delay of a thread cannot delay the other threads.
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Related Work

In this section, I discuss related work regarding techniques for verifying the correctness

of non-blocking data structures, the correctness of transactional memory, and progress

guarantees for non-blocking data structures.

Correctness of Non-Blocking Data Structures

Techniques that focus on verifying the correctness of concurrent data structures are pro-

posed by [99, 13, 10, 108, 79]. Vechev et al. [99] present an experience report on verifying

linearizability of non-blocking concurrent data structures. The concurrent data structure

can be checked for linearizability automatically by using the model checker SPIN [50]

to iterate through all permutations of the concurrent history and verify that each per-

mutation matches a legal sequential history. Burckhardt et al. [13] present Line-Up, a

complete and automatic tool that checks deterministic linearizability. Baumler et al. [10]

use Linear Temporal Logic (LTL) to prove linearizability using the KIV interactive theorem

prover. Zhang et al. [108] present Round-up, a runtime verification method for checking

quasi-linearizability in the source code implementations of concurrent data structures.

Ou et al. [79] present a non-deterministic correctness model that encompasses the re-

laxed behaviors provided by the C/C++ memory model. The approaches presented

in [99, 13, 10, 108, 79] are capable of checking the correctness of concurrent data structures,

but do not provide a strategy for checking that a composition of data structure operations

preserves the intended semantics of the concurrent algorithm. Shacham et al. [90] present

a tool that checks linearizability for a composition of concurrent operations invoked by

a single container. CCSpec is able to check that a composition of concurrent operations
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invoked by multiple containers meets a correctness condition specified by the user. Such

capabilities enable CCSpec to check a high-level concurrent algorithm comprising mul-

tiple containers, where the specified correctness condition for the concurrent algorithm

may be different from the specified correctness condition of the containers utilized in the

algorithm.

Several techniques propose a formal logic for verifying the correctness of concurrent al-

gorithms. Sergey et al. [88, 89] present a framework for the verification of concurrent

programs. Oortwijn et al. [78] present an abstraction technique that uses process algebras

to describe the behavior of shared-memory concurrent programs. The logic presented

in [89, 88, 78] does not evaluate algorithms that use a composition of data structure op-

erations. To use the logic proposed by these techniques for checking the correctness of a

composition of data structure operations, the correctness of each data structure operation

would need to be proved separately, followed by a proof that the composition of data

structure operations satisfies the program invariants and pre-/postconditions of the ab-

stract functions. The drawback of these approaches is that the proofs must be mechanized

using manually constructed formal logic.

Generalized verification tools are proposed in [50, 52, 19, 26] that provide a higher degree

of automation over fully mechanized proofs using formal logic. Holzmann [50] presents

SPIN, a verification tool that can perform bounded model checking and can verify correct-

ness properties specified in LTL. Jacobs et al. [52] present VeriFast, a verification tool for

single-threaded and multithreaded C and Java programs. Cohen et al. [19] present VCC, a

tool suite for low-level concurrent system code written in C that can prove the correctness

of function contracts, state assertions, and type invariants. Dwyer at al. [26] develop

the Concurrency Intermediate Verification Language (CIVL). CIVL provides verification

and analysis tools for checking properties of programs using a symbolic execution-based
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model checker. The challenge with using a generalized verification tool for verifying the

correctness of a composition of concurrent data structure operations is that the specifica-

tions require additional auxiliary code [89] to define the allowable permutations of the

methods called in a concurrent history.

Correctness of Transactional Memory

A significant amount of research focuses on the correctness verification of transactional

memory. Several approaches [30, 27, 62] propose automatic techniques to verify correct-

ness of transactional memory systems. Flanagan et al. [30] present the dynamic analysis

tool Velodrome that performs atomicity verification that is both sound and complete. Velo-

drome analyzes operation dependencies within atomic blocks and infers the transactional

happens-before relations of an observed execution trace. Serializability of the execution

trace is determined by verifying that the transactional happens-before graph is acyclic.

Emmi et al. [27] present an automatic verification method to check that transactional mem-

ories meet the correctness property strict serializability. Their technique parameterizes a

transactional memory implementation according to the number of threads n and number

of shared locations k by constructing a family of simulation relations that demonstrates

for all n > 0 and k > 0, the transactional memory implementation refines the strict serial-

izability specification. Litz et al. [62] present a tool that automatically corrects snapshot

isolation (SI) anomalies in transactional memory programs. The tool promotes dangerous

read operations in the conflict detection phase of the SI transactional memory implemen-

tation and forces one of the affected transactions to abort. The authors reduce the problem

of choosing the read operation to be promoted to a graph coverage problem for a depen-

dency graph focusing on read operations. Since these techniques verify correctness based

on the low-level read/write histories of the transactions, they are not directly applicable
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to transactional data structures that utilize high-level semantic conflict detection.

Model checking is a well-known technique for checking correctness properties of concur-

rent programs. The model checker CHESS [71] enables the systematic and deterministic

testing of concurrent programs. Binary instrumentation is provided between the test pro-

gram and the concurrency API to explore the possible thread schedules. CDSChecker [75]

enables the exploration of thread schedules that use the relaxed semantics of the C/C++

memory model, which utilizes a variation of the dynamic partial order reduction [31]

technique to minimize the exploration of redundant thread schedules. Line-Up [13], a

tool that automatically checks deterministic linearizability, uses CHESS [71] to produce

all sequential histories of a finite test and checks that all concurrent histories are consis-

tent with the sequential histories. While Line-Up is designed for checking correctness

of non-blocking data structures, the general approach of comparing concurrent histories

with sequential histories to evaluate correctness is utilized by TxC-ADT.

Approaches including [36, 37, 38, 77, 6] propose techniques based on model checking

to verify correctness of transactional memory systems. Guerraoui et al. [36] present a

technique for verifying software transactional memory (STM) safety properties using

model checking. Their technique leverages the structural symmetries of STM algorithms

to reduce the verification problem of an unbounded STM state space to a finite-state

verification problem that requires a small number of threads and shared variables. O’Leary

et al. [77] verify the correctness of Intel’s McRT STM [85] using the model checker Spin [50].

Baek at al. [6] present ChkTM, a model checking environment that can verify the correctness

of transactional memory systems. ChkTM checks serializability and strong isolation of

a transactional memory system by performing a coarse-grained state space exploration

which records the transactional reads and writes when only a single processor is active at

a time and comparing the result to a fine-grained state space exploration that records the
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memory accesses for all possible interleavings. These approaches verify correctness at the

granularity of low-level reads and writes, so the correctness checking algorithm of these

approaches needs to be modified to account for a concurrent history in terms of an abstract

data type to be relevant for the high-level semantic conflict detection of transactional data

structures.

Many approaches [12, 66, 17, 18, 11, 25, 86] propose a formal logic to verify correctness of

transactional memory systems. Blundell et al. [12] demonstrate that a direct conversion

of lock-based critical sections into transactions can cause deadlock even if the lock-based

program is correct. The observations of Blundell et al. [12] highlights safety violations

that may be introduced in transactional programs, but does not provide a methodology

for detecting the resulting faulty behavior. Cohen et al. [17] present an abstract model

for specifying transactional memory semantics, a proof rule for verifying that the trans-

actional memory implementation satisfies the specification, and a technique for verifying

serializability and strict serializability for a transactional sequence. Since conflicts consid-

ered in the abstract model are defined at the read/write level, the approach is limited to

transactional memory systems that synchronize at low-level reads and writes. Manovit

et al. [66] present a framework of formal axioms for specifying legal operations of a trans-

actional memory system. The dynamic sequence of program instructions called in the

test are converted to a sequence of nodes in a graph, where an edge in the graph rep-

resents constraints on the memory order. The analysis algorithm constructs the graph

based on the Total Store Order (TSO) memory model ordering requirements and checks

for cycles to determine order violations. The graph construction is based on TSO ordering

requirements, so the framework cannot be directly used to verify transactional correctness

conditions that utilize high-level semantic conflict detection.

Bieniusa et al. [11] provide a formalization of a semantics of transactional memory that
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can prove properties of a transactional memory system. The semantics are based on

low-level reads/writes and does not account for high-level semantic conflict detection.

Doherty et al. [25] present Transactional Memory Specification 1 (TMS1), a correctness

specification of a transactional memory runtime library comprising transactional features

in programming languages such as C or C++. TMS1 is specified using an I/O automaton,

enabling formal and machine-checked correctness proofs of transactional memory imple-

mentations. The advantage of TxC-ADT over this verification technique is that TxC-ADT

is capable of automatically checking a correctness condition specification while Doherty

et al. [25]’s approach requires that the correctness proofs be constructed manually using

formal logic. Schmidt-Schauß et al. [86] present the specification calculus STM-Haskell

with Futures (SHF) and a concurrent implementation of SHF, referred to as CSHF. The

CSHF specification is proved correct by showing that it is semantically equivalent to the

big-step reduction defined for SHF. To extend the approach to be applicable to transac-

tional data structures, updates are necessary for the SHF and CSHF calculus syntax and

reduction rules to account for a user-specified abstract data type and the transaction log

maintained in CSHF to abort transactions for access conflicts on the abstract data type.

Progress Verification of Non-Blocking Algorithms

Gotsman et al. [34] present a tool that automatically verifies progress guarantees for non-

blocking data structures. The verification of lock-freedom is reduced to verifying that

all threads terminate regardless of the environment interference. Tofan et al. [96] present

a technique for verifying lock-freedom based on rely-guarantee reasoning with interval

temporal logic. The authors develop a decomposition theorem for lock-freedom which

states that the continuous fulfillment of the rely condition by the global environment

implies that the existence of an active operation will result in the completion of some active
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operation. Since these approaches do not account for loop termination guaranteed through

strategic maintenance of auxiliary structures, they are not applicable to non-blocking data

structures that achieve progress through descriptor-based helping mechanisms.

Hoffmann et al. [49] present a quantitative compensation scheme for the verification of

lock-freedom. Their technique is based on the intuition that a thread that successfully

makes progress in an operation has to provide resources to the other threads for the

interference that it caused. The limitation of this technique is that it assumes that a thread

exiting a CAS-based loop implies that the thread will never revisit the loop due to a cyclic

dependency. A quantitative compensation scheme does not adequately verify progress

for non-blocking data structures vulnerable to cyclic dependencies because such designs

guarantee progress by detecting and preventing the cyclic dependency rather than by

reasoning that a failed CAS implies that another CAS succeeded and made system-wide

progress.

Jia et al. [53] propose a technique that instruments the source code with assignments

to auxiliary variables and uses assertions to verify lock-freedom. The limitation of this

approach is that it is designed for the “read, compute, and update” loop pattern. The

authors provide a refinement to their proof method to handle loops that do not terminate

in a single iteration with no contention. However, if a looping method of a concurrent

library is wrapped inside a terminating loop, this technique will fail to prove that the

concurrent library is lock-free.

The approaches presented by Gotsman et al. [34], Hoffmann et al. [49], and Jia et al. [53]

each verify lock-freedom of Hendler’s elimination-backoff stack [42]. The elimination-

backoff stack uses a helping scheme to improve performance by maintaining a collision

layer where threads that fail to perform their operation announce their operation by
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writing their id to the collision array by applying CAS. An attempt is made to eliminate

the operations of the previous thread and the new thread written in the collision array

if they are complementary operations. Although the elimination-backoff stack uses a

helping scheme to remove complementary operations, the helping scheme is irrelevant

to lock-free progress. The elimination-backoff stack guarantees lock-freedom because if a

CAS performed to eliminate an operation fails, then some other thread must have collided

with the operation or the operation is not available for collision.

The program logic Total-TaDA is presented by da Rocha Pinto et al. [23] to verify that

concurrent programs both terminate and produce the correct result. The logic extends the

concurrent program logic TaDA [22] with well-founded termination reasoning to verify

progress properties such as lock-freedom and wait-freedom. The authors parameterize

the loop invariant of a relation with an ordinal number that places a bound on the number

of times a CAS can fail, which is not adequate for lock-free designs that require helping

mechanisms to prevent cyclic dependencies that may occur in CAS-based loops. Addi-

tionally, Total-TaDA’s parameterization of the loop invariant assumes that wait-freedom

is a thread local property, while descriptor-based wait-free data structures are dependent

on each thread helping a delayed thread.

Liang et al. [61] present a simulation RGSim-T that verifies termination-preserving re-

finement of concurrent programs. RGSim-T ensures that the target program preserves

the termination/divergence behaviors of the source program by parameterizing the sim-

ulation with the environment interference that specifies which environment steps may

make the current thread take more silent steps due to a failed CAS that corresponds to

no additional steps by the source. Although RGSim-T’s simulation and logic are general

enough to verify lock-freedom, their parameterization of the environment interference

places a bound on the number of loop iterations under the assumption that failure to
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exit a loop implies that some other thread exited the loop and will not perform additional

silent steps. Such logic is adequate for most lock-free designs but does not account for data

structures that require helping mechanisms to achieve lock-freedom. The authors present

a proof technique for wait-freedom that does not allow an environment step to increase

the number of silent steps due to additional loop iterations, which is too restrictive for

descriptor-based wait-free data structures.

Cooperative Schemes for Transactional Applications

Several approaches [33, 74, 102, 54] present a cooperative transactional strategy that re-

laxes isolation and atomicity to assist large transactions to successfully commit to memory.

Garcia-Molina et al. [33] divide a long-lived transaction into a sequence of smaller transac-

tions that commit individually to improve performance. If any of the smaller transactions

abort, compensating transactions are executed to undo the effects of the other committed

transactions. Nodine et al. [74] define a transaction framework, Cooperative Transaction

Hierarchy, that relaxes atomicity and serializability to support cooperative applications.

Weikum et al. [102] propose relaxing atomicity and isolation in the open nested transaction

model. Isolation is relaxed by allowing uncommitted updates by incomplete transactions

to be visible to other transactions if the operations commute with the partial updates.

Atomicity is relaxed by lifting the “all-or-nothing” property to the system state in terms

of abstract operations as opposed to the low-level reads/writes. The nested transaction

model is further enhanced by an STM implementation [73], an extension of the Java pro-

gramming language [15], and a hybrid HTM and STM scheme [14] that supports open

and closed nested transactions. Kaiser et al. [54] introduce transaction restructuring op-

erations, including split-transaction and join-transaction, to accommodate transactions

that comprise sections of operations that are independent. The transactional merging
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technique builds upon the previous approaches [33, 74, 102, 54] by relaxing the semantic

conflict resolution of transactional data structures by merging conflicting operations to

improve the system commit rate.

Relaxing isolation and incorporating a cooperative transactional strategy has been ex-

plored [93, 65, 60, 64, 101] to overcome incompatibilities between transactions and syn-

chronization mechanisms. Luchangco et al. [65] propose transaction communicators to

overcome the incompatibilities of barriers and condition variables with isolated trans-

actions. Transaction communicators are objects that allow concurrent transactions to

communicate such that a transaction may only commit if all transactions that observe its

effects must also commit. Luchangco et al. [64] propose xCondition, a condition variable

compatible with transactions such that it does not abort a transaction that waits on it. The

xCondition variable allows an active waiting transaction to receive a notification from

another active waiting transaction. The waiter and notifier will either both commit or

both abort. Unlike the previous approaches [65, 64], transactional merging does not force

the collaborating transactions to either both commit or both abort, which provides higher

throughput by maximizing committed transactions.

Smaragdakis et al. [93] present a concurrent programming model, Transactions with Iso-

lation and Cooperation (TIC), that addresses the problem of I/O operations that cannot be

undone by a rollback. TIC allows transactions to cooperate by temporarily suspending the

atomicity and isolation properties of a transaction within an atomic block. Lesani et al. [60]

present Communicating Memory Transactions (CMT), a transactional memory model that

provides opacity and safe asynchronous message passing to ensure that every committed

transaction has only received messages from committed transactions. Wang et al. [101]

present an implementation of condition variables that is compatible with locks, hardware

transactional memory, and software transactional memory. Wait and notify algorithms are
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provided that enable safe thread communication through condition variables within the

transactional region. Transactional merging extends these techniques [93, 65, 60, 64, 101]

to offer a collaboration strategy that is focused on improving performance.

Several approaches combine operations to improve performance for concurrent data struc-

tures [42, 41, 7]. Hendler et al. [42] present the elimination backoff stack, an algorithm

that enables Push and Pop operations to exchange values without modifying the shared

lock-free stack via a collision array. The algorithm retains linearizable stack semantics

because eliminated Push and Pop operations do not change the abstract state of the data

structure. Hendler et al. [41] present flat combining, a technique that enables threads to

write their operation to a thread-local publication record that is applied to the shared data

structure by a combiner thread that acquires a lock, scans the publication record, combines

the requests, modifies the data structure according to the requests, then releases the lock.

The requests are combined such that multiple requests can be fulfilled over a single pass of

the data structure, reducing synchronization overhead and overall time complexity com-

pared to performing the operations individually. Bar-Nissan et al. [7] present a dynamic

elimination-combining stack, an algorithm that eliminates operations that have reverse

semantics and combines operations that have identical semantics. Transactional merging

is comparable to the dynamic elimination-combining stack [7] because it combines oper-

ations that have identical semantics with the discerning feature of optimizing transaction

throughput.
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CHAPTER 3: METHODOLOGY

CCSpec: A Correctness Condition Specification Tool

In this section, I propose Correctness Condition Specification (CCSpec), the first tool

that automatically checks the correctness of a composition of concurrent multi-container

operations performed in a non-atomic manner. Concurrent algorithms such as parallel

simulation techniques [55] and parallel machine learning [63] require a composition of

multiple concurrent containers of various types. CCSpec checks the correctness of a

composition of multiple containers by associating a reference to a container for each

method called in a concurrent history.

CCSpec accommodates existing as well as new correctness conditions through a technique

that characterizes a correctness condition as a happens-before relation. The happens-before

relation is a partial ordering between two method calls invoked in a concurrent history. A

happens-before graph representing the partial ordering of all methods called in a history is

constructed automatically during model checking. All possible legal sequential histories

are derived from the happens-before graph through a recursive topological sort algorithm.

A unit test is correct if all concurrent histories are equivalent to a legal sequential history.

CCSpec will provide a strong impact on the optimization of a concurrent system. To

improve performance, it may be beneficial to adopt a relaxed correctness condition that is

tailored for the current needs of the system. Data structures such as a k-FIFO queue [56]

and a quiescently consistent priority queue [106] both have demonstrated significant per-

formance benefits with a design that conforms to a relaxed correctness condition. CCSpec

will allow the user to explore potential performance gains in a concurrent algorithm by
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checking if the usage of a data structure designed for a relaxed correctness condition will

violate correctness at the abstract function layer. Such optimizations are also useful for

data structure library designers that strive to find the optimal balance between correctness

and performance.

The contributions of this work include:

1. The first tool that automatically checks the correctness of a composition of concurrent

multi-container operations performed in a non-atomic manner. Existing tools for

checking the correctness of data structures [99, 13, 10, 108, 79] do not provide the

ability to check that a composition of data structure operations used for a high-level

concurrent algorithm exhibits correct behavior.

2. A technique for defining a correctness condition for concurrent data structures as

a happens-before relation. CCSpec can verify a broad assortment of specifications

ranging from traditional correctness conditions such as linearizability to the uncom-

mon quasi-linearizability.

3. I demonstrate the practical application of CCSpec by checking the correctness of a

variety of concurrent algorithms. The experimental evaluation explores correctness

for concurrent algorithms that utilize data structures designed for a relaxed correct-

ness condition. Such data structures include a priority queue [106] that meets the

quiescent consistency correctness condition and a k-FIFO queue [56] that meets the

quasi-linearizable correctness condition.
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Data Structure and Abstract Function Layers

An abstract function is defined as a user-specified composition of data structure operations

performed by a thread. The correctness checking algorithm is divided into two layers:

the data structure layer and abstract function layer. This strategy allows the design flaw

to be identified as an incorrect data structure, an incorrect usage of the data structure

operations, or a combination of both. Evaluating the correctness of a composition of data

structure operations in a concurrent algorithm can be problematic if the correct behavior

defined for the algorithm is different than the correct behavior defined for the concur-

rent data structures. I address this challenge by developing a lightweight specification

language that allows the user to define a correctness condition associated with the data

structure layer and a correctness condition associated with the abstract function layer. The

lightweight custom specification language is designed such that it can be integrated into

model checking tools to enable the expression of concurrent histories in terms of the data

structure method calls and abstract function calls.

1 template<typename T>
2 T Method(T x1, T x2){

3 begin(&Container, &Method, 2, x1, x2);
4 //Method body

5 end(&Container, &Method, 1, y);
6 return y;
7 }

Figure 3.1: Method Call Annotation Example

An example of the annotation usage at the data structure layer is shown in Figure 3.1. The

invocation of a method call is specified by passing a reference to a container, a function

pointer of the method, the number of inputs, and associated inputs to the begin function

on line 3. The response of a method call is specified by passing a reference to a container,

a function pointer of the method, the number of outputs and associated outputs to the

end function on line 5. The annotation usage at the abstract function layer is similar to the
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example in Figure 3.1, except the begin abstract function is called instead of the begin

function and the end abstract function is called instead of the end function.

The information from each annotation is extracted during model checking and stored in

an action object, shown in Algorithm 1. The ConcurrentHistory type on line 1.32 is a list of

action objects that represents a single generated concurrent history. A method descriptor

is created for each method call and each abstract function call in a concurrent history.

An active status indicates that a method call or abstract function call is in progress. An

inactive status indicates that a method call or abstract function call is not in progress. A

method descriptor contains a unique identification number, the method status (active, or

inactive), a sequence number for the beginning and ending of a method call or abstract

function call, a reference to the container that the method call or abstract function call is

invoked upon, a function pointer to the corresponding method or abstract function, and

associated input and observed output values, as shown in Algorithm 1.

The method map on line 1.29 maps each method call to a unique identification number. The

abstract f unc map on line 1.30 maps each abstract function call to a unique identification

number. The LegalHistory type on line 1.33 is a list of method identification numbers that

corresponds to a legal ordering of the method calls or abstract function calls according to

the correctness condition.
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ALGORITHM 1: Type Definitions

1 typedef int MethodId;
2 enum ActionType
3 Invocation;
4 Response;
5 Correctness Condition;
6 Abstract Invocation;
7 Abstract Response;
8 Abstract Correctness Condition;

9 struct ActionObject
10 int sequence number;
11 ActionType type;
12 int tid;
13 MethodId method id;
14 void *(method)(int64 t);
15 void *input;
16 void *observedOutput;

17 enum MethodStatus
18 INACTIVE;
19 ACTIVE;

20 struct MethodDesc
21 MethodId id;
22 MethodStatus status;
23 int begin;
24 int end;
25 void *container;
26 void *( f unc ptr)(int64 t);
27 void *input;
28 void *observedOutput;

29 Map<MethodId, MethodDesc> method map;
30 Map<MethodId, MethodDesc> abstract f unc map;
31 typedef List<List<MethodId>> Graph;
32 typedef List<ActionObject> ConcurrentHistory;
33 typedef List<MethodId> LegalHistory;

Approach for Checking Correctness

CCSpec characterizes a correctness condition according to a happens-before relation,

which is a partial ordering on the methods called in a concurrent history. By developing

a tool that enables the user to specify the allowable method call ordering, a concurrent

data structure can be checked for any correctness condition. Such capabilities are essential

for accommodating diverse concurrent systems in which a non-conventional correctness

condition may be more suitable than the standard correctness conditions.

Definition 3.0.1. The happens-before relation, denoted <H, is a partial order defined over

the set of method calls in a history h such that for any two method calls m1 and m2, if

m1 <H m2, then the response event of method call m1 precedes the invocation event of

method call m2 in history h.

Definition 3.0.2. The happens-before graph is a directed graph such that for any two method

calls m1 and m2 in history h, if an edge exists from m1 to m2, then m1 <H m2.
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CCSpec maintains a separate happens-before graph for the data structure method calls

and abstract functions calls in a concurrent history. The happens-before graph is main-

tained as a two-dimensional list of identification numbers, as shown on line 1.31. A

similar approach for maintaining the ordering constraints of a correctness condition as

a happens-before graph was presented by Peterson et al. [81]. However, their approach

is specifically designed for transactions, and cannot verify correctness of a high-level

concurrent algorithm that invokes the transactions.

Algorithm 2 presents the algorithm for checking a correctness condition. TheIsHistoryCorrect

function generates the happens-before graph on line 2.2 from the ConcurrentHistory object

and the correctness condition specification. A recursive topological sort on the graph,

shown on line 2.3, computes all possible legal sequential histories of the method calls or

abstract function calls. For each possible legal sequential history, the concurrent output

and sequential output are generated from the method descriptor MethodDesc detailed in

Algorithm 1. For each method call in a legal sequential history, the observed output

is amended to the concurrent history on line 2.8, and the method’s function pointer is

invoked on line 2.9 and amended to the sequential output on line 2.10.

The comparison between concurrent history output and legal sequential history output is

performed on line 2.11. If the concurrent history output and legal sequential history output

are equivalent, then the individual concurrent history is correct and IsHistoryCorrect

returns true. Otherwise, the counterexample is documented on line 2.12 and the for-loop

on line 2.4 iterates through the remaining legal sequential histories. The concurrent history

is not correct if the concurrent history output is not equivalent to any legal sequential

history output. In this case, IsHistoryCorrect returns false and the counterexamples

collected are reported to the user at the end of the correctness checking algorithm.
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ALGORITHM 2: Correctness Checking Algorithm for Concurrent History
1 Function IsHistoryCorrect(ConcurrentHistory* history)
2 Graph g← GenerateGraph(history) ; // Generate happens-before graph

3 LegalHistory S[]← RecTopologicalSort(g) ; // Generate set of legal sequential

histories

4 foreach s ∈ S[] do
5 list concurrent output;
6 list sequential output;
7 foreach method ∈ s do
8 concurrent output.push back(method.observedOutput) ; // method’s observed output
9 void *temp = (∗method. f unc ptr)(method.container, method.input) ; // Invoke method

sequentially

10 sequential output.push back(temp) ; // method’s sequential output

11 if concurrent output == sequential output then
12 return true ; // Concurrent output is equivalent to a legal sequential

history

// Document counterexample

// Report all documented counterexamples

13 return false ; // Concurrent output is not equivalent to a legal sequential history

Algorithm 3 presents the algorithm for checking the correctness of a unit test. The

IsUnitTestCorrect generates all concurrent histories from a model checker for the unit

test parameter on line 3.2. The foreach-statement on line 3.4 checks if each concurrent

history generated from a model checker is correct. The unit test meets the correctness

condition if all concurrent histories are correct. The outcome of the IsUnitTestCorrect

function is relevant only to the unit test because the correctness evaluation is limited to

the generated concurrent histories. To evaluate correctness for an implementation, the

unit test must include all methods and a minimal set of inputs such that all behaviors of

the implementation are explored. The correctness of CCSpec’s approach is provided in

Appendix A.
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ALGORITHM 3: Correctness Checking Algorithm for Implementation
1 Function IsUnitTestCorrect(UnitTest m)
2 ConcurrentHistory H[]← GenerateConcurrentHistories(m) ; // Generate concurrent

histories from unit test

3 bool outcome = true;
4 foreach h ∈ H[] do
5 if IsHistoryCorrect(h) == false then
6 outcome = false;

7 return outcome ; // At least one concurrent history is not equivalent to a legal

sequential history

Specification Language

The context-free grammar for CCSpec’s custom specification language, presented in Fig-

ure 3.2, is described using the Backus-Naur form (BNF). The specification language enables

the retrieval of data from the concurrent history, which is a list of ActionObjects, defined

on line 1.32 of Algorithm 1. The expression on line 19 retrieves the size of the concurrent

history. The expression on line 20 retrieves the number of threads in the concurrent his-

tory. The method id of a method call or abstract function call at sequence number x in

the concurrent history can be retrieved from the expression on line 21. The thread id of a

method call or abstract function call at sequence number x in the concurrent history can

be obtained by the expression on line 22.

A happens-before relation can be placed between two method calls using the expression on

line 6. A happens-before relation can be placed between two abstract function calls using

the expression on line 7. To determine if a happens-before relation exists between two

method calls or abstract function calls, information relevant to the correctness condition

being evaluated must be extracted. The expression is active(x, j) on line 25 determines

if a method call or abstract function call is in progress at sequence number x by thread

j in the concurrent history. This information is relevant for correctness conditions that
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place an ordering constraint on method calls if the entire system encounters a period of

inactivity, such as quiescent consistency. A real-time ordering between method calls can be

determined by the expression on line 26, which evaluates to true if the response of the first

method call occurs before the invocation of the second method call. A real-time ordering

constraint is placed on method calls for correctness conditions such as linearizability and

quiescent consistency.

1 <program> ::= <function>

2 <function> ::= <function> <stmt> | /* NULL */

3 <stmt> ::= ’;’

4 | <expr> ’;’

5 | <variable> ’=’ <expr> ’;’

6 | <expr> ’happens_before’ <expr> ’;’

7 | <expr> ’happens_before_abstract’ <expr> ’;’

8 | <expr> ’commutes_with’ <expr> ’,’ ’(’ <expr> ’)

↪→ ’ ’;’

9 | ’if’ ’(’ <expr> ’)’ <stmt>

10 | ’if’ ’(’ <expr> ’)’ <stmt> ’else’ <stmt>

11 | ’for’ ’(’ <stmt> <expr> ’;’ <stmt_partial> ’)’

↪→ <stmt>

12 | ’{’ <stmt_list> ’}’

13 <stmt_list> ::= <stmt> | <stmt_list> <stmt>

14 <stmt_partial> :: = <variable> ’=’ <expr> | <

↪→ variable> ’++’ | ’++’ <variable>

15 | <variable> ’--’ | ’--’ <variable>

16 <expr> ::= <integer>

17 | <variable>

18 | <expr> <operator> <expr>
19 | ’history’ ’->’ ’size’ ’(’ ’)’

20 | ’history’ ’->’ ’num_threads’ ’(’ ’)’

21 | ’method’ ’(’ <expr> ’)’

22 | ’tid’ ’(’ <expr> ’)’

23 | ’container’ ’(’ <expr> ’)’

24 | ’input’ ’(’ <expr> ’)’

25 | ’is_active’ ’(’ <expr> ’,’ <expr> ’)’

26 | <expr> ’precedes’ <expr>

27 | ’forall’ <variable> ’:’ <expr> ’..’ <expr> ’,’

↪→ ’(’ <expr> ’)’

28 | ’exists’ <variable> ’:’ <expr> ’..’ <expr> ’,’

↪→ ’(’ <expr> ’)’

29 | ’(’ <expr> ’)’

30 <integer> ::= 0 | [1-9][0-9]*

31 <operator> ::= [+-*/<>] | ’>=’ | ’<=’ | ’!=’ | ’
↪→ ==’ | ’&&’ | ’||’

32 <variable> ::= [a-zA-Z][a-zA-Z0-9_]*

Figure 3.2: Grammar for the Custom Specification Language

The drawback of using a recursive topological sort on the method calls or abstract function

calls in a happens-before graph to derive all possible legal sequential histories is that the

search space exploration has a worst case time complexity of O(n!). This worst case time

complexity is optimized by pruning recursive calls from the search space that would

explore a reordering of commutative method calls or commutative abstract function calls.

The reduction in the search space due to pruning a reordering of commutative method

calls is computed in the following way. Given n method calls, there are (n − 1) positions

where commutative method calls are adjacent to each other. For each of these positions,

there are 2! ways to order the commutative method calls and (n − 2)! ways to order the
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remaining method calls. Since one out of the 2! ways to order the commutative method

calls must be considered, the worst case time complexity when pruning a reordering of

commutative method calls is n!−(n−1) ·(2!−1) ·(n−2)!. After simplification, the worst case

time complexity when pruning a reordering of commutative method calls is presented in

Equation 3.1.

n! − (n − 1)! (3.1)

This reduction can also be expressed as shown in Equation 3.2.

(n − 1) · (n − 1)! (3.2)

The statement on line 8 allows two method calls (or abstract function calls) to be declared

as commutative given that the condition in parenthesis is true. The expression on line 23

retrieves the container reference associated with sequence number x in the concurrent

history. This information is essential for establishing commutativity because method calls

or abstract function calls invoked by different containers are always commutative. The

expression on line 24 retrieves the method input associated with sequence number x in the

concurrent history. This information is necessary for determining commutativity when

method calls commute if they are passed different input, such as the set abstract data type.

The operational semantics of the specification language are provided in Figure 3.3. A state

is described by the 4-tuple (M,G,Gabs, c) where M is a boolean two-dimensional matrix

such that the value at position (i, j) indicates if method call (or abstract function call) i and

method call (or abstract function call) j are commutative, G is the happens-before graph
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for method calls, Gabs is the happens-before graph for abstract function calls, and c is the

program statement to evaluate next. A transition from state S0 to state S1 is expressed as

S0 → S1.

IF
c’ = (b == true) ? (c1;c) : (c2;c)

(M,G,Gabs, if (b) {c1} else {c2 };c) → (M,G,Gabs,c’)

FOR
c’ = (b == true) ? (for (ci; b; c′i ) {c1}; c) : (c)

(M,G,Gabs, for (ci; b; c′i ) {c1}; c) → (M,G,Gabs,c’)

HAPPENS_BEFORE
E’ = E ∪{e1,e2};G’ = (E’, V);c

(M,G,Gabs,e1 happens before e2;c) → (M,G’,Gabs,c)

HAPPENS_BEFORE_ABSTRACT
E’ = E∪{e1,e2};G′abs = (E’, V);c

(M,G,Gabs,e1 happens before abstract e2;c) → (M,G,G′abs,c)

COMMUTES_WITH
c’ = (b == false) ? ( E’ = E\ {e1,e2 }; M’ = (E’, V);c) : (M’ = M;c)

(M,G,Gabs,e1 commutes with e2, (b);c) → (M’,G,Gabs,c)

Figure 3.3: Operational Semantics for the Custom Specification Language

Linearizability

Definition 3.0.3. A history h is linearizable if the subsequence of h consisting of all events is

equivalent to a legal sequential history, and each method call appears to take effect instan-

taneously at some moment between its invocation event and response event, preserving

real-time ordering[46].

The specification for linearizability is shown in Figure 3.4. Since linearizability requires

that the effects of the method calls are equivalent to a legal sequential history, the specifi-

cation must indicate the circumstances for which a method call precedes another method

call. The two for-loops on lines 1 and 2 iterate through the action objects of the concurrent

history. The parameters for the for-loop on line 2 guarantee that m is strictly less than

n. The condition on line 3 checks if the response event of the method called at sequence

number m occurs before the invocation event of the method called at sequence number

n. If this condition is satisfied, a happens-before relationship can be placed between the
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methods called at sequence numbers m and n. Since overlapping method calls will not

be constrained by a happens-before relationship, the generated legal sequential histories

will represent all possible combinations in which these overlapping method calls could

be ordered. The output is compared to each of these legal sequential histories, which

eliminates the requirement for knowledge of the linearization points.

1 for(n = 0; n < history->size(); n++) {
2 for(m=0; m < n; m++) {
3 if(method(m) precedes method(n)) {
4 method(m) happens_before method(n);
5 }

6 }

7 }

Figure 3.4: Linearizability Specification

Sequential Consistency

Definition 3.0.4. A history h is sequentially consistent if the subsequence of h consisting of

all events is equivalent to a legal sequential history, and each method call appears to take

effect in program order[46].

The specification for sequential consistency is shown in Figure 3.5. Sequential consistency

is similar to linearizability except it only places an ordering constraint on methods called

by the same thread. The if-statement on line 3 checks if the method calls at sequence

numbers m and n are called by the same thread. Given that all conditions of the if-

statement are satisfied, a happens-before relationship can be placed between the methods

called at sequence numbers m and n.
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1 for(n = 0; n < history->size(); n++) {
2 for(m=0; m < n; m++) {
3 if((tid(m) == tid(n)) && (method(m) precedes method(n))) {
4 method(m) happens_before method(n);
5 }

6 }

7 }

Figure 3.5: Sequential Consistency Specification

Quiescent Consistency

Definition 3.0.5. A history h is quiescently consistent if the subsequence of h consisting of

all events is equivalent to a legal sequential history, and each method call appears to take

effect in real-time order if separated by a period of quiescence[46].

The specification for quiescent consistency is shown in Figure 3.6. Lines 1 through 3

are very similar to linearizability such that the response event of the method called at

sequence number m occurs before invocation event of the method called at sequence

number n. However, an additional condition needs to be placed that evaluates to true if

there exists a period of quiescence. This condition is stated in lines 4 through 6. If there

exists some atomic step between action objects m and n in which all threads are inactive,

then the quiescence condition is satisfied. Given that all conditions of the if-statement

are satisfied, a happens-before relationship can be placed between the methods called at

sequence numbers m and n.

Quasi-Linearizability

Definition 3.0.6. A history h is quasi-linearizable if the subsequence of h consisting of all

events is equivalent to a legal sequential history, and method calls separated by a distance

of length k should appear to take effect in real-time order[1].

34



1 for(n = 0; n < history->size(); n++) {
2 for(m=0; m < n; m++) {
3 if(method(m) precedes method(n) &&
4 exists k: m .. n

5 (forall j: 0 .. history->num_threads()

6 (is_active(k, j) == false)))
7 {

8 method(m) happens_before method(n);
9 }

10 }

11 }

Figure 3.6: Quiescent Consistency Specification

The specification for quasi-linearizability is shown in Figure 3.7. The variable k is set to an

arbitrary constant on line 1. The two for-loops on lines 2 and 4 iterate backwards through

the action objects of the concurrent history. The parameters for the for-loop on line 4

guarantee that m is strictly less than n. The condition of the if-statement on line 5 checks if

the response event of the method call at sequence number m occurs before the invocation

event of the method call at sequence number n. If the if-statement is satisfied, the counter

i is incremented and a happens-before relationship is only assigned if the method called

at sequence number m is separated by a distance of k with the method called at sequence

number n.

1 k = CONSTANT;

2 for(n = history->size() - 1; n > 0; n--) {
3 i = 0;

4 for(m = n - 1; m >= 0; m--) {
5 if(method(m) precedes method(n)) {
6 i = i + 1;

7 if(i > k)
8 method(m) happens_before method(n);
9 }

10 }

11 }

Figure 3.7: Quasi-Linearizability Specification
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A Transactional Correctness Tool for Abstract Data Types

In this section, I propose Transactional Correctness tool for Abstract Data Types (TxC-

ADT), the first tool that can check the correctness of transactional data structures. Cor-

rectness is evaluated based on the abstract data type history rather than the read/write

history. I address several challenges in order to unify a diverse collection of correctness

conditions applicable to transactional data structures. First, the concurrent histories must

be in terms of an abstract data type. I address this challenge by providing the user with

lightweight annotations that identify the invocation and response of an abstract data type.

The model checker CDSChecker [75] is utilized to iterate through all possible interleavings

of the transactional application and generate the concurrent histories based on the defined

abstract data type.

Second, the legal sequential histories that define the allowable histories vary for each cor-

rectness condition. I address this challenge by defining correctness through a happens-

before relation on transactions using a custom specification language. TxC-ADT auto-

matically constructs a transactional happens-before graph that represents the allowable

ordering of the transactions based on the happens-before relation. The legal sequential

histories that represent correct behavior for the concurrent history are automatically ex-

tracted from the graph through a recursive topological sort algorithm. The advantage

of deriving the legal sequential histories from a transactional happens-before graph is

that the atomicity and isolation properties are preserved in the legal sequential histories.

The recursive topological sort is optimized by pruning a reordering of transactions that

are commutative from the search space. The exploration of a reordering of commutative

transactions is redundant because the transactions executed in either order will yield the

same abstract state.
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Third, transactional correctness conditions do not necessarily enforce a total order on a

transactional execution. Causal consistency is one such example in which transactions

may be perceived in a different order by each thread. I address this challenge by allowing

the happens-before relation to be defined on a per-thread basis, in which a transactional

happens-before graph will be constructed for each individual thread. The generated legal

sequential histories will therefore reflect the observed history for each individual thread.

TxC-ADT checks the correctness of a transactional data structure by automatically gen-

erating all possible concurrent histories from a transactional program and verifying that

each concurrent history is equivalent to a legal sequential history in terms of an abstract

data type according to the defined correctness condition. The ability to check correct-

ness in terms of an abstract data type is essential as transactional data structures become

mainstream in database [72, 100, 2] and data analysis [104, 103] applications that require

atomicity and isolation for a composition of operations. TxC-ADT will impact multipro-

cessor designers that are seeking to deliver high-performance transactional capabilities

that maintain the correctness properties expected from a transactional program while ben-

efiting from a high-level semantic conflict detection protocol. I demonstrate the practical

applications of TxC-ADT by checking the correctness of the transactional data structures

presented by Zhang et al. [107] and Spiegelman et al. [94].

My dissertation makes the following contributions:

1. I present the first tool that can check the correctness of transactional data struc-

tures. Correctness is evaluated based on an abstract data type, making the approach

applicable to transactional data structures that use a high-level semantic conflict

detection. Existing correctness verification tools for transactional memory systems

evaluate correctness based on the low-level read/write histories, making these tech-
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niques impractical for state-of-the-art transactional data structures.

2. I present a technique for representing a transactional correctness condition as a

happens-before relation. The main advantage of this technique is that it enables a

diverse assortment of correctness conditions to be checked automatically by gener-

ating and analyzing a transactional happens-before graph during model checking.

Furthermore, this technique enables TxC-ADT to be adaptable to other transactional

correctness conditions that may become prevalent in the advancement of transac-

tional data structures.

3. I present an optimization to the recursive topological sort of the transactional

happens-before graph that prunes a reordering of transactions that are commu-

tative from the search space. This is accomplished by allowing the user to specify

the conditions for which two operations commute.

4. I present a strategy for checking the correctness of a transactional data structure

when the designed correctness condition does not enforce a total order on a history.

Serializability, strict serializability, and opacity require a total order on the history

such that all threads observe the transactions in the same order. However, causal

consistency requires only a partial order on a history, allowing threads to observe

transactions in a different order. To the best of my knowledge, this is the first

verification strategy capable of checking a transactional memory system for causal

consistency.

5. I present two case studies demonstrating the practical application of TxC-ADT

to check the correctness of state-of-the-art transactional data structures, including

Lock-Free Transactional Transformation [107] and Transactional Data Structure Li-

braries [94].
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General Approach

The correctness of transactional data structures is evaluated by elevating the standard

definitions of transactional correctness to be properties on an abstract data type [87]. The

user is provided with lightweight annotations to indicate the invocation and response of

a method invoked on an abstract data type and use the model checker CDSChecker [75]

to generate the concurrent histories based on the defined abstract data type. An example

of the annotation usage is shown in Fig. 3.8. The annotations are displayed in C-like

syntax because it demonstrates how to specify an abstract data type using TxC-ADT.

The invocation of a method is specified by passing a function pointer of the method and

associated input to the begin function on line 3. The response of a method is specified

by passing a function pointer of the method and associated output to the end function

on line 5. A transactional region is specified using the txn begin function on line 12 to

indicate the beginning of a transaction and the txn end function on line 15 to indicate the

end of a transaction.

1 template<typename T>
2 T Method(T x){

3 begin(&Method, x);
4 //Method body

5 end(&Method, y);
6 return y;
7 }

8

9 void thread_body()
10 {

11 int Input1, Input2;
12 txn_begin();

13 Method(Input1);

14 Method(Input2);

15 txn_end();

16 }

Figure 3.8: Abstract Data Type Annotation Example

The approach for specifying an abstract data type can be applied to reads and writes for

the verification of legacy transactional memory systems. The read/write operations need

to be enclosed between the begin function on line 3 and end function on line 5 with the

appropriate parameters passed to each function. This can be elegantly handled using

macros for the read and write operations. TxC-ADT will then evaluate correctness based
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on the read/write histories of the transactions.

During model checking, the information extracted from each annotation is stored in

an action object, shown in Algorithm 4. The ConcurrentHistory type on line 4.36 is a

list of action objects that represents a single generated concurrent history. To facilitate

the correctness checking algorithm presented in Algorithm 2, a transaction descriptor is

assembled for each transaction in a concurrent history. An active status indicates that a

transaction is live and has not yet committed or aborted. A committed status indicates that

a transaction has completed and its effects are committed to memory. An aborted status

indicates that a transaction has terminated and its effects are rolled back. A transaction

descriptor contains the transaction status (active, committed, or aborted), a sequence

number for the beginning and ending of a transaction, and a list of the methods invoked

on the abstract data type with a corresponding function pointer and associated input and

observed output values, as shown in Algorithm. 4. Definitions that are fundamental for

the correctness checking strategy used by TxC-ADT are now provided:

Definition 3.0.7. The happens-before relation, denoted<H, is a partial order defined over the

set of transactions in a history h such that for any two transactions T1 and T2, if T1 <H T2,

then the commit or abort event of transaction T1 precedes the commit or abort event of

transaction T2 in history h.

Definition 3.0.8. The transactional happens-before graph is a directed graph such that for any

two transactions T1 and T2 in history h, if an edge exists from T1 to T2, then T1 <H T2.

The txn map on line 4.34 maps each transaction to a unique identification number in

order to maintain the transactional happens-before graph as a two-dimensional list of

transaction ids, as shown on line 4.35. The LegalHistory type on line 4.37 is a list of

transaction identification numbers that corresponds to a legal ordering of the transactions
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according to the correctness condition. Correctness is evaluated by comparing the abstract

data type methods list output values to the legal sequential histories.

If the transaction status is aborted, a list of inverse operations is maintained on line 4.33 to

undo the effects of the operations to the abstract data type. This undo log is necessary to

verify correctness conditions, such as opacity, that require aborted transactions to observe

a consistent state of the system. When correctness is judged on aborted transactions, the

generated legal sequential history must include the observed output from the aborted

transaction. However, the inverse operations must be called immediately after invoking

all operations for the aborted transaction so that its effects do not propagate throughout

the remaining generated legal sequential history.

A Unification of Transactional Correctness Conditions

In order to check that the generated concurrent histories are correct, each concurrent his-

tory must be equivalent to a legal sequential history based on a transactional correctness

condition. As transactional data structures become widespread, the diverse assortment

of transactional correctness conditions will be potential candidates for delivering a de-

sign that provides the safety expected from multiprocessor algorithms. For this reason,

TxC-ADT is designed to accommodate well-known transactional correctness conditions

including serializability, strict serializability, opacity, and causal consistency.
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ALGORITHM 4: Type Definitions

1 typedef int TxnId;
2 enum TxStatus
3 Active;
4 Committed;
5 Aborted;

6 enum ActionType
7 Invocation;
8 Response;
9 Correctness Condition;

10 Txn Begin;
11 Txn End;
12 Commit;
13 Abort;

14 struct MethodDesc
15 int id;
16 void *( f unc ptr)(uint64 t);
17 uint64 t input;
18 uint64 t observedOutput;

19 struct ActionObject
20 int sequence number;
21 ActionType type;
22 int tid;
23 TxStatus status;
24 TxnId txn id;
25 void *(method)(uint64 t);
26 uint64 t input;
27 uint64 t observedOutput;

28 struct TxnDesc
29 TxStatus status;
30 int begin;
31 int end;
32 List<MethodDesc> method list;
33 List<MethodDesc> method list inv;

34 Map<TxnId, TxnDesc> txn map;
35 typedef List<List<TxnId>> Graph;
36 typedef List<ActionObject>

ConcurrentHistory;
37 typedef List<TxnId> LegalHistory;

TxC-ADT unifies the transactional correctness conditions by observing that the ordering

constraints on the transactions according to the correctness conditions can be represented

by a transactional happens-before graph. The idea of a transactional happens-before graph

was used in Velodrome [30]. However, Velodrome’s graph is constructed by automati-

cally inferring the happens-before relationship between transactions from the low-level

read/write orderings, which is not applicable to transactional data structures that use a

high-level semantic conflict detection.

The strategy is to define for each correctness condition a happens-before relation on trans-

actions using a custom specification language. The definition for the correctness condition

is placed in the main method using the correctness condition function as shown on

line 2 of Fig. 3.9. A unit test for the transactional data structure must declare the main entry
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point as user main(int, char**) instead of main(int, char**) and use CDSChecker’s

threads library and the C++ Atomic Operations Library for atomic operations. Once

the happens-before relation is defined, TxC-ADT automatically constructs a transactional

happens-before graph during model checking. A topological sort of the happens-before

graph will yield a possible legal sequential history for the transactional execution. All pos-

sible legal sequential histories can be derived for the transactional execution by applying

a recursive topological sort to the transactional happens-before graph.

1 int main() {
2 correctness_condition(...);
3 //Spawn threads for unit test

4 }

Figure 3.9: Correctness Condition Declaration

Algorithm 5 presents the recursive topological sort function. The worst case time com-

plexity of a recursive topological sort is O(n!) due to the consideration of all possible

orderings of n transactions. This time complexity can be reduced by pruning the recur-

sive topological sort to not explore ordering variations for commutative transactions.

ALGORITHM 5: Recursive Topological Sort

1 Function RecTopologicalSort(Graph g)
2 list L ; // Empty list that contains sorted transactions

3 list N ; // List of all transactions with no incoming edges

4 LegalHistory S[] ;
5 foreach n ∈ N do
6 PrunedRecTopologicalSort(S[], n,L,N, g) ;

7 return S[] ; // Return all legal sequential histories

Algorithm 6 presents the pruned recursive topological sort function called within Algo-

rithm 5. The pruned recursive topological sort function is passed a list of legal sequential

histories S[], a transaction id n to select as the next ordered transaction, a list L that con-
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tains the sorted transactions, a list N of transactions with no incoming edges, and a graph

g. The commutes matrix is a boolean two-dimensional matrix where position (i, j) is true

if transaction i and transaction j commute and false otherwise. The reorder matrix is a

boolean two-dimensional matrix where position (i, j) is true if transaction i and transac-

tion j have no ordering constraints and false if transaction i and transaction j are ordered

by the happens-before relation. Both matrices are constructed based on the correctness

condition specification. If transaction n commutes with the last transaction in list L and

these transactions can be reordered, then the orderings in which n < L.back() will not be

explored. Alternatively, the orderings in which L.back() < n could also be chosen to not

be explored. If pruning is not possible, then all edges m outgoing from transaction n are

removed from an updated graph g′ on line 6.8 and the pruned recursive topological sort

function is called on the updated list N of transactions with no incoming edges.

ALGORITHM 6: Pruned Recursive Topological Sort

1 Function PrunedRecTopologicalSort(LegalHistory S[], TxnId n, list L, list N, Graph g)
2 if (L.size() != 0) && (commutes matrix[n][L.back()] == true) &&

(reorder matrix[n][L.back()] == true) && (n < L.back()) then
3 return ; // Prune redundant recursive call for commutative transactions

4 Graph g′ = g;
5 L.push back(n) ; // Add n to list of sorted transactions
6 N.remove(n);
7 foreach m ∈ g′[n] do
8 g′[n].remove(m);
9 if m.incoming edges() == 0 then

10 N.push back(m) ; // Add m to list of transactions with no incoming
edges

11 foreach n′ ∈ N do
12 PrunedRecTopologicalSort(S[],n′,L,N, g′) ;

13 if N.size() == 0 then
14 S[].push back(L);

15 return;

The algorithm for checking a correctness condition is presented in Algorithm 7. The
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IsHistoryCorrect function generates the transactional happens-before graph on line 7.2

from the ConcurrentHistory object in conjunction with the correctness condition specifica-

tion. A recursive topological sort on the graph, shown on line 7.3, computes all possible

orderings of the transactions. For each possible transaction ordering, the concurrent out-

put and sequential output are generated from the transaction descriptor TxnDesc detailed

in Algorithm 4. For each method in a transaction’s method list, the observed output is

amended to the concurrent history on line 7.9, and the method’s function pointer is in-

voked on line 7.10 and amended to the sequential output on line 7.11. If a transaction

does not commit, then the function pointers of the inverse methods in method list inv are

invoked to undo the effects of the transaction in the remainder of the legal sequential

history. The order of the inverse methods in method list inv is the reverse order of the

corresponding methods in method list. This is essential to restore the correct abstract state

for non-commutative operations [44].

The concurrent history output is compared with the legal sequential history output on

line 7.15. If this comparison is true, then the individual concurrent history is correct and

IsHistoryCorrect returns true. Otherwise, the counterexample is documented and the

for-loop on line 7.4 continues to iterate through the possible legal sequential histories.

If the concurrent history output is not equivalent to any legal sequential history out-

put, then the concurrent history is not correct. IsHistoryCorrect returns false and the

counterexamples collected are reported to the user at the end of model checking.

The derivation of the legal sequential histories from a transactional happens-before graph

preserves two critical properties expected from a transactional execution: atomicity and

isolation. The transactions that appear in a legal sequential history are executed entirely

(allowing for the verification of atomicity) and in a one-at-a-time sequential order (allow-

ing for the verification of isolation). Moreover, since all transactional correctness condi-
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tions preserve atomicity and isolation, the approach may be extended to other correctness

conditions that may be adopted in the advancement of transactional data structures.

ALGORITHM 7: Correctness Checking Algorithm for Concurrent History

1 Function IsHistoryCorrect(ConcurrentHistory* history)
2 Graph g← GenerateGraph(history) ; // Generate transactional happens-before

graph

3 LegalHistory S[]← RecTopologicalSort(g) ; // Generate set of legal

sequential histories

4 foreach s ∈ S[] do
5 list concurrent output;
6 list sequential output;
7 foreach txn ∈ s do
8 foreach m ∈ txn.method list do
9 concurrent output.push back(m.observedOutput) ; // m’s observed output

10 uint64 t temp = (∗m. f unc ptr)(m.input) ; // Invoke m sequentially
11 sequential output.push back(temp) ; // m’s sequential output

12 if txn.status != COMMITTED then
13 foreach m inv ∈ txn.method list inv do
14 (∗m inv. f unc ptr)(m inv.input) ; // Invoke m inv sequentially

15 if concurrent output == sequential output then
16 return true ; // Concurrent output is equivalent to a legal sequential

history

17 else
// Document counterexample

// Report all documented counterexamples

18 return false ; // Concurrent output is not equivalent to a legal sequential

history

The comparison between legal sequential history and concurrent history is performed

by comparing the observed effects of each individual method in the concurrent history

to the observed effects of the corresponding method in the legal sequential history. The

comparison is performed in this manner rather than directly comparing the concurrent

history output in the order of observation with the output of each legal sequential history

because the order in which the method response occurs in the concurrent history may

appear to violate isolation. Since commutative operations do not require transactional
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synchronization, the concurrent history may reflect a method response ordering in which

the effects of a transaction are interleaved with the effects of another transaction. This

is acceptable behavior for transactional data structures because the interleaved effects of

commutative operations result in the same abstract state.

The algorithm for checking the correctness of a unit test is presented in Algorithm 8.

The IsUnitTestCorrect function accepts a unit test as a parameter and generates all

concurrent histories of the unit test from a model checker on line 8.2. The foreach-statement

on line 8.4 iterates through all concurrent histories and checks if each concurrent history

is correct. If all concurrent histories are correct, then the unit test meets the transactional

correctness condition; otherwise, the unit test does not meet the transactional correctness

condition. Since correctness is judged only on the generated concurrent histories, the

outcome of the IsUnitTestCorrect function is relevant only to the unit test. To check

that the implementation is correct, the unit test must be written to include all methods

and a minimal set of inputs such that all behaviors of the transactional data structure are

explored. The correctness of TXC-ADT’s approach is provided in Appendix B.

ALGORITHM 8: Correctness Checking Algorithm for Implementation

1 Function IsUnitTestCorrect(UnitTest m)
2 ConcurrentHistory H[]← GenerateConcurrentHistories(m) ; // Generate

concurrent histories from unit test

3 bool outcome = true;
4 foreach h ∈ H[] do
5 if IsHistoryCorrect(h) == false then
6 outcome = false;

7 return outcome ; // At least one concurrent history is not equivalent to a

legal sequential history
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Specification Language

The context-free grammar for the custom specification language, presented in Fig. 3.10, is

described using the Backus-Naur form (BNF). Terminals are integers (line 30), operators

(line 31), variables (line 32), and text enclosed in single quotes. Non-terminals are program

(line 1), function (line 2), statement (line 3), statement list (line 15), partial statement

(line 16), and expression (line 18). The specification language is designed to retrieve data

from the concurrent history, which is a list of ActionObjects, defined on line 4.32.

The expression on line 22 retrieves the unique transaction identification number associ-

ated with the transaction descriptor at sequence number x in the concurrent history. The

transactional happens-before graph is initially empty at the start of each generated con-

current history. Since some transactional correctness conditions are properties on only a

subset of the transactions within a history, a transaction must be explicitly inserted in the

transactional happens-before graph in the specification. The statement on line 7 enables

a transaction to be inserted in the transactional happens-before graph.

In order to place a happens-before relation between two transactions as shown on line 6,

information on these transactions pertinent to the correctness condition being evaluated

must be extracted. The expression on line 21 retrieves the size of the concurrent his-

tory. The thread id of a transaction can be obtained by the expression on line 23. This

information is necessary for correctness conditions that place an ordering constraint on

transactions called by the same thread. The status of a transaction at sequence number x in

the concurrent history can be obtained by the expression on line 24, which is relevant for

correctness conditions that place an ordering constraint only on committed transactions.

A real-time ordering between transactions can be determined by the expression on line 25,

which evaluates to true if the response of the first transaction occurs before the response
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of the second transaction. A real-time ordering constraint is placed on transactions for

correctness conditions such as strict serializability and opacity.

1 <program> ::= <function>

2 <function> ::= <function> <stmt> | /* NULL */

3 <stmt> ::= ’;’

4 | <expr> ’;’

5 | <variable> ’=’ <expr> ’;’

6 | <expr> ’happens_before’ <expr> ’;’ //Places a happens-before relation between two transactions

7 | ’insert_txn’ <expr> ’;’ //Inserts transaction in the happens-before graph

8 | <expr> ’happens_before_partial’ ’[’ <expr> ’]’ <expr> ’;’ //Places a per-thread happens-before relation

↪→ between two transactions

9 | ’insert_txn_partial’ ’[’ <expr> ’]’ <expr> ’;’ //Inserts transaction in a per-thread happens-before

↪→ graph

10 | <expr> ’commutes_with’ <expr> ’,’ ’(’ <expr> ’)’ ’;’

11 | ’if’ ’(’ <expr> ’)’ <stmt>

12 | ’if’ ’(’ <expr> ’)’ <stmt> ’else’ <stmt>

13 | ’for’ ’(’ <stmt> <expr> ’;’ <stmt_partial> ’)’ <stmt>

14 | ’{’ <stmt_list> ’}’

15 <stmt_list> ::= <stmt> | <stmt_list> <stmt>

16 <stmt_partial> :: = <variable> ’=’ <expr> | <variable> ’++’ | ’++’ <variable>

17 | <variable> ’--’ | ’--’ <variable>

18 <expr> ::= <integer>

19 | <variable>

20 | <expr> <operator> <expr>
21 | ’history’ ’->’ ’size’ ’(’ ’)’ //Retrieves the length of the concurrent history

22 | ’txn’ ’(’ <expr> ’)’ //Retrieves transaction id associated with sequence number <expr>

23 | ’txn_tid’ ’(’ <expr> ’)’ //Retrieves the thread id associated with sequence number <expr>

24 | ’txn_status’ ’(’ <expr> ’)’ //Retrieves the transaction status associated with sequence number <expr>

25 | <expr> ’precedes’ <expr> //Returns 1 if a transaction with id <expr> is ordered before another

↪→ transaction with id <expr> in real-time; otherwise, returns 0

26 | <expr> ’causes’ <expr> //Returns 1 if a transaction with id <expr> causes the effects of another

↪→ transaction with id <expr>; otherwise, returns 0

27 | ’method’ ’(’ <expr> ’)’ //Retrieves the method id associated with sequence number <expr>

28 | ’input’ ’(’ <expr> ’)’ //Retrieves the method input associated with sequence number <expr>

29 | ’(’ <expr> ’)’

30 <integer> ::= 0 | [1-9][0-9]*

31 <operator> ::= [+-*/<>] | ’>=’ | ’<=’ | ’!=’ | ’==’ | ’&&’ | ’||’
32 <variable> ::= [a-zA-Z][a-zA-Z0-9_]*

Figure 3.10: Grammar for the Custom Specification Language

Not all transactional correctness conditions require a total ordering on the transactions in

a history. Causal consistency is one such example in which threads may perceive trans-

actions in a different order. The specification language accommodates this property by

maintaining a per-thread transactional happens-before graph given the case that a cor-

rectness condition requires only a partial ordering on the transactions. Algorithm 7 must

be applied to each thread’s transactional happens-before graph in order to evaluate cor-
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rectness. The statement on line 9 allows a transaction to be inserted into the transactional

happens-before graph belonging to the thread as evaluated by the expression within the

brackets. The statement on line 8 allows a happens-before relation to be placed between

two transactions in a thread’s transactional happens-before graph. Causal consistency

places an ordering constraint on two transactions if one transaction’s effects causes an-

other transaction’s effects. The expression on line 26 evaluates to true if at least one of

the operations in the first transaction causes the effects of at least one of the operations in

the second transaction. Internally, the evaluation of cause and effect between operations

is performed by mapping each operation’s output to an operation’s input if a mapping

exists.

The challenge with organizing transactions in a happens-before graph is that a recursive

topological sort with a worst case time complexity of O(n!) must be applied to the graph to

derive all possible legal sequential histories. This worst case time complexity is reduced

by pruning a recursive call that would explore a reordering of commutative transactions.

Since commutative transactions can be reordered without affecting the resultant abstract

state of the data structure, the exploration of commutative transactions called in opposite

order is unnecessary because it will produce the same legal sequential history. The

statement on line 10 allows two methods to be declared as commutative given that the

condition in parenthesis is never false. The expression on line 27 retrieves the method id

of the method invoked at sequence number x in the concurrent history.

The operational semantics of the specification language are provided in Fig. 3.11. A state is

described by the (n+3)-tuple (M,G,G1, ..,Gn, c) where n is the number of threads in the unit

test, M is a boolean two-dimensional matrix such that the value at position (i, j) indicates

if transaction i and transaction j are commutative, G is the transactional happens-before

graph, Gi is the local transactional happens-before graph for thread i in the unit test, and c
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is the program statement to evaluate next. A transition from state S0 to state S1 is expressed

as S0 → S1.

IF
c’ = (b == true) ? (c1;c) : (c2;c)

(M,G,G1,..,Gn, if (b) {c1} else {c2 };c) → (M,G,G1,..,Gn,c’)

FOR
c’ = (b == true) ? (for (ci; b; c′i ) {c1}; c) : (c)

(M,G,G1,..,Gn, for (ci; b; c′i ) {c1}; c) → (M,G,G1,..,Gn,c’)

HAPPENS_BEFORE
G’ = (E’, V), E’ = E ∪{e1,e2}

(M,G,G1,..,Gn,e1 happens before e2;c) → (M,G’,G1,..,Gn,c)

INSERT_TXN
G’ = (E, V’), V’ = V ∪{e1}

(M,G,G1,..,Gn, insert txn e1;c) → (M,G’,G1,..,Gn,c)

HAPPENS_BEFORE_PARTIAL
G′e2

= (E’, V), E’ = E ∪{e1,e3}

(M,G,G1,..,Ge2 ,..,Gn,e1 happens before partial [e2] e3;c)→ (M,G,G1,..,G′e2
,..,Gn,c)

INSERT_TXN_PARTIAL
G′e1

= (E, V’), V’ = V ∪{e2}

(M,G,G1,..,Ge1 ,..,Gn, insert txn partial [e1] e2;c)→ (M,G,G1,..,G′e1
,..,Gn,c)

COMMUTES_WITH
c’ = (b == false) ? ( M’ = (E’, V), E’ = E\ {e1,e2 }) : (M’ = M)

(M,G,G1,..,Gn,e1 commutes with e2, (b);c) → (M’,G,G1,..,Gn,c)

Figure 3.11: Operational Semantics for the Custom Specification Language

Serializability

Definition 3.0.9. A history h is serializable if the subsequence of h consisting of all events

of committed transactions is equivalent to a legal sequential history [80].

Serializability requires that all committed transactions preserve atomicity and isolation.

There is no ordering constraint placed on the individual transactions. The specification for

serializability is shown in Fig. 3.12. If the transaction status is determined to be committed

on Line 3, then the transaction is inserted in the transactional happens-before graph on

Line 5.

Fig. 3.13 shows the happens-before graph and legal sequential histories generated from

the specification of Fig. 3.12 applied to the concurrent history of Fig. 3.14. The happens-

before graph contains all committed transactions without any ordering constraints. The

legal sequential histories encompasses all topological sorts of the happens-before graph.
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1 for(n = 0; n < history->size(); n++)
2 {

3 if(txn_status(n) == COMMITTED)
4 {

5 insert_txn(txn(n));

6 }

7 }

Figure 3.12: Serializability Specification

Relation:

NULL

Graph:

1 ->

2 ->

3 ->

Legal Sequential Histories:

Insert(100);Insert(200);Insert(300);Delete(300);

Insert(100);Delete(300);Insert(200);Insert(300);

Insert(200);Insert(300);Insert(100);Delete(300);

Insert(200);Insert(300);Delete(300);Insert(100);

Delete(300);Insert(100);Insert(200);Insert(300);

Delete(300);Insert(200);Insert(300);Insert(100);

Figure 3.13: Happens-Before Example for Serializability

Since there are 3! ways to order three items, there are six possible legal sequential histories,

as shown in Fig. 3.13.

Strict Serializability

Definition 3.0.10. A history h is strictly serializable if the subsequence of h consisting of all

events of committed transactions is equivalent to a legal sequential history in which these

transactions execute sequentially in the order they commit [80].
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Thrd 1

Thrd 2

Insert(200) Insert(300)

Insert(100) Delete (300)

Txn 1: Commit

Txn 2: Commit

Txn 3: Commit

Insert(400)

Txn 4: Abort

Figure 3.14: Concurrent History Example

Strict serializability requires that all committed transactions preserve real-time ordering,

as well as atomicity and isolation. The specification for strict serializability is shown in

Fig. 3.15. If a transaction is committed, it is inserted in the transactional happens-before

graph on lines 4 and 7. The keyword precedes on line 10 evaluates to true if the response of

transaction m occurs before the invocation of transaction n in real-time. If both transaction

m and transaction n are committed, and transaction m precedes transaction n, then a

happens-before relation is placed on transaction m and transaction n on line 11.

Fig. 3.16 shows the happens-before graph and legal sequential histories generated from

the specification of Fig. 3.15 applied to the concurrent history of Fig. 3.14. The happens-

before graph contains all committed transactions, where transactions 1 and 2 are ordered

before transaction 3 due to the real-time ordering constraint of strict serializability. Since

there is no ordering constraint between transactions 1 and 2, there are two possible legal

sequential histories, as shown in Fig. 3.13.
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1 for(n = 0; n < history->size(); n++) {
2 for(m = 0; m < n; m++) {
3 if(txn_status(m) == COMMITTED) {
4 insert_txn(txn(m));

5 }

6 if(txn_status(n) == COMMITTED) {
7 insert_txn(txn(n));

8 }

9 if((txn_status(m) == COMMITTED) && (txn_status(n) == COMMITTED)) {
10 if(txn(m) precedes txn(n)) {
11 txn(m) happens_before txn(n);
12 }

13 }

14 }

15 }

Figure 3.15: Strict Serializability Specification

Relation:

1 happens_before 3

2 happens_before 3

Graph:

1 -> 3

2 -> 3

3 ->

Legal Sequential Histories:

Insert(100);Insert(200);Insert(300);Delete(300);

Insert(200);Insert(300);Insert(100);Delete(300);

Figure 3.16: Happens-Before Example for Strict Serializability

Opacity

Opacity requires that all transactions (committed, aborted, or active) observe a consistent

state of the system. Prior to defining opacity, definitions are provided to transform an

incomplete history into a complete history by aborting or committing the active transac-

tions. A commit-try event is a request to commit. An abort-try event is a request to abort.

An active transaction that has issued a commit-try is commit-pending.

Definition 3.0.11. A history h is well-formed if each individual transaction Ti comprises

a sequence of invocation and matching response events such that (1) no event follows a

commit or abort event, (2) only a commit or abort event can follow a commit-try event,
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and (3) only an abort event can follow an abort-try event [39].

Definition 3.0.12. A history h′ is in Complete(h) if (1) h′ is well-formed, (2) h′ is obtained

from h by inserting a number of commit-try, commit, and abort events for transactions

that are active in h, (3) every transaction that is active and not commit-pending in h is

aborted in h′, and (4) every transaction that is commit-pending in h is either committed or

aborted in h′ [39].

Definition 3.0.13. A history h is opaque if there exists a sequential history S equivalent to

some history in the set Complete(h), such that (1) S preserves the real-time order of h, and

(2) every transaction Ti ∈ S is legal in S. [39].

1 for(n = 0; n < history->size(); n++) {
2 for(m = 0; m < n; m++) {
3 insert_txn(txn(m));

4 insert_txn(txn(n));

5 if(txn(m) precedes txn(n))
6 {

7 txn(m) happens_before txn(n);
8 }

9 }

10 }

Figure 3.17: Opacity Specification

Opacity requires that all transactions preserve real-time ordering, as well as atomicity

and isolation. Since all transactions must observe a consistent state of the system, all

transactions are inserted in the transactional happens-before graph regardless of their

status. The specification for opacity is shown in Fig. 3.17. If transaction m precedes

transaction n in real-time, then a happens-before relation is placed between transaction m

and transaction n on line 7.

Fig. 3.18 shows the happens-before graph and legal sequential histories generated from the

specification of Fig. 3.17 applied to the concurrent history of Fig. 3.14. The happens-before
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graph contains all transactions (committed, active, or aborted), where transactions 1 and 2

are ordered before transactions 3 and 4 due to the real-time ordering constraint of opacity.

Since there is no ordering constraint between transactions 1 and 2, or transactions 3 and 4,

there are four possible legal sequential histories, as shown in Fig. 3.18. Since transaction

4 aborts, the inverse of Insert(400) (Insert Inv(400)) must be applied to undo the effects

of transaction 4 in the legal sequential histories.

Relation:

1 happens_before 3

2 happens_before 3

1 happens_before 4

2 happens_before 4

Graph:

1 -> 3 -> 4

2 -> 3 -> 4

3 ->

4 ->

Legal Sequential Histories:

Insert(100);Insert(200);Insert(300);Delete(300);Insert(400);Insert_Inv(400);

Insert(100);Insert(200);Insert(300);Insert(400);Insert_Inv(400);Delete(300);

Insert(200);Insert(300);Insert(100);Delete(300);Insert(400);Insert_Inv(400);

Insert(200);Insert(300);Insert(100);Insert(400);Insert_Inv(400);Delete(300);

Figure 3.18: Happens-Before Example for Opacity

Causal Consistency

Definition 3.0.14. A causality relation consists of operation pairs (X,Y) such that operation

X causes operation Y.

Definition 3.0.15. A history h is causally consistent if for each thread ti, there exists a

sequential history Si equivalent to some history in the set Complete(h), such that (1) Si

preserves the causality relation, and (2) every committed transaction executed by ti is legal

in Si. [83].
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Causal consistency requires that committed transactions observe other transactions issued

by the same thread and transactions that cause the observed effects, where the observed

effects must preserve atomicity and isolation. Since each thread may observe a different

ordering on the transactions, the committed transactions as a whole cannot be totally

ordered. Therefore, each thread must maintain its own transactional happens-before

graph. The specification for causal consistency is shown in Fig. 3.19. If a transaction is

committed, it is inserted into its thread’s transactional happens-before graph on lines 4

and 7. If both transaction m and transaction n are committed, there are two scenarios

in which a happens-before relation may be placed on the transactions. The first scenario

occurs if both transaction m and transaction n are issued by the same thread and transaction

m precedes transaction n, as shown on lines 10 and 11. The second scenario occurs if

transaction m and transaction n are not issued by the same thread and transaction m

causes transaction n, as shown on lines 12, 13, and 14. The happens-before relation is only

placed between transaction m and transaction n in the graph of the thread that issued

transaction n. This is due to the transaction that caused the effect is not necessarily aware

of the effect.

Fig. 3.20 shows the happens-before graph and legal sequential histories generated from

the specification of Fig. 3.19 applied to the concurrent history of Fig. 3.14. The happens-

before graph is maintained on a per-thread basis. Each thread i observes the committed

transactions issued by thread i in commit order as well as committed transactions from

other threads that cause the effects of thread i’s transactions. Since Delete(300) of transac-

tion 3 observes the effects of Insert(300) of transaction 2, thread 1’s happens-before graph

orders transaction 2 before transaction 3. Thread 2’s happens-before graph only contains

transaction 2 because none of thread 1’s transactions cause the effects of transaction 2.

Since there is no ordering constraint between transactions 1 and 2 in thread 1’s happens-
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before graph, there are two possible legal sequential histories, as shown in Fig. 3.20.

Thread 2’s happens-before graph only contains transaction 2, yielding one possible legal

sequential history.

1 for(n = 0; n < history->size(); n++) {
2 for(m = 0; m < n; m++) {
3 if(txn_status(m) == COMMITTED) {
4 insert_txn_partial[txn_tid(m)] txn(m);

5 }

6 if(txn_status(n) == COMMITTED) {
7 insert_txn_partial[txn_tid(n)] txn(n);

8 }

9 if((txn_status(n) == COMMITTED) && (txn_status(m) == COMMITTED)) {
10 if((txn_tid(m) == txn_tid(n)) && (txn(m) precedes txn(n))) {
11 txn(m) happens_before_partial[txn_tid(n)] txn(n);

12 } else if ((txn_tid(m) != txn_tid(n)) && (txn(m) causes txn(n))) {
13 insert_txn_partial[txn_tid(n)] txn(m);

14 txn(m) happens_before_partial[txn_tid(n)] txn(n);

15 }

16 }

17 }

18 }

Figure 3.19: Causal Consistency Specification

Thread 1 Relation:

1 happens_before 3

2 happens_before 3

Thread 2 Relation:

NULL

Thread 1 Graph:

1 -> 3

2 -> 3

3 ->

Thread 2 Graph:

2 ->

Thread 1 Legal Sequential Histories:

Insert(100);Insert(200);Insert(300);Delete(300);

Insert(200);Insert(300);Insert(100);Delete(300);

Thread 2 Legal Sequential Histories:

Insert(200);Insert(300);

Figure 3.20: Happens-Before Example for Causal Consistency
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Commutativity Specification

The recursive topological sort in the correctness checking function, detailed in Algorithm 7,

is optimized by specifying commutative methods in a transaction. Fig. 3.21 depicts the

specification for serializability with a specification identifying commutative methods for

set operations on line 9. Set operations are commutative if they have different input

arguments. Fig. 3.22 shows the commutes matrix, reorder matrix, legal sequential histories,

and the pruned legal sequential histories for the example concurrent history in Fig. 3.14.

In this example, transactions 1 and 2 commute and transactions 1 and 3 commute because

the input passed to each method of the transaction is unique. Transaction 2 and 3 do

not commute because they both invoke a method with input 300. The commutes matrix

reflects this relationship because position (1, 2) = true, position (1, 3) = true, and position

(2, 3) = false. All positions of the reorder matrix are true because serializability does not

enforce any particular order on the transactions. Since transaction 1 commutes with both

transaction 2 and transaction 3, the only reordering that must be explored is between

transaction 2 and transaction 3, as listed in the legal sequential histories of Fig. 3.22. All

other ordering may be pruned from the recursive topological sort because they yield the

same abstract state of the data structure as the orderings listed in the legal sequential

histories.
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1 for(n = 0; n < history->size(); n++)
2 {

3 if(txn_status(n) == COMMITTED)
4 {

5 insert_txn(txn(n));

6 }

7 for(m = 0; m < n; m++)
8 {

9 method(m) commutes_with method(n), (input(m) != input(n));

10 }

11 }

Figure 3.21: Serializability Specification with Commutative Methods Specified

commutes_matrix:

1 2 3

1 - T T

2 - - F

3 - - -

reorder_matrix:

1 2 3

1 - T T

2 - - T

3 - - -

Legal Sequential Histories:

Insert(100);Insert(200);Insert(300);Delete(300);

Insert(100);Delete(300);Insert(200);Insert(300);

Pruned Legal Sequential Histories:

Insert(200);Insert(300);Insert(100);Delete(300);

Insert(200);Insert(300);Delete(300);Insert(100);

Delete(300);Insert(100);Insert(200);Insert(300);

Delete(300);Insert(200);Insert(300);Insert(100);

Figure 3.22: Pruning Example for Serializability with Commutative Methods Specified

Practical Progress Verification of Descriptor-based Non-blocking Data Structures

In this chapter, I present the first progress verification technique that accounts for non-

blocking algorithms that require a descriptor-based helping mechanism to achieve the

desired progress guarantee. Previous progress verification techniques do not accom-

modate loops whose termination is dependent on the actions of the interfering threads,
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making these approaches unsuitable for descriptor-based non-blocking data structures. A

loop invariant is an assertion that defines the state of the local and shared resources at each

iteration of the loop [3]. A functional specification is a mathematical model of a function

in a C program expressed in terms of integers, tuples, and sequences [3]. Functional

specifications are utilized in the loop invariant to define the changes to the shared state of

the auxiliary structure of descriptor objects at every iteration of the loop.

In order to verify that the loop invariant holds, I implement a framework for formally

reasoning about practical concurrent programs written in the C programming language.

The framework extends the Verified Software Toolchain [3] to accommodate Local-Rely-

Guarantee reasoning [29] in order to provide the necessary logic for formally reasoning

about concurrent programs. The framework automatically converts a C program to an

abstract syntax tree expressed in the formal modeling language of the Coq Proof Assis-

tant [8], enabling the user to directly verify the specification of the concurrent program.

A symbolic execution is the execution of a program using an abstract characterization

of the program state. Once the specifications are written, the framework enables the

semi-automatic verification of progress guarantees through the symbolic execution of a

concurrent program.

Practical lock-free data structures [24, 106, 107], wait-free data structures [95, 9, 28], and

algorithms to facilitate non-blocking programming [70, 32] incorporate thread communi-

cation through descriptor objects to ensure that operations comprising multiple atomic

steps are completed according to the progress guarantee. Descriptor-based techniques

are also utilized in software transactional memory implementations, including Word-

Based Software Transactional Memory (WSTM) [32], Object-Based Software Transactional

Memory (OSTM) [32], a library of concurrent skip lists and red-black trees built from a

multiword compare-and-swap operation[32], Adaptive Software Transactional Memory

61



[68], Rochester Software Transactional Memory [69], the DSTM2 Software Transactional

Memory library [45], and wait-free Software Transactional Memory for hard real-time

multicore embedded systems [21]. My thesis makes the following contributions:

1. The first methodology for verifying progress guarantees for non-blocking data struc-

tures that require a descriptor-based helping mechanism to achieve the designed

progress guarantee.

2. A framework for formally reasoning about concurrent programs written in the C pro-

gramming language. To my knowledge, this is the first framework that allows for

the verification of rely-guarantee specifications in a theorem proving environment

for practical concurrent programs written in the C programming language.

3. The presentation of two case studies that demonstrates the application of the method-

ology to practical descriptor-based non-blocking data structures. I formally verify

progress for a lock-free transactional list [107] and a wait-free queue [57]. The

helping-mechanisms employed by the lock-free transactional list and wait-free queue

are significantly different from each other, demonstrating the versatility of the

methodology and framework.

Assertion Language

The assertion language is adapted from Feng [29] as shown in Figure 3.23. A state is a

pair of a store and a heap [61]. The store is finite partial mapping from resources to values

and the heap maps memory addresses to values [61]. B is a boolean expression that holds

over a state if it evaluates to true. The assertion emp is the empty heaps and stores. The

singleton heap with E2 stored at location E1 is denoted as E1 7→ E2. The notation E 7→

62



(E1, ...,En) is used to denote a struct with n fields is stored at location E. The separating

conjunction p ∗ q denotes that p and q hold over disjoint parts of the state. Actions specify

state transitions. The action p n q denotes all sub-transitions such that the initial state of

the transition satisfies p and the resulting state satisfies q. The action a1 ∗ a2 denotes that

actions a1 and a2 start from disjoint states and finish in disjoint states. The action a1 ∨ a2

denotes that either action a1 occurs or action a2 occurs.

(Assertion) p, q, I : = B | emp | E1 7→ E2 | p ∗ q
(Action) a,R,G : = p n q | a1 ∗ a2 | a1 ∨ a2

Figure 3.23: The Assertion Language

Verification of Descriptor-Based Helping Techniques

Descriptor-based non-blocking data structures manage interference from multiple active

threads by allowing updates to the data structure through CAS-based loops while main-

taining auxiliary structures of descriptors that contain information on the operations that

require assistance from other threads to be completed. All threads are required to check

the auxiliary structure prior to entering a CAS-based loop to determine if an action needs

to be taken to preserve the progress guarantee. Since the updates to the auxiliary structure

are ultimately what guarantees that the thread whose CAS operation failed will eventu-

ally succeed and exit the loop, functional specifications must be incorporated in the loop

invariant to define the state of the auxiliary structure at every iteration of the loop. The

progress guarantee is verified by proving that the loop invariant holds.

Definition 3.0.16. An operation is a procedure that updates a shared data structure atomi-

cally using CAS.
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Definition 3.0.17. A transaction is a sequence of operations that appear to be performed

atomically and in isolation.

Definition 3.0.18. A descriptor object, denoted desc(op) is a class object that contains the

instructions and arguments required to perform operation op.

Definition 3.0.19. Let s be the contents of an auxiliary structure of descriptor objects. Let

desc be a descriptor object for a pending operation. Let an atomic update be either an

atomic write or CAS depending on the expected interference by the other threads. A

descriptor update function, denoted as desc update(s[i], desc), comprises the code body that

atomically updates auxiliary structure s such that s[i]← desc.

Definition 3.0.20. Let s be the contents of an auxiliary structure of descriptor objects. A

helper function, denoted as help finish(s[i]), comprises the code body that will contin-

uously perform the operation referenced in descriptor object s[i] until the operation is

completed successfully by any arbitrary thread.

Lock-free non-blocking data structures require descriptor-based helping techniques when

cyclic dependencies may occur during the execution of a CAS-based loop. Wait-free data

structures further require helping techniques to ensure that all threads terminate in a

finite number of steps. Algorithms for lock-free and wait-free loops with an arbitrary

number of threads are presented in Figure 3.24 and Figure 3.26. Following concurrent

separation logic the proof of correctness is applied to a frame [35] with the loop invariant

and the auxiliary data structure. The principle of bisimilarity can be applied [4] using the

labels in the algorithms to generalize the correctness to any helper function whose effect

is contained to the frame and called in the same control flow.

The descriptor-based lock-free algorithm for an arbitrary thread is shown in Figure 3.24.

Prior to helping operation opm, a cyclic dependency check is performed on line 2 by
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determining if auxiliary structure s contains descriptor desc(opm). If a cyclic dependency

is detected the thread will return to prevent infinite recursive helping calls. Otherwise,

the thread will write the descriptor desc(opm) to auxiliary structure s at location ++X on

line 7. The boolean CAS RESULT on line 8 represents the return value of operation opm.

At the start of the loop body, the thread will check if a conflict exists between operation

opm and arbitrary operation opn. Given that a conflict exists, the thread will help complete

operation opn on line 10 prior to performing operation opm. If the boolean CAS RESULT

on line 12 evaluates to true or desc(opm) is NULL, then operation opm is completed and

the loop terminates. Otherwise, the loop is restarted. Once operation opm on line 12 is

completed, the thread will clear the descriptor from auxiliary structure s on line 14 and

set descriptor desc(opm) to NULL on line 15 to indicate that the operation is completed.

1 help_finish_lf(Desc * desc(opm)) {

2 if (s contains desc(opm)) {

3 desc_update(desc(opm), NULL);

4 return;
5 }

6 Xinit = ++X;

7 desc_update(s[Xinit], desc(opm));

8 while (!CAS RESULT && desc(opm) != NULL) {

9 if (conflict with opn) {

10 help_finish_lf(desc(opn));

11 }

12 CAS RESULT = opm;

13 }

14 desc_update(s[Xinit], NULL);

15 desc_update(desc(opm), NULL);

16 }

Figure 3.24: Descriptor-Based Lock-Free Algorithm

Theorem 3.0.1. Let each transaction performed by a thread comprise a finite number of

operations. Let the effect of the helper function help finish lf and descriptor update

function desc update be limited to a frame that is a separating conjunction to the loop

invariant. Suppose that the loop invariant holds, i.e. the precondition of the loop body
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implies the loop invariant, the postcondition of the loop body implies the loop invariant.

Then the descriptor-based algorithm of Figure 3.24 is lock-free.

Proof. Correctness proofs for concurrency assume that memory used by a lock is not

accessible by the rest of the program. This convention, formalized as a frame in separation

logic [84] [76], is followed to include the auxiliary data structure s. Let F be the frame

containing the helper function and descriptor update function. In F, let an array of k shared

resource descriptors be predefined, denoted by Rk. Allow instantiation of any number of

helper function threads Tn, each owning a pending transaction. Allow a transaction to

be composed of any number of atomic operations opi on the shared resources. Assume

that the atomic operations called by the helper function are guaranteed to terminate.

Assume the loop invariant holds. Linearizability of the helper function operations has

been demonstrated in [107]. In the case of no cyclic dependencies the loop becomes a

traditional CAS-based loop on the resource.

The proof of lock-freedom uses induction on the number of resources involved in the

cyclic dependency. A proof by induction on a statement involves first showing that a

base case is true. The inductive hypothesis is an assumption that the statement holds

true for n. The inductive step is a claim that the statement holds true for n + 1. The

proof by induction is completed by using the inductive hypothesis to prove the inductive

step. The base case is two resources, the minimum required. Transaction A is exclusively

using resource R1 and requires resource R2 to finish. Transaction B executes sequentially

op1, op2, ...opi. Assume opn of B uses resource R2 and opn+1 requires resource R1 which is

already in use by transaction A. The conflict on R1 is found (line 9) so B calls the helper

function to complete transaction A. This call sees the conflict on R2 with B and recurses

again to help B. Within the second call to B, line 2 detects that B is already being helped,
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so the descriptor desc(opn+1) is updated to NULL in line 3, aborting transaction B and

freeing the resource R2 so A can proceed.

For the inductive step assume that A is using resource R1 and B is using resource R2,

which A will need to finish (as in the base case). Transaction C enters and takes resource

R3, which B needs to finish. Let opn of C need resource R1 still in use by A. C will call itself

to help A and seeing that A needs resource R2 held by B will recurse again to help B. This

call will see the conflict with resource R3 held by C. Finally, the recursion will call C for

the second time and seeing that C is already being helped (line 2), will kill C (line 3). This

breaks the cyclic dependency.

The inductive step can be applied from two to the maximum of k resources. The recursion

will always terminate upon seeing that a transaction needs help a second time, indicating

a cyclic dependency. The depth of recursion is limited to the number of resources, k. The

algorithm will continue to make progress after the cyclic dependency is resolved. Since

the atomic operations are guaranteed to terminate, lock-freedom is ensured.

�
1 help_finish_wf(Desc * desc(op)) {

2 while (!CAS RESULT && desc(op) != NULL) {
3 CAS RESULT = op;
4 }

5 }

Figure 3.25: Helping Function for Descriptor-Based Wait-Free Algorithm

Wait-free non-blocking data structures require descriptor-based helping techniques to

detect a delayed thread that needs help completing an operation. The helper function for

a descriptor-based wait-free algorithm is shown in Figure 3.25. A thread will continuously

apply the operation on line 3 as defined by the descriptor object until either the operation

succeeds or some other thread completes the operation. The descriptor-based wait-free
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algorithm for arbitrary thread tid is shown in Figure 3.26. Thread tid will help complete

the operation defined by the descriptor at location X in auxiliary structure s on line 1. Once

the operation is completed, thread tid will set descriptor s[X] to NULL on line 2. Line 3

defines the update of X to the next location in auxiliary structure s to be helped. The

boolean CAS RESULT on line 5 represents the return value of operation optid. Thread tid

will write its descriptor object desc(optid) to auxiliary structure s at location tid on line 9 if

the CAS-based loop exceeds the allowed number of iterations.

1 help_finish_wf(s[X]);
2 desc_update(s[X], NULL);
3 X = (X+1)%NUM_THRDS;
4 trials = 0;
5 while (!CAS RESULT && trials++ < LIMIT) {

6 CAS RESULT = optid;

7 if(CAS RESULT) return;
8 }

9 desc_update(s[tid], desc(optid));

Figure 3.26: Descriptor-Based Wait-Free Algorithm

Theorem 3.0.2. Let the variable ‘trials’ on line 5 of Figure 3.26 be an ordinary conjunction

in the loop invariant. Let the effect of the helper function help finish wf and descriptor

update function desc update be limited to a frame that is a separating conjunction to

the loop invariant. Suppose that the loop invariant holds, i.e. the precondition of the

loop body implies the loop invariant, the postcondition of the loop body implies the loop

invariant. Then the descriptor-based algorithm of Figure 3.26 is wait-free.

Proof. Let F be the frame containing the helper function and descriptor update function.

Allow instantiation of n helper function threads Tn, each owning a pending atomic op-

eration. Assume that the atomic operations called by the helper function are guaranteed

to terminate. Assume the loop invariant holds. Linearizability of the helper function

operations has been demonstrated in [57].

68



The proof of wait-freedom uses induction on the number of active threads in the system.

The base case is one thread, denoted T1. Thread T1 calls help finish wf (line 1), which

instantly returns since T1 is the only active thread. T1 proceeds to call desc update to

update auxiliary structure s and increment counter X. Upon entering the while loop, optid

is guaranteed to return true since it comprises a single CAS that is guaranteed to succeed

in the absence of thread interference. It follows that T1 terminates in a finite number of

steps.

For the inductive step assume n+1 active threads, denoted T1,T2, ...Tn+1. For an arbitrary

thread Ti, it will call help finish wf on descriptor s[X]. Since the helper function will

continuously attempt the operation defined by descriptor s[X] until it is successfully

completed by some arbitrary thread, in a worst case Ti will be stuck in the loop until all

other active threads call help finish wf on descriptor s[X]. An arbitrary thread will help

complete the operation posted at s[X] in at most O(n+1) operations, due to the worst case

of helping n operations prior to helping s[X]. Since each of the other n threads may take

O(n+1) operations before helping the operation posted at s[X], the total number of steps

required to complete this operation is O(n2). It follows that Ti’s help finish wf call will

return in O(n2) steps. Upon entering the while loop, in a worst case optid will not return

true in the allowed number of attempts defined by LIMIT due to the interference by the

other n threads. In this case, Ti will post its descriptor in s[tid] on line 9, which will take

at most O(n2) steps to be helped by all n+1 threads. It follows that Ti terminates in a finite

number of steps.

The inductive step can be applied from one to the maximum of n threads. The call to

help finish wf will always terminate since all active threads will eventually help each

descriptor posted in auxiliary structure s. Since the atomic operations are guaranteed to

terminate, wait-freedom is ensured.
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Verification Framework for Concurrent Programs

The progress guarantee verification framework is built on top of the Verified Software

Toolchain (VST) [3], a tool that includes static analyzers to check properties of C programs.

The VST uses the formal language of the Coq Proof Assistant [8] to enable the expression

of executable algorithms and theorems with an environment for semi-interactive devel-

opment of machine-checked proofs. An overview of the progress guarantee verification

framework is presented in Figure 3.27. A C source program is passed to Compcert’s

clightgen utility [59] to produce the Abstract Syntax Tree (AST) of a C program expressed

in Coq. The user must write a program specification following the methodology for

descriptor-based helping mechanisms in order to verify that the program AST meets the

designed progress guarantee.

C source program

CompCert’s
clightgen utility

Abstract Syntax
Tree of C program,
expressed in Coq

Verified Software Toolchain
Extended to support Local-Rely-Guarantee

Reasoning

Program specifications for progress
guarantees following the methodology

for descriptor-based helping
mechanisms

Modified C source
program

C program that meets
the target progress

guarantee

Fails

Passes

Figure 3.27: Overview of Progress Guarantee Verification Framework

The VST requires specifications for the verification of a C program to consist of an Appli-

cation Programming Interface (API) specification and a function-body correctness proof

for each of the functions called in the program [3]. The API specification is defined by
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its precondition and postcondition, which comprises the propositional conjuncts, local

conjuncts, and separation conjuncts. Propositional conjuncts are independent of the pro-

gram resources and the memory. Local conjuncts are dependent on program resources,

but not on memory. Separation conjuncts may be dependent on both program resources

and memory.

Every state transition of a concurrent program is subject to interference from the environ-

ment. The rely condition specifies the assumption that can be made regarding the state

transitions made by the environment. The guarantee condition specifies the restrictions

on the state transitions made by a particular thread to the shared state. To specify the

interference between the threads, the rely and guarantee conditions must be defined for

each function in the C program. The rely and guarantee conditions are predicates over

state transitions [29]. Let p be the precondition, let q be the postcondition, let R be the rely

condition, let G be the guarantee condition, and let (p, R, G, q) be the specification of a

thread. A thread satisfies its specification (p, R, G, q) if its initial state satisfies p and the

environment satisfies R, and each atomic transition made by the thread satisfies G and the

final state satisfies q [29].

In order to satisfy the rely and guarantee conditions, every change to the state made by a

program must conform to the restrictions of the guarantee conditions, and the precondition

at each state transition must be stable with respect to the rely condition [20, 29]. Stability

is defined formally as follows [29]:

Definition 3.0.21. Stability. An assertion p is stable with respect to an action a, denoted

Sta(p, a), if and only if for all states s and s′, if s ` p and (s, s′) ` a, then s′ ` p.

Figure 3.28 depicts the Coq mechanization of the definitions required to express the rely

and guarantee conditions. The type environ is the Coq type for a run-time local variable

71



frame. The type mpred is the Coq type for a predicate on some part of the memory [3]. A

program assertion is a predicate on its local variable environ and its memory. The Coq type

for a program assertion is environ→mpred [3]. A relation is a proposition about pairs

of environ arguments. A transition is a relation over program assertions. The rely and

guarantee conditions, abbreviated RG in the definition in Figure 3.28, are each a relation

over a transition of predicates on the memory.

Definition relation := environ→environ→Prop.
Definition transition:= (environ→mpred)→(environ→mpred)→relation.
Definition RG (trans:transition) (memval:mpred) (memval’:mpred) :relation :=
trans memval memval’.
Definition stable (R:relation) (P:environ→mpred): Prop :=
forall x y:environ, P x && prop(R x y) |−− P y.

Figure 3.28: Definitions for the Rely/Guarantee Conditions Mechanized in Coq

The Coq mechanization of stability is depicted in Figure 3.28. The property stable

accepts the arguments 1) a relation over a transition of predicates on the memory and 2) a

program assertion. The VST function prop, used in the Coq definition for stability, accepts

a proposition argument and returns an mpred. Stability holds if for all environ variables

x and y, the program assertion on x and the transition of predicates on the memory over

x and y entails the program assertion on y.

The proposed framework is used to prove in a semi-automatic manner that the loop

invariant holds true for every iteration of the loop. The following subgoals must be

proven for each loop invariant:

1. The precondition of the whole loop implies the loop invariant [3].

2. The environment satisfies the rely condition.
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3. The loop body implies the loop invariant [3].

4. The loop body satisfies the guarantee condition.

The loop invariant proof is performed using inductive reasoning on the loop body. The

existential variables in the loop body are instantiated with the initial values to show that

the precondition is true at the beginning of the loop. The VST enables a symbolic execution

of a program by application of Hoare logic inference rules through the forward tactic [3].

The forward tactic is modified to assert stability of the precondition for the state transition.

A symbolic execution is performed to advance through the loop body until the end of

the loop body is reached. The functional specifications are proved during the symbolic

execution of the loop body. The existential variables in the loop body are then instantiated

with a variable representing the general case to show that all values will satisfy the loop

invariant.

The parallel composition inference rule for k parallel commands, shown in Equation 3.3,

is derived from the parallel composition rule presented in [29]. Induction is used on the

premises of Equation 3.3 and Theorem 3.0.1 or Theorem 3.0.2 is applied to prove that a

descriptor-based algorithm meets the progress guarantee.

R ∨ (G2 ∧ · · · ∧ Gk); G1; I ` {p1 ∗ r} C1 {q1 ∗ r1}

...

R ∨ (G1 ∧ · · · ∧ Gk−1); Gk; I ` {pk ∗ r} Ck {qk ∗ rk}

r ∨ r1 ∨ · · · ∨ rk ⇒ I I B R
R; (G1 ∨ · · · ∨ Gk); I ` {p1 ∗ · · · ∗ pk ∗ r} C1 || . . . || Ck {q1 ∗ · · · ∗ qk ∗ (r1 ∧ . . . rk)}

(3.3)
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Transactional Merging to Optimize Semantic Conflict Detection in Transactional Data

Structures

In this section, I present transactional merging, a technique that optimizes the semantic

conflict resolution of transactional data structures by merging conflicting operations into

a single operation to reduce aborts. Transactional merging treats the transactional data

structure methodology as a white box since it affects the program logic for semantic conflict

resolution and recovery from aborted transactions. I first discuss the general approach for

modifying a transactional data structure methodology to support transactional merging.

Unlike optimization strategies for concurrent data structures [42, 41, 7] that combine op-

erations with related semantics, transactional merging must provide the ability to recover

the correct abstract state under the circumstance that a transaction with merged operations

aborts. The challenges associated with transactional merging include ensuring that merg-

ing conflicting operations 1) does not jeopardize the ability of either transaction to commit

to memory, and 2) does not violate correctness of the transactional data structure. I then

demonstrate how to address these challenges by showcasing the transactional merging

technique applied to Lock-Free Transactional Transformation (LFTT) [107]. Correctness

statements are provided which prove that transactional merging is strictly serializable

when applied to LFTT.

I apply transactional merging to a lock-free transactional linked list [107], a lock-free

transactional red-black tree [92], and a lock-free transactional dictionary [105]. The exper-

imental evaluation demonstrates that transactional merging achieves an average speedup

of up to 162% over LFTT for the linked list, 229% over LFTT for the red-black tree, and

123% over the Masstree [67] indexing used in the Silo database [98].

The contributions of this work include:
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1. I present transactional merging, a technique that enables conflicting transactions

to merge operations such that the conflict is eliminated. The benefit is that the

throughput of committed transactions is improved by reducing the total number of

aborts.

2. I generalize the concept of transactional merging such that it can be applied to any

transactional data structure methodology.

3. I showcase the application of transactional merging to LFTT to demonstrate how to 1)

merge operations without causing aborts due to side-effects of the merge and 2) retain

correctness of the transactional data structure. I achieve this by developing a strategy

that enables a correct recovery of the abstract state under the circumstances that a

transaction attempting to merge operations aborts. I provide correctness statements

proving that transactional merging applied to LFTT is strictly serializable.

4. I integrate a lock-free transactional dictionary into the Silo database [98] to demon-

strate a practical application of transactional merging.

Transactional Merging

Transactional merging is inspired by techniques utilized by elimination stacks [42, 7] and

flat combining [41] because it improves throughput by combining operations. However,

transaction merging distinguishes itself from the previous approaches by presenting a

strategy to optimize performance of transactional data structures. The main idea behind

transactional merging is that transactions that perform operations with a high-level se-

mantic conflict can collaborate rather than force one transaction to abort. For example,

consider two transactions on a map, depicted in Figure 3.29. This example assumes a
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transactional synchronization scheme in which a thread helps to complete a pending

transaction with a conflicting operation. Thread 1’s first transaction performs Insert(2,B)

and Thread 2’s transaction performs Insert(2,X), resulting in a semantic conflict on key 2.

Rather than forcing Thread 2 to abort its transaction, Thread 2 helps to complete Thread 1’s

transaction and then merges the conflicting operations by converting its Insert(2, X) to

a Put(2, X). Similarly, Thread 2’s transaction performs Delete(4), and Thread 1’s second

transaction performs Delete(4), resulting in a semantic conflict on key 4. In this case,

Thread 1 helps to complete Thread 2’s transaction and then merges the conflicting op-

erations by eliminating its Delete(4) operation, since it has already been performed by

Thread 2. If the actions taken in the previous scenario to eliminate semantic conflicts are

more relaxed than the transactional system is able to tolerate, the conditions for which

merging operations is allowed to take place can be defined by the designer to be more

restrictive. Additionally, the designer could further relax the conditions for merged op-

erations such that semantic conflicts between operations of different types (for example,

Insert and Put) are permissible to achieve greater performance gains.

 
 
 

Val: X 

Key: 2 
Val: B 

Thread 1 

Thread 2 

Insert(2, B) Insert(5, E) 

Insert(2, X) Delete(4) 

Key: 1 
Val: A 

Key: 3 
Val: C 

Key: 4 
Val: D 

Key: 5 
Val: E 

Semantic Conflict on Key 2 
Resolved by Merging Operations 

Insert(2,X) updated to Put(2,X) 

Delete(4) Get(1) 

Semantic Conflict on Key 4 
Resolved by Merging Operations 

Figure 3.29: Transactional Merging for a Map

76



Generalizing Transactional Merging

Transactional merging can be applied to any transactional data structure methodology

that incorporates a high-level semantic conflict detection. Such transaction data struc-

ture methodologies include transactional boosting [44], LFTT [107], transactional data

structure libraries [94], and transactional data structures constructed using STM. The gen-

eralized strategy requires the transactional data structure to be treated as a white box

since transactional merging must be integrated directly into the program logic for se-

mantic conflict resolution and recovery scheme invoked after an abort. There are two

aspects of transactional data structure methodologies that must be modified to support

transactional merging. The first aspect is the operation precondition as defined by the

data structure semantics. The second aspect is the recovery scheme for aborted transac-

tions. There are several vulnerabilities that a transactional data structure methodology

is susceptible to when modified to support transactional merging. These vulnerabilities

include 1) aborts caused by side-effects of merged operations and 2) violations of the

transactional correctness condition. The following subsections discuss the modifications

required to support transactional merging in conjunction with guidance regarding how

to prevent the previously mentioned vulnerabilities.

Operation Precondition

Data structure operations use a precondition as defined by the data structure semantics in

the determination of a return value for the operation. For example, the precondition for

an Insert(x) operation is that x does not exist in the set. Traditionally, Insert(x) returns

false if the precondition is not satisfied. Data structure operations that terminate unsuc-

cessfully can lead to aborts depending on the transactional data structure methodology
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or a reduction in throughput. Transactional merging takes a different approach when

handling the operation precondition. If the precondition is not satisfied for the operation,

it is possible that the goals of the operation have already been performed by another

thread. In this case the pending operation can merge with the completed operation and

terminate successfully, which reduces aborts and increases throughput.

Formal definitions are now provided to describe transactions with merged operations.

Definition 3.0.22. Let T1 and T2 be transactions that contain at least one semantic conflict.

Let the first semantic conflict be on element ei. If transaction T1 completes its operation

on element ei before transaction T2 in real time, then T1 is the prefix transaction.

Definition 3.0.23. Let T1 and T2 be transactions that contain at least one semantic conflict.

Let the first semantic conflict be on element ei. If transaction T2 detects a semantic conflict

with T1 because T1 completed its operation on element ei before transaction T2 in real time,

then T2 is the suffix transaction.

To ensure that aborts caused by side-effects of the merged operations do not occur, it is

essential that the prefix transaction successfully commits to memory. Otherwise, the suffix

transaction that intends to merge operations with the prefix transaction would have to

abort or restart if the effects of the operation being merged with were rolled back. The

general strategy for preventing aborts due to side-effects of merged operations is to utilize

the transactional synchronization protocol of the transactional data structure methodology

(i.e. acquisition of locks [94, 44] or helping scheme [107]) to commit a transaction to

memory prior to merging with its operations. The transactional synchronization protocol

enables the suffix transaction performing the merge to take ownership of the operation

after the prefix transaction commits and alert other threads that this operation is still

active.
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Recovery Scheme

Transactional data structure methodologies provide the ability to recover the correct ab-

stract state given that a transaction aborts. The potential correctness violation that can

occur due to merged operations resides in the recovery scheme. If a suffix transaction

performing a merge aborts and the rollback appears as though the merged operation was

never performed, this would result in an incorrect abstract state since the operation being

merged with was successfully committed to memory prior to the merge. To prevent an

incorrect recovery of the abstract state after a rollback, a suffix transaction that intends

to perform a merge must set a merge flag for the operation after taking ownership of the

operation. The merge flag indicates that the operation must be restored to the state it

was in prior to the merge given that an abort occurs. A descriptor is a shared object used

to announce information regarding an operation to be performed. The operation state

information prior to the merge must be stored in a descriptor object for correct recovery

of the abstract state given that the transaction performing the merge aborts.

LFTT With Transactional Merging

Algorithm 9 provides the constants and data type definitions adapted from LFTT for the

map abstract data type. The OpType on line 9.5 lists the map operations, including Insert

(inserts a new key-value pair into the map), Delete (deletes a key and its associated value

from the map), Put (updates an existing key in the map with a new value, or inserts a new

key-value pair if the key doesn’t exist), and Get (retrieves the value associated with an

existing key in the map). The Operation type is updated from the LFTT type definitions

to include a value val (line 9.13) and a reference to a map object (line 9.14). The Desc type,

line 9.15, contains fields for the transaction size, the transaction status (Active, Committed,
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or Aborted), and an array of operations to be performed in the transaction. The NodeInfo

type, line 9.19, contains fields for the Desc and the current operation index opid. A Desc

reference and operation index are embedded in the NodeInfo to enable a transaction

to help complete the pending transaction associated with the node to be operated on

starting at the current operation index. The NodeInfo type is updated from the LFTT

type definitions to include a value val (line 9.22), the value oldval held by the previously

committed transaction that updated the node (line 9.23), and a boolean flag merge to

indicate if the transaction is attempting to merge operations (line 9.24). The purpose of

storing the value held by the previously committed transaction that updated the node is

to recover the correct value given the circumstances that the transaction performing the

merge aborts. The Node type on line 9.25 contains a NodeInfo reference info and a unique

integer key.

ALGORITHM 9: Type Definitions

1 enum TxStatus
2 Active;
3 Committed;
4 Aborted;

5 enum OpType
6 Insert;
7 Delete;
8 Put;
9 Get;

10 struct Operation
11 OpType type;
12 int key;
13 int val;
14 Map* map;

15 struct Desc
16 int size;
17 TxStatus status;
18 Operation ops[ ];

19 struct NodeInfo
20 Desc* desc;
21 int opid;
22 int val;
23 int oldval;
24 bool merge;

25 struct Node
26 NodeInfo* info;
27 int key;
28 ...;

Semantic Conflict Resolution Policy

The vulnerabilities susceptible to transactional merging in LFTT are addressed by retaining

the cooperative transaction execution scheme and modifying the logical rollback presented

80



by Zhang et al. [107] to eliminate semantic conflicts without causing aborts due to side-

effects of merged operations and preserve transactional correctness. The suffix transaction

that intends to merge operations with the prefix transaction must first help complete the

prefix transaction. This action ensures that the prefix transaction is committed to memory

and will not be affected by the merged operations. If the merge is unsuccessful, the

suffix transaction will abort and undo its effects through the logical rollback adapted for

transactional merging to preserve strict serializability.

ALGORITHM 10: Conflict Resolution Policy
1 Function IsMergePossible(NodeInfo* oldinfo, NodeInfo* currinfo)
2 OpType nodeOp← oldinfo.desc.ops[oldinfo.opid].type;
3 OpType currOp← currinfo.desc.ops[currinfo.opid].type;
4 TxStatus nodeStatus← oldinfo.desc.status;
5 return

((nodeOp = currOp and (currOp = Insert or currOp = Delete)) and nodeStatus = Committed);

When a suffix transaction detects a semantic conflict and finishes helping the prefix trans-

action to complete its operations, it will attempt to merge conflicting operations based on

the semantic conflict resolution policy. Function IsMergePossibledetailed in Algorithm 10

accepts as arguments the NodeInfo of the node to be operated on and the NodeInfo for

the current operation. If the node’s operation is equivalent to the current operation, the

current operation is either an Insert or Delete, and the transaction associated with the

node has committed, then the transaction performing the current operation can merge its

operations with the previously committed transaction. For sets, the merge will remove

redundant Insert and Delete operations. For maps, the merge will remove redundant

Delete operations and update the conflicting Insert operation to a Put operation. If con-

verting a conflicting Insert operation to a Put operation is too relaxed for the transactional

system, the designer can enforce a stricter semantic conflict resolution policy such that

only Insert operations with identical key-value pairs are merged by updating line 10.5 to
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include the following condition: and (oldinfo.val = currinfo.val).

ALGORITHM 11: Logical Status
1 Function IsNodePresent(Node* node, int key)
2 return node.key = key;

3 Function IsKeyPresent(NodeInfo* info,Desc*desc)
4 OpType op← info.desc.ops[info.opid].type;
5 TxStatus status← info.desc.status;
6 switch status do
7 case Active do
8 if info.desc = desc then
9 return op = Get or op = Insert or op = Put;

10 return op = Get or op = Delete or (op = Put and info.oldval , NULL) ;

11 case Committed do
12 return op = Get or op = Insert or op = Put ;

13 case Aborted do
14 return op = Get or (op = Put and info.oldval , NULL) or
15 (op = Delete and info.merge = f alse) or (op = Insert and info.merge = true) ;

The logical status for the map abstract data type is presented in Algorithm 11. The

IsNodePresent function on line 11.1 returns true if the key of the node argument is

equivalent to the specified key. The IsKeyPresent function on line 11.3 performs the

logical interpretation of the existence of a node based on its operation type, line 11.4,

and transaction status, line 11.5. Given that the transaction is Active and the node is

accessed by operations in the same transaction, then IsKeyPresent returns true if the

operation type is Get, Insert, or Put. Otherwise, if the transaction is Active and the node

is accessed by operations in a different transaction, then IsKeyPresent returns true if the

operation type is Get, Delete, or Put (if info.oldval , NULL). If the field info.oldval is not

NULL, then the Put operation only updates the value since the key must already exist in

the map. If the transaction is Committed, then IsKeyPresent returns true if the operation

type is Get, Put, or Insert. If the transaction is Aborted, then IsKeyPresent returns true

if the operation type is Get, Put (if info.oldval , NULL), Delete (if info.merge = f alse), or

Insert (if info.merge = true). To explain the reasoning behind the Insert and Delete cases,
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assume that a transaction’s info.merge field is set to true. If a transaction is attempting

to merge with a conflicting Delete operation and aborts, then the node is still deleted in

the recovered abstract state. Therefore, the IsKeyPresent function should return true for

a Delete if info.merge = f alse. If a transaction is attempting to merge with a conflicting

Insert operation and aborts, then the node is still inserted in the recovered abstract state.

Therefore, the IsKeyPresent function should return true for an Insert if info.merge = true.

ALGORITHM 12: Update NodeInfo
1 Function UpdateInfo(Node* node, NodeInfo* info, bool wantkey)
2 NodeInfo* oldinfo← node.info;
3 if IsMarked(oldinfo) then
4 Do Delete(node) ;
5 return retry ;

6 if oldinfo.desc , info.desc then
7 ExecuteOps(oldinfo.desc, oldinfo.opid + 1) ;

8 else if oldinfo.opid ≥ info.opid then
9 return success ;

10 if oldinfo.desc.status = Committed then
11 info.oldval← oldinfo.val ;

12 else if oldinfo.desc.status = Aborted then
13 info.oldval← oldinfo.oldval ;

14 OpType currOp← info.desc.ops[info.opid].type ;
15 if currOp = Get or currOp = Delete then
16 info.val = info.oldval ;

17 bool haskey← IsKeyPresent(oldinfo, info.desc) ;
18 if (!haskey and wantkey) or (haskey and !wantkey) or (currOp , Put) then
19 if (!IsMergePossible(oldinfo, info)) then
20 return fail ;

21 node.info.merge← true ;

22 if info.desc.status , Active then
23 return fail;

24 if CAS(&node.info, oldinfo, info) then
25 return success;

26 return retry;

UpdateInfo, presented in Algorithm 12, helps to complete the pending transaction asso-

ciated with the node of interest by invoking ExecuteOps on line 12.7. The ExecuteOps

function finishes a pending transaction associated with a node by first checking for a
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cyclic dependency, which would lead to infinite recursive helping calls, and aborting if

a dependency exists. If a cyclic dependency does not exist, then ExecuteOps proceeds

by starting at the current operation index and executing all operations in the transaction

until the transaction descriptor status is updated to Committed or Aborted by a Compare-

AndSwap (CAS) operation. CAS is an atomic synchronization primitive that accepts as

arguments a memory location, expected value, and update value. If the data referenced

by the memory location is equivalent to the expected value, then the data referenced by

the memory location is changed to the update value and true is returned; otherwise, no

change is made and false is returned.

To enable the recovery of the correct value of a node if a transaction attempting to merge

conflicting operations fails, the info.oldval must be set to the node value associated with

the previously committed transaction. If oldinfo.desc.status = Committed, then info.oldval

is set to oldinfo.val on line 12.11. If oldinfo.desc.status = Aborted, then info.oldval is set to

oldinfo.oldval on line 12.13. Since Insert and Put have a value input parameter for the

key-value pair, only Get and Delete need to recover the correct value associated with the

existing node, performed on line 12.16.

IsKeyPresent is invoked on line 12.17 to determine if the node’s key logically exists, stored

in the boolean haskey. Several scenarios that may force UpdateInfo to fail based on the

logical interpretation. The boolean wantkey is true if the operation requires the key to

logically exist in the list, and is false otherwise. Put can perform its operation regardless

of the logical status of the key. If haskey is false and the boolean argument wantkey is

true or if haskey is true and the boolean argument wantkey is false, or currOp , Put,

then UpdateInfo is forced to fail unless it can merge its operation associated with the

node of interest. If IsMergePossible returns true on line 12.19, then n.info.merge is set

to true on line 12.21. If IsMergePossible returns false, then UpdateInfo is forced to fail.
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The NodeInfo is updated on line 12.24 by invoking CAS on n.info. The correctness of

transactional merging is provided in Appendix C.

Transformed Map Functions

The LFTT template for the transformed Insert function is presented in Algorithm 13.

The Do LocatePred function is a member of the base lock-free map that locates the node

with the key of interest. If IsNodePresent on line 13.6 returns true, then UpdateInfo is

called on line 13.7. Otherwise, a new node is inserted in the map by calling the Do Insert

function from the base lock-free map. If Do Insert fails, then the loop is continued and

IsNodePresent returns true and UpdateInfo is invoked since some other thread inserted

the element into the map. The transformed Put, Delete, and Get functions are identical

to the transformed Insert function except that for Put the boolean argument passed to

UpdateInfo on line 13.7 is true, and for Delete and Get the boolean argument passed to

UpdateInfo on line 13.7 is true and the ret value is set to f ail if IsNodePresent on line 13.6

returns false.

ALGORITHM 13: Template for Transformed Insert Function
1 Function Insert(int key, int val, Desc* desc, int opid)
2 NodeInfo* info← new NodeInfo;
3 info.desc← desc, info.opid← opid, info.val← val, info.oldval← NULL, info.merge← f alse;
4 while true do
5 Node* curr← Do LocatePred(key);
6 if IsNodePresent(curr, key) then
7 ret← UpdateInfo(curr, info, f alse);
8 if ret = f ail then
9 return false;

10 Node* node← new Node;
11 node.key← key, node.info← info;
12 ret← Do Insert(node);
13 if ret = success then
14 return true;
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CHAPTER 4: EXPERIMENTAL EVALUATION

CCSpec

CCSpec is evaluated by checking the correctness of an assortment of hand-crafted concur-

rent algorithms. The concurrent depth-first search algorithm uses the non-blocking stack

by Treiber et al. [97] to store the next items to be searched in a graph. The concurrent

breadth-first search algorithm uses the non-blocking k-FIFO queue by Kirsch et al. [56]

to store the next items to be searched in a graph. The concurrent Dijkstra’s shortest path

algorithm uses the non-blocking priority queue by Zhang et al. [106] to store nodes prior-

itized by their distances. The concurrent adjacency list uses the non-blocking linked list

by Harris et al. [40] to store vertices and adjacent edges of a graph.

Results

CCSpec and the experiments are publicly released at http://ucf-cs.github.io/CCSpec/ as

an AREA 67 lab project under a BSD open-source license. The tests are conducted on a

64-core NUMA system (4 AMD opteron 6272 CPUs with 16 cores per chip @2.1 GHz).

The concurrent histories are collected from CDSChecker [75] and are equally distributed

among the 64 cores to check correctness using CCSpec.

The results for the data structure layer are shown in Table 4.1. As expected, the Treiber

stack and Harris list meet linearizability, the strongest correctness condition. The k-FIFO

queue fails linearizability, sequential consistency, and quiescent consistency, but passes

quasi-linearizability. The priority queue fails linearizability and sequential consistency,
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but passes quiescent consistency and quasi-linearizability. Although the priority queue

is designed for quiescent consistency, it could still meet quasi-linearizability if a period of

quiescence occurs within a distance of k between method calls.

Table 4.1: CCSpec Results for the Data Structure Layer

Non-Blocking Data Structure Linearizabil-
ity

Sequential
Consistency

Quiescent
Consistency

Quasi-
Linearizability

Treiber Stack [97] (Depth-First Search) Pass Pass Pass Pass
k-FIFO Queue [56] (Breadth-First Search) Fail Fail Fail Pass

Priority Queue [106] (Dijkstra’s Shortest Path) Fail Fail Pass Pass
Harris List [40] (Adjacency List) Pass Pass Pass Pass

The results for the abstract function layer are shown in Table 4.2. The basis of correctness

evaluation is the final observed abstract state of the shared resources of the concurrent

algorithms. This approach for checking algorithm correctness is equivalent to verifying the

postcondition for a function. For the depth-first search and breadth-first search algorithms,

the shared resource is the marked array indicating which nodes have been visited. The

shared resources of Dijkstra’s shortest path is the dist array storing the distance between

a node and the source node, and the prev array storing the predecessor of a node in the

shortest path. The shared resource of the adjacency list is the structure of the adjacency

list itself.

Table 4.2: CCSpec Results for the Abstract Function Layer

Concurrent Algorithm Algorithm
Correctness

Depth-First Search Pass
Breadth-First Search Pass

Dijkstra’s Shortest Path Pass
Adjacency List Pass

A critical observation is that the use of a k-FIFO queue for the breadth-first search and

the use of a quiescently consistent priority queue for Dijkstra’s shortest path did not
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affect correctness at the abstract function layer. For the breadth-first search, a thread will

enqueue all adjacent edges of a dequeued node that have not been visited into a k-FIFO

queue. The order in which these nodes are dequeued does not matter since the overall goal

of the algorithm is to explore all nodes. Since the final marked array indicates that all nodes

have been visited, breadth-first search is correct at the abstract function layer. For Dijkstra’s

shortest path, a thread will update the distance of all adjacent edges after removing a node

from the priority queue. If a node is removed that does not contain the minimum distance

due to the quiescently consistent nature of the priority queue, the dist and prev arrays

will be correctly updated once the node with the minimum distance is removed from

the queue. Since the abstract state of the final dist and prev arrays are correct, Dijkstra’s

shortest path is correct at the abstract function layer. Such results imply that potential

performance gains can be achieved in a concurrent algorithm by utilizing data structures

that are optimized for a relaxed correctness condition. Special design considerations are

required for sequential consistency because unlike linearizability, quiescent consistency,

and quasi-linearizability, a composition of sequentially consistent objects provides no

guarantee that the execution as a whole will be sequentially consistent.

Table 4.3: Concurrent Histories Generated by CDSChecker

Depth-First
Search

Breadth-First
Search

Dijkstra’s
Shortest Path

Adjacency
List

Number of Concurrent
Histories 143650 1081148 370800 4408787

The number of concurrent histories generated by CDSChecker for the unit tests are shown

in Table 4.3. The execution times for the unit tests are shown in Table 4.4. The column

abbreviated CDS is the time (in hours) for CDSChecker to generate the concurrent histories

of the unit test. The column abbreviated CCSpec is the time (in hours) for CCSpec to run

the correctness checking algorithm to determine if the unit test meets the correctness
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condition. The execution time for CDSChecker is displayed in Table 4.4 to provide the

reader with an understanding of how long the entire process of checking correctness

takes, which is the sum of the model checking time and correctness checking time. The

depth-first search launches three threads, where each thread operates on a graph with

three vertices and two edges. Breadth-first search and Dijkstra’s shortest path launch four

threads, where each thread operates on a graph with three vertices and two edges. The

adjacency list algorithm launches three threads, where one thread perform six operations,

one thread performs five operations, and one thread performs four operations. The unit

test for depth-first search is written to execute fewer threads than breadth-first search

because the large amount of contention on the stack top utilized by the depth-first search

results in a large amount of method call overlap. Since methods called by different

threads can be ordered in any arbitrary way for sequential consistency and methods that

do not encounter a period of quiescence can be ordered in any arbitrary way for quiescent

consistency, the number of possible legal sequential histories grows at the rate of a factorial

function for every additional thread. Since linearizability has the lowest number of valid

sequential histories due to the real-time ordering constraint, linearizability takes the least

amount of time to check. For the breadth-first search and Dijkstra’s shortest path, quiescent

consistency takes approximately the same amount of time to check as linearizability.

This occurs if each method is separated by a period of quiescence, which places a real-

time ordering constraint on each method, making quiescent consistency equivalent to

linearizability. Sequential consistency takes the most amount of time to check because

the methods called in the concurrent histories are constrained only by program order.

Quasi-linearizability enforces real-time ordering on method calls separated by a distance

of two, which takes more time to check than linearizability.
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Table 4.4: CCSpec Execution Time Results (in hours)

Depth-First
Search
(hours)

Breadth-First
Search
(hours)

Dijkstra’s
Shortest Path

(hours)

Adjacency
List (hours)

Correctness Condition CC-
Spec CDS. CC-

Spec CDS. CC-
Spec CDS. CC-

Spec CDS.

Linearizability 0.25 0.06 5.30 0.61 1.16 0.40 10.47 0.79
Sequential Consistency 6.75 0.06 129.78 0.61 30.04 0.40 14.64 0.79
Quiescent Consistency 76.85 0.06 10.29 0.61 1.96 0.40 17.22 0.79
Quasi-Linearizability

(k=2) 4.24 0.06 36.43 0.61 9.09 0.40 11.38 0.79

The adjacency list is an exception to the previously discussed execution times. The

discrepancy in the execution times in comparison to the other algorithms is due to the

optimizations to the recursive topological sort such that commutative operations are

pruned from the search space. The adjacency list benefits from this optimization because

it comprises a list of lists. Since each list is a separate container, methods commute if they

operate on different lists. Additionally, method calls on the same list commute if they

operate on different elements. With the redundant legal sequential histories pruned from

the search space, all correctness conditions take approximately the same amount of time

to check for the adjacency list.

Counterexamples

Counterexamples are produced by CCSpec under the linearizability correctness condi-

tion for the data structure layer and abstract function layer and the results obtained are

discussed.
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k-FIFO Queue

Figure 4.1 shows a subset of the counterexamples produced for the k-FIFO queue under

the linearizability correctness condition. The parameter k is set to one in the left counterex-

ample of Figure 4.1. In this scenario, the sequential specification for the three Dequeue

operations is A.Deq(): 1, A.Deq(): 2, and A.Deq(): 3. However, the program output is

A.Deq(): 2, A.Deq(): 1, and A.Deq(): 3. In this case, the Enqueue operations by the main

thread are out of order by a distance of one. The parameter k is set to two in the right

counterexample of Figure 4.1. The program output for this scenario is A.Deq(): 3, A.Deq():

2, and A.Deq(): 1. In this case, the Enqueue operations by the main thread are out of order

by a distance of two.

The bounded k-FIFO queue maintains an array of k-segments each with k slots in order

to reduce contention on the head and tail pointers. At most k enqueue and k dequeue

operations may be performed simultaneously, allowing for elements to be dequeued out

of order by at most k dequeue operations. Although the counterexamples demonstrate

that the concurrent histories are not linearizable, they do meet the quasi-linearizability

correctness condition for k set to one and two, respectively.

1 Sequential Output Program Output

2 Main: A.Enq(1); Void Void

3 Main: A.Enq(2); Void Void

4 Main: A.Enq(3); Void Void

5 Thread1: A.Deq(); 1 2

6 Thread2: A.Deq(); 2 1

7 Thread2: A.Deq(); 3 3

1 Sequential Output Program Output

2 Main: A.Enq(1); Void Void

3 Main: A.Enq(2); Void Void

4 Main: A.Enq(3); Void Void

5 Thread1: A.Deq(); 1 3

6 Thread2: A.Deq(); 2 2

7 Thread2: A.Deq(); 3 1

Figure 4.1: k-FIFO Linearizability Counterexamples
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Priority Queue

Figure 4.2 shows a subset of the counterexamples produced for the priority queue under

linearizability at the data structure layer. The left counterexample of Figure 4.2 demon-

strates a scenario where thread 2 invokes DeleteMin and calls Insert(3) followed by an

Insert(4), then thread 1 calls DeleteMin. Since priority is given to elements with the

lowest key, 3 should be the first element removed by a call to DeleteMin. However,

DeleteMin by thread 1 removes 4. The right counterexample of Figure 4.2 demonstrates a

scenario where thread 2 invokes DeleteMin and calls Insert(3), thread 1 calls DeleteMin,

and thread 2 calls Insert(4). The DeleteMin by thread 1 removes NULL instead of the

expected value 3.

The priority queue inserts an element by mapping a scalar key to a D-dimensional coor-

dinate vector, where a target position is located using the vector as the coordinates. The

priority queue deletes the minimum element by removing the head node and setting the

element with the next smallest key to the new head node. Since the complexity of the

search for the element with the next smallest key grows exponentially with more nodes, a

deletion stack is used to provide hints regarding the location of the next smallest node. As

proven in [106] and verified with CCSpec, the Insert and DeleteMin operations respect

real-time ordering when separated by a period of quiescence. This is due to the thread

executing DeleteMin reading the deletion stack prior to the update by the thread calling

Insert.
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1 Sequential Output Program Output

2 Main: A.Ins(0); Void Void

3 Thread2: A.DelMin(); 0 0

4 Thread2: A.Ins(3); Void Void

5 Thread2: A.Ins(4); Void Void

6 Thread1: A.DelMin(); 3 4

1 Sequential Output Program Output

2 Main: A.Ins(0); Void Void

3 Thread2: A.DelMin(); 0 0

4 Thread2: A.Ins(3); Void Void

5 Thread1: A.DelMin(); 3 NULL

6 Thread2: A.Ins(4); Void Void

Figure 4.2: Priority Queue Linearizability Counterexamples

Adjacency List

Figure 4.3 shows the unit test and Figure 4.4 shows a subset of the counterexamples pro-

duced for the incorrect usage of the adjacency list under linearizability at the abstract

function layer. An abstract function is specified for thread 1’s body, and another abstract

function is specified for thread 2’s body. For the Add Vertex and Edge List Emptymeth-

ods, the argument is the vertex id. For the Add Edge and Contains Edge methods, the

first argument is the vertex id and the second argument is the edge node id. The top

counterexample of Figure 4.4 shows a scenario in which thread 1’s body is executed be-

fore thread 2’s body. If thread 1 inserts edge node 500 into vertex 100’s edge list, then the

if-statement by thread 2’s body will be false. In this case, the Contains Edge(100, 500)

by thread 3 should return true, and the Contains Edge(100, 600) by thread 3 should re-

turn false. However, the program output shows that both Contains Edge(100, 500) and

Contains Edge(100, 600) return true. The bottom counterexample of Figure 4.4 shows

a scenario in which thread 2’s body is executed before thread 1’s body. If thread 2 inserts

edge node 600 into vertex 100’s edge list, then the if-statement by thread 1’s body will be

false. In this case, the Contains Edge(100, 500) by thread 3 should return false, and the

Contains Edge(100, 600) by thread 3 should return true. However, the program output

shows that both Contains Edge(100, 500) and Contains Edge(100, 600) return true.
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1 Main:

2 A.Add_Vertex(100);

3

4 Thread1:

5 if(A.Edge_List_Empty(100))

6 A.Add_Edge(100, 500);

1 Thread2:

2 if(A.Edge_List_Empty(100))

3 A.Add_Edge(100, 600);

4

5 Thread3:

6 A.Contains_Edge(100, 500);

7 A.Contains_Edge(100, 600);

Figure 4.3: Adjacency List Unit Test

1 Sequential Output Program Output

2 Main: A.Add_Vertex(100); True True

3 Thread1: Thread1.body(); Void Void

4 Thread2: Thread2.body(); Void Void

5 Thread3: A.Contains_Edge(100, 500); True True

6 Thread3: A.Contains_Edge(100, 600); False True

1 Sequential Output Program Output

2 Main: A.Add_Vertex(100); True True

3 Thread2: Thread2.body(); Void Void

4 Thread1: Thread1.body(); Void Void

5 Thread3: A.Contains_Edge(100, 500); False True

6 Thread3: A.Contains_Edge(100, 600); True True

Figure 4.4: Adjacency List Linearizability Counterexamples

TXC-ADT

TxC-ADT is evaluated by checking the correctness of Lock-Free Transactional Transfor-

mation (LFTT) [107] and Transactional Data Structure Libraries (TDSL) [94]. The tests are

conducted on a 64-core NUMA system (4 AMD opteron 6272 CPUs with 16 cores per chip

@2.1 GHz). The unit tests for the LFTT skiplist and TDSL queue comprise three threads

such that one thread issues a transaction with one operation and a transaction with three
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operations, one thread issues a transaction with two operations, and one thread issues a

transaction with one operation. The unit tests for the LFTT linked list and TDSL skiplist

comprise three threads such that one thread issues a transaction with one operation and a

transaction with two operations, one thread issues a transaction with two operations, and

one thread issues a transaction with one operation. The operations in the transactions are

selected such that a high-level semantic conflict exists between two transactions issued by

different threads. For the set abstract data type, one transaction invokes Insert(X) and

another transaction invokes Delete(X). For the queue abstract data type, one transaction

invokes Dequeue() and another transaction also invokes Dequeue(). The concurrent histo-

ries are collected from CDSChecker and equally distributed among the 64 cores to check

correctness using TxC-ADT. The correctness conditions incorporated in the evaluation

include serializability, strict serializability, opacity, and causal consistency. The results are

shown in Table 4.5. The data structures of both approaches meet opacity, the strongest

transactional correctness property. These are the expected results since LFTT is designed

for strict serializability and TDSL is designed for opacity. Although the correctness proofs

for LFTT [107] verify strict serializability, the approach of LFTT is also opaque because

the logical interpretation allows all transactions to observe a consistent state of the system

regardless of the transaction status.

Table 4.5: TxC-ADT Results for Transactional Data Structures

Correctness Condition
Transactional Data

Structure
Causal

Consistency
Serializabil-

ity
Strict Serial-

izability Opacity

LFTT Linked List Pass Pass Pass Pass
LFTT Skiplist Pass Pass Pass Pass
TDSL Queue Pass Pass Pass Pass
TDSL Skiplist Pass Pass Pass Pass
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The number of concurrent histories generated by CDSChecker for the unit tests are shown

in Table 4.6. The execution times for the unit tests are shown in Table 4.7. The column

abbreviated CDS is the time (in hours) for CDSChecker to generate the concurrent histories

of the transactional data structure unit test. The column abbreviated TxC is the time (in

hours) for TxC-ADT to analyze the concurrent histories and determine if the unit test meets

the specified transactional correctness condition. The execution time for CDSChecker is

displayed in Table 4.7 to provide the reader with an understanding of how long the

entire process of checking correctness takes, which is the sum of the model checking

time and correctness checking time. Opacity generally takes the largest amount of time

to check because the effects of all transactions (active, committed, and aborted) must be

evaluated for correctness. The time to check causal consistency increases as the number of

transactions that satisfy the causality relation increases. This occurs because an increase

in the per-thread transactional happens-before graph size requires more time to analyze.

Serializability takes more time to check than strict serializability because serializability

has more possible legal sequential histories than strict serializability due to the real-

time ordering constraint for committed transactions required by strict serializability. The

variance in execution time for each data structure is due to the total number of concurrent

histories computed for each unit test. The total number of concurrent histories computed

by CDSChecker increases as the number of atomic operations called in the unit test

increases.

Table 4.6: Concurrent Histories Generated by CDSChecker

LFTT
Linked

List

LFTT
Skiplist

TDSL
Queue

TDSL
Skiplist

Number of
Concurrent Histories 5815894 4421091 2055894 3414414
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Table 4.7: TxC-ADT Execution Time Results (in hours)

LFTT
Linked

List
(hours)

LFTT
Skiplist
(hours)

TDSL
Queue
(hours)

TDSL
Skiplist
(hours)

Correctness
Condition TxC. CDS. TxC. CDS. TxC. CDS. TxC. CDS.

Causal Consistency 4.66 5.58 3.08 11.50 1.65 1.71 2.21 4.14
Serializability 3.67 5.58 2.93 11.50 2.66 1.71 2.19 4.14

Strict Serializability 3.63 5.58 2.81 11.50 1.67 1.71 2.04 4.14
Opacity 3.77 5.58 3.09 11.50 2.53 1.71 2.36 4.14

In order to demonstrate the ability of TxC-ADT to produce counterexamples, design flaws

are injected within the source code accompanying LFTT and TDSL that may occur in the

development of transactional data structures. The following subsections provide a brief

overview of the LFTT and TDSL designs and explains the counterexamples resulting from

the injected design flaws.

Lock-Free Transactional Transformation

LFTT is a methodology for transforming high-performance lock-free base data struc-

tures into high-performance lock-free transactional data structures. LFTT introduces a

node-based conflict detection scheme that allows commutative operations to proceed

concurrently using the thread-level synchronization of the lock-free base data structure.

Non-commutative operations require transaction-level synchronization where the thread

that detects a conflict will help finish the delayed transaction by utilizing a transaction

descriptor that stores the instructions and arguments for operations and a transaction

status. The penalties of rollbacks are minimized by incorporating a logical rollback where

a transaction may interpret the logical status of a node based on the operation type and

97



the transaction status recorded in the transaction descriptor.

1 ThreadA:

2 TXBegin();

3 Insert(2);

4 Delete(3);

5 TXEnd();

1 ThreadB:

2 TXBegin();

3 Insert(3);

4 Insert(2);

5 TXEnd();

Figure 4.5: LFTT Linked List Unit Test

1 Concurrent History 1:

2 A:Insert(2);

3 A:Delete(3);

4 A:Commit();

5 B:Insert(3);

6 B:Insert(2);

7 B:Abort();

1 Concurrent History 2:

2 B:Insert(3);

3 B:Insert(2);

4 B:Abort();

5 A:Insert(2);

6 A:Delete(3);

7 A:Commit();

Figure 4.6: LFTT Linked List Concurrent Histories

1 Concurrent History 1:

2 Sequential Output:

3 Insert(2):T Delete(3):F Insert(3):T Insert(2):F

4 Program output:

5 Insert(2):T Delete(3):T Insert(3):T Insert(2):F

1 Concurrent History 2:

2 Sequential Output:

3 Insert(3):T Insert(2):T Insert(2):T Delete(3):F

4 Program output:

5 Insert(3):T Insert(2):F Insert(2):T Delete(3):T

Figure 4.7: LFTT Linked List Opacity Counterexamples (with design flaws injected)

A design flaw is injected into the original LFTT linked list source code to produce coun-

terexamples when checking for opacity. The design flaw entails a disabling of the logical

interpretation so that the threads observe the concrete state of the system instead of the

abstract state of the system. This design flaw causes the effects of a transaction to be

visible to other transactions prior to a commit, which will violate the isolation property
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of transactional execution. The unit test is shown in Fig. 4.5, the concurrent histories

are shown in Fig. 4.6, and the resulting counterexamples are shown in Fig. 4.7. In the

left counterexample, thread A’s transaction executes first and commits, and thread B’s

transaction executes second and aborts. When executing these transactions in isolation,

the Delete(3) operation of thread A should return false because 3 has not been inserted

in the set, and the Insert(2) operation of thread B should return false because thread A

already inserted 2 in the set. However, the program output demonstrates that thread A’s

Delete(3) operation observes the effects of thread B’s Insert(3) operation and success-

fully removes 3 from the set. Thread B’s Insert(2) operation fails because it observes the

effects of thread B’s Insert(2) operation.

In the right counterexample, thread B’s transaction executes first and aborts, and thread

A’s transaction executes second and commits. Since opacity requires that all transactions

observe a consistent state of the system, the output of all transactions must be evaluated.

When executing these transactions in isolation, thread B’s operations will both succeed

since the set is initially empty. However, since thread B aborts, its effects must be invisible

to thread A. The Insert(2) operation by thread A should succeed and the Delete(3)

operation by thread A should fail since the abstract state of the set is an empty list after

the abort by thread B. The program output demonstrates that thread B’s Insert(2) oper-

ation fails because it observes thread A’s Insert(2) operation, and thread A’s Delete(3)

operation succeeds because it observes the Insert(3) by thread B.

Transactional Data Structure Libraries

TDSL introduces a methodology for bundling sequences of data structure operations into

atomic transactions. TDSL enables customizations to the read-set tracking and valida-
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tion to incorporate standard software transactional memory techniques, or optimizations

such that the read-set only includes memory locations that represent real semantic con-

flicts. TDSL provides composition of transactional data structures, as well as support for

singleton transactions consisting of an individual operation.

1 Main:

2 TXBegin();

3 Enq(1);

4 TXEnd();

1 ThreadA:

2 TXBegin();

3 Deq();

4 Enq(3);

5 TXEnd();

1 ThreadB:

2 TXBegin();

3 Deq();

4 Enq(2);

5 TXEnd();

Figure 4.8: TDSL Queue Unit Test

1 Concurrent History 1:

2 Main:Enqueue(1);

3 Main:Commit();

4 A:Deq();

5 A:Enq(3);

6 A:Commit();

7 B:Deq();

8 B:Enq(2);

9 B:Commit();

1 Concurrent History 2:

2 Main:Enqueue(1);

3 Main:Commit();

4 B:Deq();

5 B:Enq(2);

6 B:Commit();

7 A:Deq();

8 A:Enq(3);

9 A:Commit();

Figure 4.9: TDSL Queue Concurrent Histories
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1 Concurrent History 1:

2 Sequential Output:

3 Enq(1):Void

4 Deq():1 Enq(3):Void Deq():3 Enq(2):Void

5 Program output:

6 Enq(1):Void

7 Deq():1 Enq(3):Void Deq():1 Enq(2):Void

1 Concurrent History 2:

2 Sequential Output:

3 Enq(1):Void

4 Deq():1 Enq(2):Void Deq():2 Enq(3):Void

5 Program output:

6 Enq(1):Void

7 Deq():1 Enq(2):Void Deq():1 Enq(3):Void

Figure 4.10: TDSL Queue Opacity Counterexamples (with design flaws injected)

A design flaw is injected into the original TDSL queue source code to produce counterex-

amples when checking for opacity. The design flaw entails disabling the locking of the

queue during a transactional commit and the preemptive locking during a dequeue oper-

ation. This design flaw causes the effects of a transaction to be visible prior to the commit,

which violates the isolation property of transactional execution. The unit test is shown in

Fig. 4.8, the concurrent histories are shown in Fig. 4.9, and the resulting counterexamples

are shown in Fig. 4.10. Thread A and thread B both invoke a Dequeue operation on a

queue with one element. Since both threads hold a reference to the same head element

and the queue is not locked during the commit, both dequeue 1 since it is at the head of the

queue. In the left counterexample, the sequential output indicates that thread B should

dequeue 3 because thread A commits first. In the right counterexample, the sequential

output indicates that thread A should dequeue 2 because thread B commits first.

Limitations

TxC-ADT has several limitations inherent with model checking tools. The concurrent

histories generated during model checking are for a unit test of the data structure. If the

unit test does not expose an incorrect concurrent history, then TxC-ADT will report that
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the data structure satisfies the specified correctness condition. A corner case is an extreme

configuration of a data structure, such as a full or empty queue. The unit test should be

written to include all known corner cases to expose bugs that would go undetected in a

general unit test.

Model checking is vulnerable to state space explosion due to the exploration of all pos-

sible thread interleavings. CDSChecker [75] uses dynamic partial order reduction [31] to

minimize the exploration of redundant executions. Since CDSChecker cannot completely

explore infinite state spaces, unbounded loops are explored under the restriction of a fair

schedule. Additional effort is also required by the user to construct a unit test that is as

small as possible while including all data structure operations and corner cases. Since a

unit test that includes all possible inputs leads to a infinite state space, a minimal set of

inputs should be chosen to explore the possible behaviors of the data structure.

TxC-ADT’s recursive topological sort optimization is limited to operations such that com-

mutativity is independent of the state of the data structure. For example, the enqueue()

and dequeue() operations of a queue commute if the queue is not empty. Since the state

of the queue is affected by any committed transaction, it is not possible to conclusively

determine if two transactions comprising queue operations will always commute. Estab-

lishing a commutative relationship between transactions is limited to set operations since

two transactions on a set commute given that the operations in transaction t1 are passed

different inputs than the operations in transaction t2.
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Progress Verification

The progress verification methodology is applied to a lock-free transactional list [107]

and a wait-free queue [57]. Both data structures require descriptor-based mechanisms to

achieve the designed progress guarantee.

Lock-Free Transactional List

Lock-free transactional transformation implements the lock-free algorithm of Figure 3.24

because FinishPendingTxn will check the help stack prior to entering a loop to finish the

transaction, allowing for the application of Theorem 3.0.1 to prove lock-freedom. The

shared resource for the lock-free transactional list is the head of the list. The specification

for FinishPendingTxn is shown in Figure 4.11. FinishPendingTxn will only be called if a

conflict is detected with an existing node in the list. Therefore, the head must point to some

node next since the list is not empty, as indicated in the shared state of the precondition.

Each thread maintains a thread local help stack, so it is hidden from the other functions of

the lock-free transactional list. If the help stack contains the descriptor desc, then a cyclic

dependency is detected and the transaction is aborted. If the help stack does not contain

the descriptor desc, then it will push the descriptor onto the help stack and execute all

operations in the transaction descriptor, indicated by the head pointing to an updated

list next′ in the shared state of the postcondition. Once all operations are executed, the

descriptor is popped from the help stack. Therefore in the postcondition, the top of the

help stack should not point to descriptor desc.
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I : = m head : list Node, m head 7→ m head
PRE: LOCAL: ∃ desc : Desc,∃ opid : int, desc 7→ desc ∧ opid 7→ opid

SEP: m head : list Node, m head 7→ m head ∗ ∃ next : Node, (m head 7→ ,next, ),
∃ helpStack : HelpStack, helpStack 7→ helpStack
POST: SEP: m head : list Node, m head 7→ m head∗
if (!helpStack.Contain(desc)) then
∃ next′ : Node, (m head 7→ ,next′, ) ∧ helpStack.Top()! = desc
else desc.status 7→ ABORTED
R : = FinishPendingTxn.G ∧ Insert.G ∧Delete.G ∧ Find.G
G : = (helpStack.Contains(desc) n desc.status 7→ ABORTED) ∨ (!helpStack.Contains(desc) n helpStack.Push(desc)
∧ (∀opid′ : int, opid′ ≥ opid ∧ opid′ < desc.size ∧ ∃ op : Operator, op 7→ desc.ops[opid]∧
((op.type = INSERT ∧ Insert.G) ∨ (op.type = DELETE ∧Delete.G) ∨ (op.type = FIND ∧ Find.G))) n helpStack.pop())
LOOP INVARIANT: ∃ j : int,
PROP: opid ≤ j ≤ desc.size
LOCAL: opid 7→ j
SEP: ∃ op : Operator, op 7→ desc.ops[ j] ∧ ((op.type = INSERT ∧ Insert.POST.SEP)∨
(op.type = DELETE ∧Delete.POST.SEP) ∨ (op.type = FIND ∧ Find.POST.SEP))

Figure 4.11: Specification for FinishPendingTxn

The rely condition assumes potential interference from all functions in the lock-free trans-

actional list. FinishPendingTxn provides the guarantee that the transaction will be aborted

if the help stack contains the descriptor. Otherwise, the descriptor is pushed onto the help

stack and proceeds to perform the operations in the transaction descriptor. Since the help

stack contains the descriptor while the operations are being performed, any cyclic depen-

dencies will be prevented when invoking FinishPendingTxn, ensuring lock-free progress.

The loop invariant reflects the invocation of the operations in the transaction descriptor

starting from desc.ops[opid] and ending at desc.ops[desc.size]. Inductive reasoning is used

to prove that the loop invariant holds. The existential variable j is instantiated with the

value opid. The existential variable op is instantiated with the value desc.ops[opid]. The

value of op.type will decide which function (Insert, Delete, or Find) to invoke. In order to

prove a function call, the input parameters provided to the function call in the framework
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must demonstrate that the current precondition implies the precondition of the function,

separated by a Frame assertion on the free resources [3].

It now must be shown that the postcondition of the function call holds in order to prove that

the precondition implies the loop invariant. For each function, the postcondition specifies

that the function will complete without an abort given that no conflict is detected. If a

conflict is detected, the function that detects the conflict will set out to help the conflicting

transaction by calling FinishPendingTxn. The postcondition of FinishPendingTxn specifies

that it will either 1) abort due to a cyclic dependency, or 2) push the descriptor onto the

help stack until it finishes the transaction it started to help. In either case, the postcondition

of the function (Insert, Delete, or Find) holds as provided by the guarantee condition of

FinishPendingTxn. Therefore, the precondition implies the loop invariant.

A symbolic execution is performed on the loop body using the forward tactic until the end

of the loop body is reached. It must be shown that the loop body implies the loop invariant.

The existential variable j is instantiated with the value j+1 to show that the loop invariant

holds for all values of j. The variable op is instantiated with the value desc.ops[ j+1]. The

same logic used to prove that the precondition implies the loop invariant may be used to

prove that the loop body implies the loop invariant. By Theorem 3.0.1, FinishPendingTxn

is lock-free.

Wait-Free Queue

The wait-free queue [57] ensures wait-free progress by requiring each thread to check

its designated location in the helpRecords array to determine if it is required to help a

thread prior to starting its own operation. The wait-free queue therefore implements the

wait-free algorithm of Figure 3.26, allowing for the application of Theorem 3.0.2 to prove
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wait-freedom. The shared resources for the wait-free queue are provided in Figure 4.12.

Resource r1 is the state array, where each cell i of the array stores information regarding the

operation that thread i needs help performing. Resource r2 is the helpRecords array, where

each cell i of the array stores information regarding the thread to be helped by thread i.

Resource r3 is the tail pointer, where a NULL value for the tail indicates an empty queue,

and a non-NULL value for the tail indicates that the queue is not empty and the tail’s

next pointer is NULL. Resource r4 is the head pointer, where a NULL value for the head

indicates an empty queue, and a non-NULL value for the head indicates that the queue is

not empty.

r1 : = ∃ state : list OpDesc, state 7→ state
r2 : = ∃ helpRecords : list HelpRecords, helpRecords 7→ helpRecords
r3 : = ∃ last : Node, tail 7→ last ∧ (last 7→ NULL ∧ emp)∨
(last , NULL ∧ ∃ next : Node, (last 7→ ,next) ∧ next 7→ NULL)
r4 : = ∃ f irst : Node, head 7→ f irst ∧ ( f irst 7→ NULL ∧ emp)
∨ ( f irst , NULL ∧ ∃ next : Node, ( f irst 7→ ,next)

Figure 4.12: Shared Resources for Wait-Free Queue

The specification for help enq is shown in Figure 4.13. The postcondition specification of

the shared state reflects that the last node’s next pointer is updated to state′[tid].node. The

variable state′ is used because the state array may change at any moment due to interference

by the other threads. When the last node’s next pointer is successfully updated, the shared

state includes changes by help f inish enq to change the tail to point to state’[tid].node. The

rely condition of help enq includes functions that modify the state array and functions that

modify the tail.

106



I : = r4
PRE: LOCAL: ∃ tid : int,∃ phase : int, tid 7→ tid, phase 7→ phase

SEP: r1 ∗ r2 ∗ r3
POST: SEP: ∃ last : Node,∃ state′ : list OpDesc, (last 7→ , state′[tid].node) ∧ (state′[tid].node , NULL∧
(state′[tid].node 7→ ,NULL)) ∗ state 7→ state′ ∗ help f inish enq.POST.SEP
R : = help i f needed.G ∧ help f inish enq.G ∧ w f deq.G ∧ help deq.G ∧ help f inish deq.G ∧ f ix tail.G∧
CompareAndSwap.G
G : = help enq.PRE.SEP n help enq.POST.SEP
LOOP INVARIANT: ∃ tid′ : int,
PROP: 0 ≤ tid′ ≤ NUM THRDS
LOCAL:
SEP: ∃ helpRecords′ : list HelpRecords,∃ last : Node,∃ next : Node,
((helpRecords′[tid′].nextCheck 7→ helpRecords[tid′].nextCheck − 1) ∨ ((help enq.POST.SEP ∨ help deq.POST.SEP)∗
helpRecords′[tid′].curTid 7→ (helpRecords[tid′].curTid+1)%NUM THRDS) ∗ last 7→ next)∨
(∃ state′ : list OpDesc, state 7→ state′ ∗ ((last 7→ , state′[tid′].node)∧
(state′[tid′].node , NULL ∧ (state′[tid′].node 7→ ,NULL))) ∗ help f inish enq.POST.SEP)

Figure 4.13: Specification for help enq

The loop invariant specifies that there exists some thread tid′ such that it either up-

dates the last node’s next pointer when invoking enq, or when invoking help enq. If

the update occurs during enq, then the thread to succeed must have either decremented

helpRecords[tid′].nextCheck, or helped an operation that needed help (enqueue or dequeue)

and incremented helpRecords[tid′].curTid. Otherwise, if the update occurs during help enq,

then thread tid′ will have updated the last node’s next pointer to point to state’[tid’].node

and updated the tail to point to state’[tid’].node by calling help f inish enq. The existential

variable tid′ is instantiated with the current thread id TID to show that the precondition of

the whole loop body implies the loop invariant. After a symbolic execution through the

loop body, the existential variable tid′ is instantiated with TID + 1 to show that the loop

body implies the loop invariant for any thread that succeeds at applying CAS to the last

node’s next pointer. By Theorem 3.0.2, help enq is wait-free.
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Transactional Merging

The performance of transactional merging is evaluated for the set and map abstract data

types. For the set type, transactional merging is applied to a lock-free transactional

list [107] and a lock-free transactional red-black tree and compared against LFTT. A micro-

benchmark is used to evaluate performance for a write-dominated workload (50% Insert,

50% Delete) and mixed workload (33% Insert, 33% Delete, 34% Find). This evaluation

method [40, 107] consists of a tight loop that performs a fixed size transaction comprising

a random mixture of Insert, Delete, and Find operations based on the workload type.

For the map type, transactional merging is applied to a lock-free transactional dictionary

and integrated into the Silo database [98] by replacing the Masstree [67] indexing struc-

ture and epoch-based group commit protocol with the lock-free transactional dictionary.

The performance of the database incorporating the lock-free transactional dictionary is

compared to the performance of the original Silo database on the TPC-C benchmark.

The workloads evaluated on the TPC-C benchmark include write-dominated (100% new-

order) and mixed (20% new-order, 20% payments, 20% delivery, 20% order-status, and

20% stock-level). The tests are conducted on two different systems, including a 64-core

NUMA system (4 AMD opteron 6272 CPUs with 16 cores per chip @2.1 GHz) and 24-core

Dell Precision (Intel Xeon Platinum 8160 @2.1 GHz).

Transactional List and Red-Black Tree

The performance results for the lock-free transactional list and lock-free transactional red-

black tree evaluated on the NUMA system and Dell Precision are shown in Figure 4.14

and Figure 4.15, respectively. The performance results graphs for both the NUMA system

and Dell Precision use a logarithmic scale for the y-axis. The transaction size is varied
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between two and 16. The throughput is measured according to the number of completed

operations per second, which is calculated by dividing the product of the number of

committed transactions and the transaction size by the execution time (in seconds). Each

thread performs 104 transactions comprising operations applied to randomly selected

keys, where the key range is set to 103. The transactional list and transactional red-black

tree using the transactional merging technique are denoted as LFTTM-X, where X is the

transaction size. The transactional list and transactional red-black tree using lock-free

transactional transformation are denoted as LFTT-X, where X is the transaction size. The

general trend observed for both LFTTM and LFTT for all testing scenarios is that the

throughput increases as the transaction size decreases. This occurs because a smaller

transaction endures a lesser penalty in comparison with a larger transaction due to an

abort since fewer operations are discarded. Another trend observed for both LFTTM and

LFTT for all testing scenarios is that the throughput scales well up to a transaction size

of four. For a transaction size greater than four, LFTTM and LFTT no longer scale well.

The probability that two transactions of size m with a key range of n contain a conflicting

operation is 1 − (n−m)m

nm , since there are (n − m)m key selections that do not contain the

keys of interest. As the transaction size increases, the probability for a semantic conflict

with another transaction increases. This results in poor scalability because 1) the execution

times are longer due to the overhead of invoking the helping scheme for semantic conflicts,

and 2) fewer transactions are committed due to unresolvable semantic conflicts.

The write-dominated workload on the NUMA system for the transactional list is depicted

in the first graph of Figure 4.14. For executions within one CPU chip (16 threads or less),

the average speedup of LFTTM over LFTT is 80% (size 2), 79% (size 4), 85% (size 8), and

100% (size 16). In general, the speedup of LFTTM over LFTT increases as the transaction

size increases for the transactional list. The reason for this trend is that transactional
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merging reduces the number of aborts by merging operations of two transactions with a

semantic conflict rather than forcing one of the transactions to abort. The performance

improvement obtained by a reduction in aborts increases as the transaction size increases

because aborting a transaction forces all operations in the transaction to be discarded. For

executions with more than one CPU chip (more than 16 threads), the average speedup is

reduced due to the cost of remote memory accesses. The speedup of LFTTM over LFTT

averaged over executions with more than 16 threads is 68% (size 2), 54% (size 4), 23% (size

8), and 64% (size 16).
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Figure 4.14: List and Red-Black Tree Results on NUMA system

The mixed workload on the NUMA system for the transactional list is depicted in the

second graph of Figure 4.14. Since transactional merging only reduces semantic conflicts

for Insert operation pairs or Delete operation pairs, the addition of the Find operation

reduces the chance on a conflict to merge operations from 50% to 22% (2 outcomes that

can merge out of 9 total outcomes). For executions within one CPU chip (16 threads

or less), the average speedup of LFTTM over LFTT is 24% (size 2), 24% (size 4), 61%

(size 8), and 100% (size 16). For executions with more than one CPU chip (more than 16

threads), the speedup of LFTTM over LFTT averaged over executions with more than 16

threads is 14% (size 2), and 78% (size 16). LFTTM-4 and LFTTM-8 experience a slowdown

when compared to LFTT for executions with more than 16 threads resulting from remote

memory accesses.
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The transactional red-black tree does not follow the same trends as the transactional list

because inserted nodes that cause the red-black tree to become unbalanced require a tree

repair. All threads that traverse a node that requires a repair must continuously apply the

lock-free repair operation until some thread succeeds. As the transaction size increases, the

chance that a thread will need to help complete a pending transaction and traverse a node

that needs repairing also increases. Since repairing the tree structure is a computationally

expensive sequential bottleneck, performance is degraded for both LFTTM and LFTT as

the transaction size increases. Another difference between the transactional red-black tree

and transactional list is that the red-black tree has a logarithmic search time, resulting

in fewer remote memory accesses than the list. This leads to the red-black tree yielding

better consistency with respect to speedup across multiple CPUs on the NUMA system.

The write-dominated workload on the NUMA system for the transactional red-black tree

is depicted in the third graph of Figure 4.14. The average speedup of LFTTM compared

to LFTT over all executions is 212% (size 2), 134% (size 4), 36% (size 8), and 50% (size

16). As expected, the speedup of LFTTM over LFTT for the red-black tree decreases

as the transaction size increases. The mixed workload on the NUMA system for the

transactional red-black tree is depicted in the fourth graph of Figure 4.14. The average

speedup of LFTTM compared to LFTT over all executions is 60% (size 2), 45% (size

4), 32% (size 8), and 47% (size 16). The speedup of the write-dominated configuration

in comparison to the mixed configuration demonstrates potential performance gains of

transactional merging for a write-dominated workload.

The write-dominated workload on the Dell Precision for the transactional list is depicted

in the first graph of Figure 4.15. The Dell Precision contains 24 cores on a single die,

enabling good scalability across all 24 cores. The average speedup of LFTTM compared

to LFTT over all executions is 70% (size 2), 75% (size 4), 81% (size 8), and 162% (size
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16). Similar to the transactional list performance on the NUMA system, the speedup of

LFTTM over LFTT increases as the transaction size increases. The mixed workload on the

Dell Precision for the transactional list is depicted in the second graph of Figure 4.15. The

average speedup of LFTTM compared to LFTT over all executions is 20% (size 2), 17%

(size 4), 31% (size 8), and 136% (size 16). The reduced speedup of LFTTM over LFTT for

the mixed workload is due to Find reducing the opportunity for performance gains by

merging operations.
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Figure 4.15: List and Red-Black Tree Results on Dell Precision

The write-dominated workload on the Dell Precision for the red-black tree is depicted in

the third graph of Figure 4.15. The average speedup of LFTTM compared to LFTT over

all executions is 229% (size 2), 154% (size 4), 34% (size 8), and 50% (size 16). The speedup

of LFTTM over LFTT decreases as the transaction size increases due to the lock-free tree

repair operation. The mixed workload on the Dell Precision for the transactional red-

black tree is depicted in the fourth graph of Figure 4.15. The average speedup of LFTTM

compared to LFTT over all executions is 70% (size 2), 47% (size 4), 28% (size 8), and 48%

(size 16). A small speedup reduction is observed for the mixed workload in comparison

to the write-dominated workload due to the additional Find operation.
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Transactional Dictionary

The NUMA system and Dell Precision performance results for the TPC-C benchmark

are shown in Figure 4.16 and Figure 4.17, respectively. The TPC-C benchmark assigns

customers to a set of districts within a local warehouse. Clients place orders as a transaction

with either a local warehouse or remote warehouse. The transactions are executed in

the database by worker threads, where an increase in workers causes an increase in

contention. The database size is set to four warehouses. The throughput is measured

according to the number of completed transactions per second. The lock-free transactional

dictionary using the transactional merging technique is denoted as LFTTM. The lock-free

transactional dictionary using lock-free transactional transformation is denoted as LFTT.

The Silo database is denoted as Silo.
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Figure 4.16: TPC-C Benchmark on NUMA system
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Figure 4.17: TPC-C Benchmark on Dell Precision

The general trend observed for LFTTM, LFTT, and Silo for all testing scenarios on the
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NUMA system is that Silo outperforms LFTTM and LFTT for 16 threads or less. This

occurs because Silo does not experience read/write conflicts until the number of threads

is 16 or higher. The increase in aborts due to read/write conflicts hurts Silo’s throughput

in comparison to LFTTM and LFTT because both LFTTM and LFTT are designed to avoid

read/write conflicts. On the Dell Precision, LFTTM and LFTT outperform Silo for all

testing scenarios. This performance gain for LFTTM and LFTT is likely attributed to

improved execution times for a thread’s access of another thread’s transaction descriptor

when all cores are located on a single die. The executions with thread counts higher than

24 are no longer fully concurrent, which causes a drop in performance for LFTTM, LFTT,

and Silo.

The write-dominated workload on the NUMA system for the TPC-C benchmark is de-

picted in the first graph of Figure 4.16. For executions within one CPU chip (16 threads

or less), the average speedup of LFTTM over LFTT is 16%, while no speedup is obtained

for LFTTM over Silo. However, the speedup averaged over executions with more than 16

threads is 25% for LFTTM over LFTT and 123% for LFTTM over Silo. The mixed work-

load on the NUMA system for the TPC-C benchmark is depicted in the second graph of

Figure 4.16. For executions within one CPU chip (16 threads or less), the average speedup

of LFTTM over LFTT is 12%, while no speedup is obtained for LFTTM over Silo. The

speedup averaged over executions with more than 16 threads is 5% for LFTTM over LFTT

and 58% for LFTTM over Silo. LFTTM obtains the highest speedup over LFTT and Silo

for the write-dominated workload.

The write-dominated workload on the Dell Precision for the TPC-C benchmark is de-

picted in the first graph of Figure 4.17. The speedup averaged over all executions is

24% for LFTTM over LFTT and 98% for LFTTM over Silo. The mixed workload on the

Dell Precision for the TPC-C benchmark is depicted in the second graph of Figure 4.17.
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The speedup averaged over all executions is 4% for LFTTM over LFTT and 112% for

LFTTM over Silo. LFTTM obtains the highest speedups for the write-dominated workload

when compared to LFTT and for the mixed workload when compared to Silo. Although

LFTTM theoretically performs best for write-dominated workloads, the mixed workload

for TPC-C issues more transactions, providing more opportunities for performance gains

by reducing aborted transactions.
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CHAPTER 5: CONCLUSION

This dissertation presents tools and techniques for verifying safety and liveness properties

for state-of-the-art multiprocessor programs. My correctness verification tools focus on

multiprocessor programs that utilize a composition of data structure operations performed

in both a non-atomic and atomic manner. My progress verification technique addresses

the challenges associated with thread interference introduced by descriptor-based helping

mechanisms.

I present CCSpec, the first tool that checks the correctness of a composition of concurrent

multi-container operations performed in a non-atomic manner. I develop a lightweight

custom specification language that allows the user to define a correctness condition asso-

ciated with the abstract function layer and a correctness condition associated with the data

structure layer. The experimental results demonstrate the practical application of CCSpec

and its ability to produce counterexamples for the specified correctness condition at the

data structure layer and abstract function layer. CCSpec will allow designers to check

the correctness of a composition of data structure operations as a concurrent algorithm

undergoes routine maintenance, design modifications, or optimizations such as relaxing

the correctness condition with the benefit of an improvement in performance.

I present TxC-ADT, the first correctness tool that can check the correctness of transactional

data structures. TxC-ADT’s capabilities encompass the designed correctness guarantees

of transactional data structures that employ a high-level semantic conflict detection by re-

casting correctness in terms of an abstract data type. Existing correctness verification tools

for transactional memory systems evaluate correctness according to the thread transitions

in the presence of low-level read/write conflicts, which is not applicable to state-of-the-art
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transactional data structures. I accommodate a diverse assortment of transactional cor-

rectness conditions by presenting a technique for defining correctness as a happens-before

relation. Since the technique preserves atomicity and isolation, it can be easily extended

to other transactional correctness conditions that may be adopted in the advancement of

transactional data structures. I account for transactional correctness conditions that do not

require a total order on a transactional execution, such as causal consistency, by maintain-

ing a per-thread transactional happens-before graph. The case studies demonstrate the

practical application of TxC-ADT to check the correctness of cutting-edge transactional

data structures.

I present the first methodology for verifying progress guarantees for descriptor-based

non-blocking algorithms. Previous related techniques have assumed that the ability of a

thread to exit a CAS-based loop implies lock-freedom and that wait-freedom is a thread

local property. The methodology advances the existing approaches for progress verifi-

cation by presenting a technique for formally reasoning about the helping mechanisms

required to preserve the designed progress guarantee. The technique includes a func-

tional specification that defines the state of the auxiliary structure of descriptor objects

in the loop invariant. To enable the semi-automatic verification of the specifications, I

implement a framework that extends the Verified Software Toolchain to accommodate

Local-Rely-Guarantee reasoning. I demonstrate the effectiveness of the methodology by

formally verifying progress for a lock-free transactional list and a wait-free queue.

I introduce transactional merging, a technique that relaxes the semantic conflict resolution

of transactional data structures by merging conflicting operations of transactions to reduce

aborts. A function is provided that enables the designer to specify which semantic conflicts

are eligible to be eliminated to allow transactional merging to be configured such that it

meets the needs of the system. Transactional merging guarantees strict serializability
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through a strategy that will undo the effects of partially merged operations given that

the transaction attempting to merge operations aborts. The experimental evaluation

demonstrates that transactional merging achieves an average speedup of up to 162%

over LFTT for the lock-free transactional linked list and 229% over LFTT for the lock-free

transactional red-black tree. To demonstrate a practical application, transactional merging

is applied to a lock-free transactional dictionary and integrated into the Silo database by

replacing the Masstree indexing structure and epoch-based group commit protocol with

the lock-free transactional dictionary. Transactional merging achieves an average speedup

of up 123% over the Masstree indexing used in the Silo database and 25% over LFTT when

evaluated on the TPC-C benchmark.
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APPENDIX A: CORRECTNESS OF CCSPEC
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The correctness discussions for CCSpec’s general approach are adapted from Peterson et

al. [81]. A formal definition of commutativity for data structure methods and abstract

functions is provided as follows.

Definition A.0.1. Two methods m1 and m2 commute if for all histories h, if h ·m1 and h ·m2

are both legal, then h · m1 · m2 and h · m2 · m1 are both legal and define the same abstract

state.

Definition A.0.2. Two abstract functions f1 and f2 commute if for all histories h, if h · f1 and

h · f2 are both legal, then h · f1 · f2 and h · f2 · f1 are both legal and define the same abstract

state.

Theorem A.0.1. Let method (or abstract function) i and method (or abstract function) j

be commutative and allowed to be reordered according to the happens-before graph. Let

h be all possible histories generated by a topological sort of the happens-before graph.

Algorithm 6 will explore h · i · j and terminate the PrunedRecTopologicalSort call for

h · j · i.

Proof. Let commutes matrix be a boolean two-dimensional matrix where position (i, j) is

true if method (or abstract function) i and method (or abstract function) j commute and

false otherwise. Let reorder matrix be a boolean two-dimensional matrix where position

(i, j) is true if method (or abstract function) i and method (or abstract function) j have no

ordering constraints and false if method (or abstract function) i and method (or abstract

function) j are ordered by the happens-before graph. Let L be a partial list of methods

or abstract functions that are sorted according to the happens-before graph. Let N be

a list of all methods or abstract functions with no incoming edges. Let n ∈ N be a

method or abstract function that is under consideration for being amended to the end

of L. By Definition A.0.1 and Definition A.0.2, if L.back() and n commute, then these
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methods or abstract functions executed in either order will yield the same abstract state.

If L.back() and n are allowed to be reordered according to the happens-before graph, then

either L.back() · n or n · L.back() can be pruned from the search space if L.back() and n

commute. If pruning is possible, arbitrarily choose to explore the ordering in which

method id n is greater than method id L.back(), denoted n > L.back(). Given that L is

not empty, commutes matrix[n][L.back()] is true, and reorder matrix[n][L.back()] is true, then

the orderings such that n < L.back() do not need to be explored. Let method (or abstract

function) i have a smaller id than method (or abstract function) j. Since the if-statement

on line 6.2 will resolve to true if n < L.back(), L.back() and n commute, and L.back() and n

can be reordered according to the happens-before graph, the history h · i · j will be explored

and the PrunedRecTopologicalSort call will terminate for h · j · i. �

Theorem A.0.2. RecTopologicalSort returns a set S of all legal sequential histories de-

fined by the happens-before graph.

Proof. Let N be a list of all methods or abstract functions with no incoming edges in the

happens-before graph. Any selection of n ∈ N will yield a valid topological sort of the

happens-before graph. The foreach-statement on line 5.5 callsPrunedRecTopologicalSort

with the parameter n ∈ N. Since L is initially empty, pruning is not yet possible so n is

amended to the back of L and removed from N. All methods or (abstract functions) m

with an edge from n to m are removed from the happens-before graph on line 6.8. If m

has no incoming edges, it is amended to N on line 6.10. Any selection of n′ ∈ N will yield

a valid topological sort of the happens-before graph. The foreach-statement on line 6.11

calls PrunedRecTopologicalSortwith the parameter n′ ∈ N. Since L is not empty, n′ may

possibly be pruned from the recursive topological sort on line 6.2. By Theorem A.0.1,

PrunedRecTopologicalSort will only explore one ordering of commutative methods or

abstract functions that are allowed to be reordered according to the happens-before graph.
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Given that n′ is not pruned from the recursive toplological sort, n′ is amended to the back

of L and removed from N. The recursive call terminates when N is empty and amends

the topological sort L to S on line 6.14. Since all possible orderings are considered for

exploration and the pruned orderings will produce the same abstract state as another

topological sort L ∈ S by Theorem A.0.1, Definition A.0.1, and Definition A.0.2 set S will

contain all legal sequential histories defined by the happens-before graph. �

Theorem A.0.3. (Soundness) Let h be a concurrent history of implementation X. If h does

not satisfy the specified correctness condition then IsHistoryCorrect(h) (Algorithm 2)

returns false.

Proof. By Theorem A.0.2, RecTopologicalSort returns a set S of all legal sequential his-

tories defined by the happens-before graph. The foreach-statement on line 2.4 iterates

through every legal sequential history in S. The foreach-statement on line 2.7 iterates

through each method or abstract function called in legal sequential history s ∈ S. For

each method or abstract function the observed output from the concurrent history is

amended to the list concurrent output on line 2.8. The function pointer associated with

the method or abstract function is invoked on line 2.9 to generate the sequential output,

which is amended to the list sequential output on line 2.10. If the if-statement on line 2.11

evaluates to true, then concurrent history h is equivalent to a legal sequential history

generated from the happens-before graph. Since the happens-before graph represents

the allowable orderings of the methods or abstract functions according to the specified

correctness condition, concurrent history h satisfies the specified correctness condition

and IsHistoryCorrect(h) returns true. If the end of the for-loop on line 2.4 is reached,

concurrent history h is not equivalent to any legal sequential history generated from the

happens-before graph. Concurrent history h does not satisfy the specified correctness

condition and IsHistoryCorrect(h) returns false. Therefore, the theorem holds. �
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Theorem A.0.4. (Completeness) Let H be the set of concurrent histories generated from

a unit test m of implementation X. If for any arbitrary h ∈ H IsHistoryCorrect(h) (Al-

gorithm 2) returns false, then implementation X does not satisfy the specified correctness

condition and IsUnitTestCorrect (Algorithm 3) returns false.

Proof. If there exists some concurrent history h ∈ H such that IsHistoryCorrect(h) re-

turns false, then by Theorem A.0.3, h does not satisfy the specified correctness condi-

tion. An implementation X satisfies the specified correctness condition with respect to

unit test m if for all h ∈ H, IsHistoryCorrect(h) returns true. If given an arbitrary

h ∈ H such that IsHistoryCorrect(h) returns false, then the boolean oucome on line 3.6

is set to false. Implementation X does not satisfy the specified correctness condition and

IsUnitTestCorrect (Algorithm 3) returns false. Therefore, the theorem holds. �
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A formal definition of commutativity between transactions is provided as follows.

Definition B.0.1. Two transactions T1 and T2 commute if for all histories h, if h ·T1 and h ·T2

are both legal, then h ·T1 ·T2 and h ·T2 ·T1 are both legal and define the same abstract state.

Theorem B.0.1. Let transaction i and transaction j be commutative and allowed to be re-

ordered according to the transactional happens-before graph. Let h be all possible histories

generated by a topological sort of the transactional happens-before graph. Algorithm 6

will explore h · i · j and terminate the PrunedRecTopologicalSort call for h · j · i.

Proof. Let commutes matrix be a boolean two-dimensional matrix where position (i, j) is

true if transaction i and transaction j commute and false otherwise. Let reorder matrix be a

boolean two-dimensional matrix where position (i, j) is true if transaction i and transaction

j have no ordering constraints and false if transaction i and transaction j are ordered by the

transactional happens-before graph. Let L be a partial list of transactions that are sorted

according to the transactional happens-before graph. Let N be a list of all transactions

with no incoming edges. Let n ∈ N be a transaction that is under consideration for being

amended to the end of L. By Definition B.0.1, if L.back() and n commute, then these

transactions executed in either order will yield the same abstract state. If L.back() and n

are allowed to be reordered according to the transactional happens-before graph, then

it is only necessary to explore the ordering L.back() · n or n · L.back(). Arbitrarily choose

to explore the ordering in which transaction id n is greater than transaction id L.back(),

denoted n > L.back(). Given that L is not empty, commutes matrix[n][L.back()] is true, and

reorder matrix[n][L.back()] is true, then the orderings such that n < L.back() do not need to

be explored. Let transaction i have a smaller id than transaction j. Since the if-statement

on line 6.2 will resolve to true if n < L.back(), L.back() and n commute, and L.back() and n

can be reordered according to the transactional happens-before graph, the history h · i · j
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will be explored and the PrunedRecTopologicalSort call will terminate for h · j · i. �

Theorem B.0.2. RecTopologicalSort returns a set S of all legal sequential histories de-

fined by the transactional happens-before graph.

Proof. Let N be a list of all transactions with no incoming edges in the transactional

happens-before graph. Any selection of n ∈ N will yield a valid topological sort of the

transactional happens-before graph. The foreach-statement on line 5.5 calls

PrunedRecTopologicalSort with n ∈ N as a parameter. Since L is initially empty, n is

amended to the back of L and removed from N. All transactions m with an edge from

n to m are removed from the transactional happens-before graph on line 6.8. If m has

no incoming edges, it is amended to N on line 6.10. Any selection of n′ ∈ N will yield

a valid topological sort of the happens-before graph. The foreach-statement on line 6.11

calls PrunedRecTopologicalSort with n′ ∈ N as a parameter. Since L is not empty, n′

may possibly be pruned from the recursive topological sort on line 6.2. By Theorem B.0.1,

PrunedRecTopologicalSort will only explore one ordering of commutative transactions

that are allowed to be reordered according to the transactional happens-before graph.

Given that n′ is not pruned from the recursive toplological sort, n′ is amended to the back

of L and removed from N. The recursive calls terminates when N is empty and amends

the topological sort L to S on line 6.14. Since all possible orderings are considered for

exploration and the pruned orderings will produce the same abstract state as another

topological sort L ∈ S by Theorem B.0.1 and Definition B.0.1, set S will contain all legal

sequential histories defined by the transactional happens-before graph. �

Theorem B.0.3. (Soundness) Let h be a concurrent history of implementation X. If h does

not satisfy the specified correctness condition then IsHistoryCorrect(h) (Algorithm 7)

returns false.
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Proof. By Theorem B.0.2, RecTopologicalSort returns a set S of all legal sequential histo-

ries defined by the transactional happens-before graph. The foreach-statement on line 7.4

iterates through every legal sequential history in S. The foreach-statements on line 7.7 and

line 7.8 iterate through each method called by each transaction in legal sequential history

s ∈ S. For each method the observed output from the concurrent history is amended to the

list concurrent output on line 7.9. The method’s function pointer is invoked on line 7.10 to

generate the sequential output, which is amended to the list sequential output on line 7.11.

Aborted transactions are accounted for by invoking the inverse method’s function pointer

on line 7.14. If the if-statement on line 7.15 evaluates to true, then concurrent history h is

equivalent to a legal sequential history generated from the transactional happens-before

graph. Since the transactional happens-before graph represents the allowable orderings

of the transactions according to the specified correctness condition, concurrent history

h satisfies the specified correctness condition and IsHistoryCorrect(h) returns true. If

the end of the for-loop on line 7.4 is reached, IsHistoryCorrect(h) returns false. In this

case, since concurrent history h is not equivalent to any legal sequential history generated

from the transactional happens-before graph, h does not satisfy the specified correctness

condition. Therefore, the theorem holds. �

Theorem B.0.4. (Completeness) Let H be the set of concurrent histories generated from

a unit test m of implementation X. If for any arbitrary h ∈ H IsHistoryCorrect(h) (Al-

gorithm 7) returns false, then implementation X does not satisfy the specified correctness

condition and IsUnitTestCorrect (Algorithm 8) returns false.

Proof. If there exists some concurrent history h ∈ H such that IsHistoryCorrect(h) re-

turns false, then by Theorem B.0.3, h does not satisfy the specified correctness condition.

An implementation X satisfies the specified correctness condition with respect to unit

test m if for all h ∈ H, IsHistoryCorrect(h) returns true. If given an arbitrary h ∈ H
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such that IsHistoryCorrect(h) returns false, then the boolean oucome is set to false

on line 8.6. Implementation X does not satisfy the specified correctness condition and

IsUnitTestCorrect (Algorithm 8) returns false. Therefore, the theorem holds. �
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The correctness statements, provided in terms of the map abstract data type, show that

transactional merging is 1) strictly serializable and 2) lock-free when applied to LFTT.

Definitions

A method call is a pair consisting of an invocation and matching response [46]. An event is

1) a change in the status of a transaction including transaction-begin, commit, or abort, or

2) a change in the status of a method including an invocation or response. A history is a

finite series of instantaneous events [46]. An object subhistory, denoted h|O is a subsequence

of the events of h, restricted to an object O [46]. A transaction subhistory, denoted h|T is a

subsequence of the events of h, restricted to a transaction T [44]. A history is legal if each

object subhistory within each transaction subhistory is legal for that object [46].

Definition C.0.1. A history h is strictly serializable if the subsequence of h consisting of all

events of committed transactions is equivalent to a legal history in which these transactions

execute sequentially in the order they commit [80].

Definition C.0.2. Two method calls I,R and I′,R′ commute if for all histories h, if h · I ·R and

h · I′ · R′ are both legal, then h · I · R · I′ · R′ and h · I′ · R′ · I · R are both legal and define the

same abstract state.

The commutativity specification for map operations is the following, where Op/ f alse

indicates operation Op returns false.
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Insert(x,A)↔ Insert(y,B), x , y

Delete(x)↔ Delete(y), x , y

Insert(x,A)↔ Delete(y), x , y

Put(x,A)↔ Insert(y,B), x , y

Put(x,A)↔ Delete(y), x , y

Put(x,A)↔ Put(y,B), x , y, or x = y and A = B

Get(x)↔ Insert(x,A)/ f alse↔ Delete(x)/ f alse↔ Put(x,A)/ f alse

(C.1)

Definition C.0.3. For a history h and any given invocation I and response R, let I−1 and

R−1 be the inverse invocation and response. Then I−1 and R−1 are the inverse operations of I

and R such that the state reached after the history h · I · R · I−1
· R−1 is the same as the state

reached after history h.

Rules

Any software transactional memory system that obeys the following correctness rules is

strictly serializable [44].

Rule 1. Linearizability: For any history h, two concurrent invocations I and I′ must be

equivalent to either the history h · I · R · I′ · R′ or the history h · I′ · R′ · I · R.

Rule 2. Commutativity Isolation: For any non-commutative method calls I1,R1 ∈ T1

and I2,R2 ∈ T2, either T1 commits or aborts before any additional method calls in T2 are

invoked, or vice-versa.

Rule 3. Compensating Actions: For any history h and transaction T, if 〈T aborted〉 ∈ h, then

it must be the case that h|T = 〈T init〉 · I0 ·R0 · · · Ii ·Ri · 〈T aborted〉 · I−1
i ·R

−1
i · · · I

−1
0 ·R

−1
0 · 〈T aborted〉

where i indexes the last successfully completed method call.
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Strict Serializability and Recovery

It is now shown that transactional merging satisfies the correctness rules required to

guarantee strict serializability. The concrete state of a map is denoted as a node set N.

The abstract state observed by transaction Ti is denoted as Si = {(n.key,n.info.val)|n ∈ N∧

IsKeyPresent(n.info, desci) }, where desci is the descriptor of Ti.

A concurrent method is linearizable if it appears to take effect instantaneously at some

point between the invocation and response. A linearization point is the atomic statement

that finitely decides the result of the method. A state-read point is the atomic statement

where the map is read, which determines the outcome of the linearization point.

Lemma 1. The map operations Insert, Delete, Put, and Get are linearizable, satisfying

Rule 1.

Proof. For the transformed Insert operation, the execution is divided into two code paths

by the condition check on line 13.6. The code path on line 13.7 updates the existing node’s

logical status. If UpdateInfo fails on line 12.20 or line 12.23, no write operation will be

performed to change the logical status of the node. The state-read point for the failure case

on line 12.20 occurs when the previous transaction status is read from oldinfo.desc.status

on line 11.5, or when the previous transaction status is read from oldin f o.desc.status on

line 10.4. The state-read point for the failure case on line 12.23 occurs when the current

transaction status is read from info.desc.status on line 12.22. The abstract states S′ observed

by all transactions immediately after the reads are unchanged,∀i,S′i = Si. The linearization

point for a successful logical status update is when the CAS operation on line 12.24

succeeds. The abstract states S′ observed by the transactions Td executing this operation

immediately after CAS is i = d =⇒ S′i = (Si \ (n.key,n.info.val)) ∪ (n.key, val). For all other
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transactions i , d =⇒ S′i = Si. In all cases, the update of the abstract states conforms to

the sequential specification of the Insert operation. The code path for adding linkage to

a new node if a node with the key of interest does not already exist in the list (line 13.12)

is linearizable because the Do Insert function in the base data structure is linearizable.

The same reasoning can be applied to the transformed Delete, Put, and Get operations

because they share the same logical status update procedure as Insert. �

Lemma 2. The conflict resolution policy in transactional merging satisfies commutativity

isolation as defined in Rule 2.

Proof. By Equation C.1, two map operations commute if they access different keys.

The one-to-one mapping from nodes to keys is formally stated as ∀nx,ny ∈ N, x ,

y =⇒ nx , ny =⇒ nx.key , ny.key. This implies that two map operations commute if

they access different nodes. Let T1 denote a transaction that accesses node n1, where

n.info.desc = desc1 ∧ desc1.status = Active. If another transaction T2 accesses n1, it must per-

form ExecuteOps for T1 on line 12.7. Upon returning from ExecuteOps, T1 will either com-

mit or abort. It is therefore ensured that desc1.status = Committed ∨ desc1.status = Aborted

before T2 proceeds. �

Lemma 3. When a transaction aborts, the logical rollback mechanism employed by trans-

actional merging is equivalent to performing the inverse operations of all computed

operations, satisfying Rule 3.

Proof. Let T denote a transaction that executes the operations I0 · R0 · · · Ii · Ri on nodes

n0 · · · ni and then aborts. Let S0 denote the abstract state immediately before I0. By Rule 3,

T must execute the inverse operations of the successful method calls I−1
i · R

−1
i · · · I

−1
0 · R

−1
0
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after those method calls have succeeded. This is equivalent to requiring that the abstract

state be restored to its original state S0.

When T aborts, the logical rollback mechanism updates T’s transaction descriptor status

from Active to Aborted using a single CAS. The IsKeyPresent function ensures that for

each node nx in n0 · · · ni, the next operation that accesses nx will interpret the current

abstract state Si to be equal to S0. A proof by cases is used for Insert, Delete, Put, and

Get that every possible operation Ix · Rx will interpret the current abstract state Si to be

equal to S0. For all cases, the value of nx can be correctly recovered by reading info.oldval,

which is set on line 12.11 or line 12.13 prior to the CAS operation.

Insert. There are two cases for an Insert(nx.key, nx.info.val) call. In the first case, (nx.key,

val) < S0, where val is any arbitrary value. The Insert method inserts a new node nx into

the map (line 13.12), which has a transaction descriptor field associated with transaction T,

or Insert updates the existing node’s transaction descriptor field to point to T (line 13.7).

Then T aborts at some point after Rx, so T’s transaction descriptor status is set to Aborted.

Any operation that accesses nx will read the transaction descriptor field of nx, observe

T’s descriptor status as Aborted, and logically interpret that (nx.key, val) < Si (line 11.14).

Therefore, Si = S0.

In the second case, (nx.key, nx.info.oldval) ∈ S0. If nx.info.desc.ops[nx.info.opid].type = Insert,

then Insertwill merge its operation with the prefix transaction’s operation associated with

the existing node by setting n.info.merge to true (line 12.21) and change the existing node’s

transaction descriptor field to point to T (line 13.7). Then T aborts at some point after Rx,

so T’s transaction descriptor status is set to Aborted. Any operation that accesses nx will

read the transaction descriptor field of nx, observe T’s descriptor status as Aborted, and

logically interpret that (nx.key, nx.info.oldval) ∈ Si (line 11.14), since info.merge is set to true.

134



Therefore, Si = S0. If nx.info.desc.ops[nx.info.opid].type , Insert, then merging operations

is not possible and Insert does not update the existing node’s NodeInfo. Then T aborts

at some point after Rx, so T’s transaction descriptor status is set to Aborted. Since the

existing node’s NodeInfowas not changed, the abstract state of nx is unaffected, so Si = S0.

Delete. There are two cases for a Delete(nx.key) call. In the first case, (nx.key, nx.info.oldval)

∈ S0. The Deletemethod updates the existing node’s transaction descriptor field to point

to T (equivalent to line 13.7 of Insert). Then T aborts at some point after Rx, so T’s

transaction descriptor status is set to Aborted. Any operation that accesses nx will read

the transaction descriptor field of nx, observe T’s descriptor status as Aborted, and logically

interpret that (nx.key, nx.info.oldval) ∈ Si (line 11.14). Therefore, Si = S0.

In the second case, (nx.key, val) < S0, where val is any arbitrary value. If

nx.info.desc.ops[nx.info.opid].type = Delete, then Delete will merge its operation with the

prefix transaction’s operation associated with the existing node by setting n.info.merge

to true (line 12.21) and change the existing node’s transaction descriptor field to point

to T (equivalent to line 13.7 of Insert). Then T aborts at some point after Rx, so T’s

transaction descriptor status is set to Aborted. Any operation that accesses nx will

read the transaction descriptor field of nx, observe T’s descriptor status as Aborted,

and logically interpret that (nx.key, val) < Si (line 11.14), since info.merge is set to true.

If nx.info.desc.ops[nx.info.opid].type , Delete, then merging operations is not possible and

Delete does not update the existing node’s NodeInfo. Then T aborts at some point af-

ter Rx, so T’s transaction descriptor status is set to Aborted. Since the existing node’s

NodeInfowas not changed, the abstract state of nx is unaffected, so Si = S0.

Put. There are two cases for a Put(nx.key, nx.info.val) call. In the first case, (nx.key,

nx.info.oldval) ∈ S0. The Put method updates the existing node’s transaction descriptor
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field to point to T (equivalent to line 13.7 of Insert). Then T aborts at some point after Rx,

so T’s transaction descriptor status is set to Aborted. Any operation that accesses nx will

read the transaction descriptor field of nx, observe T’s descriptor status as Aborted, and

logically interpret that (nx.key, nx.info.oldval) ∈ Si given that info.oldval , NULL (line 11.14).

The field info.oldval is not NULL if Put overwrites nx’s existing value. Therefore, Si = S0.

In the second case, (nx.key, val) < S0, where val is any arbitrary value. The Put method

inserts a new node nx into the map (equivalent to line 13.12 of Insert), which has a

transaction descriptor field associated with transaction T, or Put updates the existing

node’s transaction descriptor field to point to T (equivalent to line 13.7 of Insert). Then

T aborts at some point after Rx, so T’s transaction descriptor status is set to Aborted.

Any operation that accesses nx will read the transaction descriptor field of nx, observe T’s

descriptor status as Aborted, and logically interpret that (nx.key, val) < Si (line 11.14) given

that info.oldval = NULL. The field info.oldval is NULL if Put inserts a new node into the map.

Therefore, Si = S0.

Get. There are two cases for a Get(nx.key) call. In the first case, (nx.key, nx.info.oldval) ∈ S0.

The Get method updates the existing node’s transaction descriptor field to point to T

(equivalent to line 13.7 of Insert). Then T aborts at some point after Rx, so T’s transaction

descriptor status is set to Aborted. Any operation that accesses nx will read the transaction

descriptor field of nx, observe T’s descriptor status as Aborted, and logically interpret that

(nx.key, nx.info.oldval) ∈ Si (line 11.14). Therefore, Si = S0.

In the second case, (nx.key, val) < S0, where val is any arbitrary value. The Get method

does not update the existing node’s NodeInfo. Then T aborts at some point after Rx, so

T’s transaction descriptor status is set to Aborted. Since the existing node’s NodeInfowas

not changed, the abstract state of nx is unaffected, so Si = S0. �
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Theorem C.0.1. For a data structure that is generated using the transactional merging

technique, the history of committed transactions is strictly serializable.

Proof. Follow lemmas 1, 2, 3, and the main theorem of Herlihy et al.’s work [44], the

theorem holds. �

Progress Guarantees

Transactional merging guarantees lock-free progress because at least one thread makes

progress in a finite number of steps by either committing or aborting a transaction. For a

system with i threads, the maximum number of active transactions is i. The while loop

within ExecuteOps is bounded by the maximum number of operations in a transaction

(denoted as j), but threads may help complete other pending transactions if a semantic

conflict is detected. The bound on the number of recursive helping invocations is the

number of active transactions. If a cyclic dependency exists between transactions, the

duplicate descriptor will be detected within i ∗ j steps since there are at most i active

transactions with at most j operations. A detected cyclic dependency by transaction T

will force T to abort. Therefore, the system guarantees that a transaction will either commit

or abort in at most i ∗ j steps.

137



LIST OF REFERENCES

[1] Afek, Y., Korland, G., and Yanovsky, E. (2010). Quasi-linearizability: Relaxed con-

sistency for improved concurrency. In Principles of Distributed Systems, pages 395–410.

Springer.

[2] Alvaro, P., Bailis, P., Conway, N., and Hellerstein, J. M. (2013). Consistency without

borders. In Proceedings of the 4th annual Symposium on Cloud Computing, page 23. ACM.

[3] Appel, A. W., Dockins, R., Beringer, L., Hobor, A., Dodds, J., Blazy, S., Leroy, X., and

Stewart, G. (2014). Program logics for certified compilers. Cambridge University Press.
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