170,668 research outputs found

    Complexity of ITL model checking: some well-behaved fragments of the interval logic HS

    Full text link
    Model checking has been successfully used in many computer science fields, including artificial intelligence, theoretical computer science, and databases. Most of the proposed solutions make use of classical, point-based temporal logics, while little work has been done in the interval temporal logic setting. Recently, a non-elementary model checking algorithm for Halpern and Shoham's modal logic of time intervals HS over finite Kripke structures (under the homogeneity assumption) and an EXPSPACE model checking procedure for two meaningful fragments of it have been proposed. In this paper, we show that more efficient model checking procedures can be developed for some expressive enough fragments of HS

    Temporal and spatial homogeneity in air pollutants panel EKC estimations: Two nonparametric tests applied to Spanish provinces

    Get PDF
    Although panel data have been used intensively by a wealth of studies investigating the GDP-pollution relationship, the poolability assumption used to model these data is almost never addressed. This paper applies a strategy to test the poolability assumption with methods robust to functional misspecification. Nonparametric poolability tests are performed to check the temporal and spatial homogeneity of the panel and their results are compared with the conventional F-tests for a balanced panel of 48 Spanish provinces on four air pollutant emissions (CH4, CO, CO2 and NMVOC) over the 1990-2002 period. We show that temporal homogeneity may allow the pooling of the data and drive to well-defined nonparametric and parametric cross-sectional U-inverted shapes for all air pollutants. However, the presence of spatial heterogeneity makes this shape compatible with different timeseries patterns in every province - mainly increasing or decreasing depending on the pollutant. These results highlight the extreme sensitivity of the income-pollution relationship to region- or country-specific factors.Environmental Kuznets Curve; Air pollutants; Non/Semiparametric estimations; Poolability tests

    Temporal and spatial homogeneity in air pollutants panel EKC estimations: Two nonparametric tests applied to Spanish provinces

    Get PDF
    Although panel data have been used intensively by a wealth of studies investigating the GDP-pollution relationship, the poolability assumption used to model these data is almost never addressed. This paper applies a strategy to test the poolability assumption with methods robust to functional misspecification. Nonparametric poolability tests are performed to check the temporal and spatial homogeneity of the panel and their results are compared with the conventional F-tests for a balanced panel of 48 Spanish provinces on four air pollutant emissions (CH4, CO, CO2 and NMVOC) over the 1990-2002 period. We show that temporal homogeneity may allow the pooling of the data and drive to well-defined nonparametric and parametric cross-sectional U-inverted shapes for all air pollutants. However, the presence of spatial heterogeneity makes this shape compatible with different timeseries patterns in every province - mainly increasing or decreasing depending on the pollutant. These results highlight the extreme sensitivity of the income-pollution relationship to region- or country-specific factors.Environmental Kuznets Curve, Air pollutants, Non/Semiparametric estimations, Poolability tests

    A Compact and Discriminative Feature Based on Auditory Summary Statistics for Acoustic Scene Classification

    Full text link
    One of the biggest challenges of acoustic scene classification (ASC) is to find proper features to better represent and characterize environmental sounds. Environmental sounds generally involve more sound sources while exhibiting less structure in temporal spectral representations. However, the background of an acoustic scene exhibits temporal homogeneity in acoustic properties, suggesting it could be characterized by distribution statistics rather than temporal details. In this work, we investigated using auditory summary statistics as the feature for ASC tasks. The inspiration comes from a recent neuroscience study, which shows the human auditory system tends to perceive sound textures through time-averaged statistics. Based on these statistics, we further proposed to use linear discriminant analysis to eliminate redundancies among these statistics while keeping the discriminative information, providing an extreme com-pact representation for acoustic scenes. Experimental results show the outstanding performance of the proposed feature over the conventional handcrafted features.Comment: Accepted as a conference paper of Interspeech 201

    Physicochemical and biological cycles in a tide dominated, nitrogen-polluted temperate estuary

    Get PDF
    Spatio-temporal variations in the physicochemical and biological parameters in the Morlaix estuary on the Brittany coast of France were studied. Hydrographically, the estuary can be classified into 3 segments: the upper estuary where stratification always persists, the lower estuary where vertical homogeneity is permanent, and a middle estuary where there is a regular oscillation of stratification and homogeneity during every tidal cycle, stratification being associated with slack waters and homogeneity, with ebb and flood. Nitrogen pollution in the estuary is very intense

    Unstable and stable regimes of polariton condensation

    Full text link
    Modulational instabilities play a key role in a wide range of nonlinear optical phenomena, leading e.g. to the formation of spatial and temporal solitons, rogue waves and chaotic dynamics. Here we experimentally demonstrate the existence of a modulational instability in condensates of cavity polaritons, arising from the strong coupling of cavity photons with quantum well excitons. For this purpose we investigate the spatiotemporal coherence properties of polariton condensates in GaAs-based microcavities under continuous-wave pumping. The chaotic behavior of the instability results in a strongly reduced spatial and temporal coherence and a significantly inhomogeneous density. Additionally we show how the instability can be tamed by introducing a periodic potential so that condensation occurs into negative mass states, leading to largely improved coherence and homogeneity. These results pave the way to the exploration of long-range order in dissipative quantum fluids of light within a controlled platform.Comment: 7 pages, 5 figure

    Heterogeneous continuous dynamic Bayesian networks with flexible structure and inter-time segment information sharing

    Get PDF
    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with heterogeneity and non-stationarity in temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper aims to improve the shortcomings of three recent versions of heterogeneous DBNs along the following lines: (i) avoiding the need for data discretization, (ii) increasing the flexibility over a time-invariant network structure, (iii) avoiding over-flexibility and overfitting by introducing a regularization scheme based in inter-time segment information sharing. The improved method is evaluated on synthetic data and compared with alternative published methods on gene expression time series from Drosophila melanogaster. 1

    Non-homogeneous temporal Boolean models to study endocytosis

    Get PDF
    Many medical and biological problems require the analysis of large sequences of microscope images, these images capture phenomena of interest and it is essential to characterize their spatial and temporal properties. The purpose of this paper is to show a new statistical methodology for estimating these parameters of interest in image sequences obtained in the observation of endocytosis. Endocytosis is a process by which cells traffic molecules from the extracellular space into different intracellular compartments. These images are obtained using a very specialized microscopy technique called Total Internal Reflecting (TIRFM). The Homogeneous Temporal Boolean Model (HTBM) has been recently used to analyze these type of sequences of images. By using a HTBM, spatial homogeneity of events in the cell membrane must be assumed but this is an open question in the biological understanding of the endocytic process. Our aim in this paper is to generalize this methodology to overcome this drawback. In the methodological aspect this work has a threefold aim: to broaden the notion of HTBM by introducing the concept of Non-Homogeneous Temporal Boolean Model; to introduce a hypothesis testing procedure to check the spatial homogeneity assumption; and finally, to reformulate the existing methodology to work with underlying non-homogeneous point processes. We check the goodness of our methodology on a simulated data set and compare our results with those provided by visual inspection and by assuming spatial homogeneity. The accuracy of the results obtained with simulated data ensures the validity of our methodology. Finally we apply it, as an illustration, to three sequences of a particular type of endocytosis images. The spatial homogeneity test confirms that spatial homogeneity cannot be assumed. As a result, our methodology provides more accurate estimations for the duration of the events and, information about areas of the membrane with higher accumulation of the
    corecore