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Abstract

Many medical and biological problems require the analysis of large sequences of

microscope images, these images capture phenomena of interest and it is essential to

characterize their spatial and temporal properties. The purpose of this paper is to show

a new statistical methodology for estimating these parameters of interest in image se-

quences obtained in the observation of endocytosis. Endocytosis is a process by which

cells traffic molecules from the extracellular space into different intracellular compart-

ments. These images are obtained using a very specialized microscopy technique called

Total Internal Reflecting (TIRFM).

The Homogeneous Temporal Boolean Model (HTBM) has been recently used to

analyze these type of sequences of images. By using a HTBM, spatial homogeneity

of events in the cell membrane must be assumed but this is an open question in the

biological understanding of the endocytic process. Our aim in this paper is to gener-

alize this methodology to overcome this drawback. In the methodological aspect this

work has a threefold aim: to broaden the notion of HTBM by introducing the concept

of Non-Homogeneous Temporal Boolean Model; to introduce a hypothesis testing pro-

cedure to check the spatial homogeneity assumption; and finally, to reformulate the
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existing methodology to work with underlying non-homogeneous point processes. We

check the goodness of our methodology on a simulated data set and compare our results

with those provided by visual inspection and by assuming spatial homogeneity. The

accuracy of the results obtained with simulated data ensure the validity of our method-

ology. Finally we apply it, as an illustration, to three sequences of a particular type of

endocytosis images. The spatial homogeneity test confirms that spatial homogeneity

cannot be assumed. As a result, our methodology provides more accurate estimations

for the duration of the events and, information about areas of the membrane with

higher accumulation of them.

Keywords: Temporal Boolean model, Endocytosis, Spatial non-homogeneity, germ-

grain model, parameter estimation.

1 Introduction

There are many practical situations in a wide variety of technological and scientific

fields, in which researchers need to manage image data in order to achieve conclusions

about a phenomenon of interest. These images are often binary images showing the area

covered by a given phenomenon in a certain region. Our paper is concerned with the

analysis of endocytosis, a particularly interesting process in cell biology. Endocytosis

is a cellular process whereby some materials (e.g. nutrients) are drawn into the cell by

means of invagination of the plasma membrane. This process happens in discrete events

in which cargo-loaded vesicles detach from the plasma membrane and are trafficked into

the cell.

Endocytosis is required for a vast number of vital functions for the well-being of a

cell. It regulates many processes, including nutrient uptake, neurotransmission, anti-

gen presentation, pathogen entry, cell adhesion and migration, mitosis, growth and

differentiation, and drug delivery.

Although there exists different types of endocytosis, we focus into receptor-mediated
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endocytosis that it is a type of endocytosis highly selective because it only includes

those molecules (ligands) that bind to the receptor. Within this kind of endocytosis

the major endocytic pathway in most cells, and also the best understood, is medi-

ated by the protein clathrin. This protein assists in forming a coated pit on the

inner surface of the plasma membrane of the cell. This pit then buds into the cell

to form a free clathrincoated vesicle (CCV) in the cell cytoplasm. Coated pits can

concentrate large extracellular molecules that have different receptors responsible for

the receptor-mediated endocytosis of ligands, e.g. low density lipoprotein, transferrin,

growth factors, antibodies and many others.

The life cycle of a CCV involves a sequence of regulated events: a) Cargo loading,

where cargo molecules bind to receptors on the plasma membrane; b) Coat assembly,

where a molecular lattice of clathrin molecules covers a portion of the plasma membrane

containing the cargo-receptor complex; c) Vesicle budding, followed by its pinching-off

from the plasma membrane; d) Internalization and coat disassembly; e) Intracellular

trafficking of the endocytosed vesicle.

Numerous efforts have recently been made to develop microscopic techniques that

allow real-time imaging for endocytosis with a high degree of accuracy. One of these

techniques is known as Total Internal Reflection Fluorescence Microscopy (TIRFM)

[1, 25]. This technique illuminates a very thin section near the cell-coverslip interface

and gives a very high signal-to-background ratio, thus facilitating the visualization of

cellular processes near the plasma membrane. Using TIRFM, the assembly of fluores-

cently labelled clathrin where endocytosis is taking place, results in the appearance of

a diffraction-limited spot. The areas of fluorescence generated by different endocytic

spots overlap and form random clumps which have different size, shape and duration.

The time which elapses between the appearance and the disappearance of a fluores-

cent clathrin spot is defined as the duration, or lifetime, of a discrete endocytic event

[7].

In cultured cells, the lifetimes of an endocytic event takes aprox. 1 min [8], although
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it depends on the type of cell and the size of the cargo particle. It can range from a

few seconds to two minutes, even in some exceptional cases, it can be longer than 15

minutes. With respect to the expected frequency of appearance, it also depends on the

type of the cell. As an example, it is expected that a 25% of the plasma membrane of a

fibroblast is made up of coated pits. With BSC1 cells (kidney epitelial cells of monkey

origin), it is expected to find even more than a 95% [10, 7].

Fig. 1 (a) shows several subimages of an endocytic event (highlighted with an arrow

mark) which appears (birth) at time 4 s and disappears (death) at time 48 s. Fig. 1(b)

plots the brightness profile as a function of time of this endocytic spot.

Fig. 5 (b) displays the segmented endocytic spots after image processing of one

frame of these sequences. Each connected component may involve one or an unknown

number of overlapping CCV.

The spatial and temporal distribution of these clumps is influenced by many biolog-

ical factors and there is no precise biological knowledge about their spatial distribution

in the plasma membrane. In fact, this is one of the questions that remain unsolved

in the biological understanding of the endocytic process. A visual inspection of the

images is enough to realize that there are certain parts of the plasma membrane with

a higher intensity of events.

Therefore, to characterize endocytic events it is crucial to estimate certain quantities

of interest such as the mean number of endocytic events per unit area and per unit

time at different spatial sites and their lifetime [4]. Due to endocytic spots overlapping

and clump formation, it is not possible to carry out these tasks in a trivial way.

Although imaging techniques have been widely developed, the obtained image pro-

cessing is still quite poor. So it is in this context where we focus our work and where

the basis of our contribution is.

Due to the importance of clathrin-dependent endocytosis, there has been a great

deal of interest among researchers and it has become a very active research field in

biological literature over the last decade. Detailed biological models for the production
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Figure 1: (a) Several subimages of an endocytic event over time. (b) Its brightness profile.

5



and internalization of clathrin-coated vesicles have been suggested [20, 21, 9]. However,

several questions regarding the events and the interactions involved in the endocytic

process remain unanswered.

The majority of these studies have been based on a mere visual inspection, or on

limited statistical analyses which are typically executed manually, counting one-by-one

only certain events: the ones that can be completely observed from the beginning to

the end of their life spans and which do not overlap with their neighbours. In other

studies these isolated spots are labelled manually and processed using popular image

analysis software like MetaMorph and Photoshop (Adobe Systems, San Jose, CA).

These methodologies were used in [7, 18, 19] amongst many others.

These ”manual” procedures have several limitations. First, each experiment in-

volves dozens of sequences with thousands of frames each, so it is unfeasible to work

with large image sequences because there is too much information to process. Second,

manual marking of isolated events is quite subjective. Third, the selection of only

isolated events leads to a biased sample, i.e. smaller and shorter events are more likely

to be included in the sample. In [6] we can find a simulation study showing that the

use of this biased sample can lead to a very high bias in the estimation of the time

distribution. The greater overlap among grains is, the more biased the estimation will

be.

These drawbacks have recently been overcome by Sebastián et al. [22, 2], who

use an approach based on the homogeneous Boolean model. This popular stochas-

tic probabilistic model is used to describe the images formed by random clumps that

are found in the observation of clathrin-mediated endocytosis dynamics. The Boolean

model explicitly considers and accepts this overlap and provides a good description for

many irregular patterns observed in microscopy, material sciences, biology, medicine,

chemistry, and geostatistics. The model formalizes (in a mathematical sense) the con-

figuration of independent and randomly placed particles. What is observed is a pattern

of overlapping random shapes [14].
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Mathematically, a homogeneous Boolean model is a random closed set consisting of

a Poisson point process in R2 (called the space) of intensity λ, producing the locations

of the germs, coupled with an independent random shape process (i.e. with a sequence

of independent and identically distributed random closed sets, called grains). The

connected components made of overlapping shapes are called clumps.

A more in-depth study of this model can also be found in [24, 15, 5] and [23]. All these

books offer an overview of the different methods that have been developed to overcome

the difficulty of estimating the most important parameters of a Boolean model. These

parameters are the intensity of events per unit area and the shape distribution of the

typical grain. Several methods implemented in applications of Boolean models for real

images can be found in [24, 23, 13] and [12].

Sebastián et al. generalize this concept in [2] introducing the notion of homogeneous

temporal Boolean model (HTBM). Mathematically, a HTBM is defined as a Poisson

point process in R2 ×R+ (space and time) of intensity λ, producing the locations and

the births of the germs, coupled with an independent randomly-shaped process (the

grains) and an independent time duration process for grains.

In [2] and [22], Sebastián et al. also proposed methodologies to estimate the pa-

rameters of interest of the model, such as the duration of the events and their spatial

intensity.

Other more mathematically complex generalizations of the Boolean model, such

as the germen-grain model or the Gibbs model [24], could theoretically be applied

to model the endocitosys but nowadays, it is almost impossible to work with them

in an applied context. Because of their complexity, no efficient parameter estimation

techniques have been developed yet.

The approach introduced in [22] has an important drawback in our target applica-

tion: by using a HTBM, spatial homogeneity is being assumed. That would mean, in

the endocytosis study context, that the endocytic spots are supposed to be uniformly

distributed in the whole cell membrane. As it was explained previously, there is no
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scientific evidence to accept this assumption of homogeneity, in contrast, it is believed

to be false, and there is a great biological interest in identifying which areas of the cell

membrane present a greater accumulation of events.

Although it frequently fails, the spatial homogeneity hypothesis is commonly as-

sumed in most applications of the Boolean model for real problems because it facilitates

estimating the parameters of the model.

The novelties introduced by our work are: firstly, the relaxation of the spatial

homogeneity hypothesis by introducing the concept of Non-Homogeneous Temporal

Boolean Model (NHTBM) as a generalization of [22]; secondly, the introduction of a

hypothesis testing procedure that allows us to statistically prove the non-homogeneity

hypothesis; and finally, to propose a generalization of the methodology described [22]

to efficiently estimate the parameters of interest in the new model.

We apply it to analyze the behavior of the clathrin-dependent endocytic machinery.

We reject the hypothesis of spatial homogeneity in the distribution of the events. The

use of a model that is more closely adjusted to the physiological characteristics of the

real problem leads to more accurate estimators, and it solves one of the open biological

questions regarding which parts of the membrane present a greater accumulation of

events.

The rest of the paper is organized as follows: the theoretical models and method-

ologies are introduced in Section 2. In Section 3 a simulation study is carried out to

test the performance of the parameter estimation procedure. In Section 4 the method-

ologies are applied to analyze the dynamics of the GFP-clathrin protein. Finally, in

Section 5, conclusions are stated.
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2 Models and methods

2.1 Non-homogeneous temporal Boolean model

In this section, we introduce the definition of Non-homogeneous temporal Boolean

model, based on the definition of HTBM [2], and the notation that will be used in the

rest of the paper.

Definition 1 (Non-homogeneous temporal Boolean model) Let Ψ = {(xi, ti)}i≥1

be a Poisson point process in R2 × R+, homogeneous in time but non-homogeneous

in space, with intensity function Λ(x), x ∈ R2. Let {Ai}i≥1 be a sequence of inde-

pendent and identically distributed random compact sets in R2, and let {di}i≥1 be a

sequence of independent and identically distributed (as D) positive random variables

and that Eν3(A0 × [0, D]
⊕

Ǩ) < +∞ for any compact subset K of R3. Then, the

non-homogeneous temporal Boolean model is defined as:

Φ =
⋃

i≥1

(Ai + xi)× [ti, ti + di],

where Eν3(A0× [0, D]
⊕

Ǩ) < +∞ is a technical condition necessary for the definition

that fulfills most real applications. In this formula, E denotes the expectation; for

any sets A and B in R3 ν3(A) denotes the volume of A, and A
⊕

B denotes their

Minkowsky addition.

The great difference between the definition of HTBM and NHTBM lies in the fact

that the intensity of the events given by the constant parameter λ in the homogeneous

case, now becomes a function Λ(x) of the spatial sites x = (x(1), x(2)) (the intensity

function).

Figure 2 shows several frames corresponding to simulations of this model with

intensity function Λ(x) = λ0x
(1)x(2), assuming circular grains with random uniform

radii and with two types of random duration: uniform and exponential. Different
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images correspond with different values for λ0 and for the parameters of the radii and

duration distributions. These sequences of images will be used in the simulation study

implemented in Section 3.

In the applications, we will work with binary images sequences that will be con-

sidered as realizations of an NHTBM. So, they will be considered as samples of a

spatiotemporal infinite process, as defined in Def. 1. The spatiotemporal sampling

window will be denoted by W × [0, T ] and the sampling times will be denoted by

s1 < s2 < · · · < sm, with 0 ≤ s1; sm ≤ T . Then, the observed data set will be:

{Φsi}i=1,···,m with Φsi = Φ
⋂

(W × {si}) ∀i = 1, · · · ,m (1)

i.e. a discrete set of temporal cross-sections of the model, corresponding to the obser-

vation times si, i = 1, · · · ,m.

2.2 Parameter estimation

In this section we propose the methodology required to estimate the parameters of

interest of a NHTBM. Our aim is twofold: to estimate the intensity function of the

germ process, Λ(x), and to estimate the probability distribution of the durations of the

events i.e. the probability distribution of random variable D.

Two different approaches are found in [2] and [22] to manage parameter estimation

in a HTBM. Both of them are based on the analysis of the variation in the intensity

of the germ process throughout time but only the second approach can be generalized

to the non-homogeneous case. This approach uses several cross-section aggregations

to analyze the increase in intensity, and from now on, we are going to follow it, so the

following sequences are defined:

Φ̃si =
i+k⋃

j=i

Φsj i = 1, · · · ,m− k. (2)
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In these sequences, the grains size will keep its original distribution, although the

spatial intensity for the germs process will be higher. This rise in intensity for the

aggregated model will only depend on the number of frames aggregated and their time

lags (time delay between two aggregated frames). The parameters of interest of our

model will be estimated by analyzing these increases in intensity.

Some previous results are needed in order to obtain the desired estimates.

The first of these previous results is related with the temporal cross-sections of the

model and is a generalization of the proposition 1 of Ayala et al [2].

Proposition 1 If Φ is an NHTBM with intensity function Λ(x) and primary grain

A0× [0, D], then the temporal cross-section Φs = Φ∩ (R2×{s}) is a non-homogeneous

Boolean model in R2 with primary grain A0 and intensity

Λs(x) = Λ(x)ED. (3)

The proof of proposition 1 is trivial following similar arguments to those given in

[2].

The second theoretical result is related to the aggregated frames and it is also a

generalization of those given in [22].

Proposition 2 If Φ is an NHTBM with intensity Λ(x), each Φ̃si defined as in eq.

(2) is a realization of a non-homogeneous Boolean model in R2, and if the times si

are equally spaced, with si − si−1 = δ, ∀i = 2, · · · ,m, the intensity function of Φ̃si,

λs(k, δ, x), is

λs(k, δ, x) = Λ(x)

[
kp(0)− (k − 1)p(δ)

]
(4)

where

p(s) =

∫ +∞

s
P (D ≥ t)dt; p(0) =

∫ +∞

0
P (D ≥ t)dt = ED (5)
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Note that the intensity of aggregated frames only depends on the time between con-

secutive frames δ, and the number of accumulated frames k. The proof of proposition

2 can be found in the appendix.

After introducing these theoretical results we are in a position to propose a method-

ology for estimating the parameters of the NHTBM.

The first step in the procedure consists in the estimation of λs(k, δ, x), the intensity

function for each Φ̃si . Proposition 1 tell us that each Φ̃si is a realization of a spatial non-

homogeneous Boolean model. The estimation of the intensity function is much more

complex for the non-homogeneous case than for the homogeneous one and algorithms

in the non-homogeneous literature are scarce. Among the existing procedures, we

propose the estimation procedure given by Molchanov and Chiu [16], which is based

on the estimation of the intensity of tangent points process using kernel techniques

combined with kernel estimation of the coverage function. This procedure will be

repeated for different values of k and δ.

Once λs(k, δ, x) has been estimated we follow the ideas stated in [22].

Equation 4 tells us that for each x and for each δ, λs(k, δ, x) is a linear function on

k, if we denote α(δ, x) and β(δ, x) for the slope and constant parameter of this linear

function we have:

α(δ0, x) = Λ(x)

[
p(0)− p(δ0)

]
,

β(δ0, x) = Λ(x)p(δ0).

And for each value of x:

α′(0, x) = −Λ(x)p′(0) = Λ(x)P (D ≥ 0) = Λ(x) (6)

α′′(δ, x) = Λ(x)fD(δ) (7)

Fitting a linear function to the estimates λ̂s(k, δ, x), numerically deriving with re-
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spect to δ and substituting in eq. 6 we obtain the desired estimate of the intensity

function Λ̂(x).

Analogously, taking into account eq. 7, we obtain an estimate of the probability

density of D for each site:

f̂D(δ) = − 1

Λ̂(x)
α̂′′(δ, x) (8)

We use their mean as the final estimate of the probability density function.

Finally combining eq. 3 with Λ̂(x) = α̂′(0, x) we get an estimate of ED:

ÊD =
1

]W

∑

x∈W

[ 1
m

∑m
j=1 Λ̂sj (x)

Λ̂(x)

]
(9)

2.3 A simple test for spatial homogeneity

In this section we introduce a very simple statistical hypothesis testing procedure that

allows us to test the null hypothesis of spatial homogeneity against the alternative of

non-homogeneity.

There are no formal homogeneity tests in spatial random sets and point processes

literature. Usually, a single observation in a sample window is available for the analysis

and homogeneous spatial patterns could look like non-homogeneous depending on the

size of the window.

Nevertheless, advantage can be taken in temporal models because of the fact that

there are several, yet dependent, realizations of the spatial pattern. These dependent

realizations can provide us with extra information that is not usually available in this

context and which will allow us to perform the statistical hypothesis testing procedure

as follows:

• Use the Molchanov method explained in the previous section [16] to estimate the

intensity function from each frame.
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• Use a batch-means type method [11] to obtain independent replications based on

the temporal observations.

• Under the null hypothesis of homogeneity, the estimated value does not depend on

the coordinate. Apply the Friedman non-parametric ANOVA test to the sample

obtained in the previous step, to compare the estimated values at each position

of each frame.

The adequacy of this procedure will be tested in the following section.

3 Simulation study

In this section we will set out a simulation study in order to test the performance of

the parameter estimation and the homogeneity testing procedures.

It is not possible to evaluate the performance of our methodology without assuming

a stochastic model of the (random) generating mechanism for the locations of germs,

times of occurrence (birth times) and durations of the events.

We simulate a NHTBM in a 512 × 512 window, assuming for the primary grain,

random discs with uniform radii and an intensity function λ(x) = λ0x1x2, so that the

two coordinates of germ points are independent. Simulations from two different values

for λ0 (λ0 = 1.0e − 07 and λ0 = 5.0e − 07) are obtained. This intensity function

was also used by Molchanov in [16]. For each intensity value, two different probability

distributions, uniform and exponential, were used for the random duration, both of

them with a mean of 15 seconds.

Ten videos of 150 frames each were generated for the different experimental setups

described above. The sampling ratio was one frame per second. Figure 2 shows three

frames of a typical realization of each model.

As stated above, prior to estimating the parameters of the Boolean model, we

checked the performance of the homogeneity test proposed in Section 2.3. To check it,
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(a) (b) (c) (d)

Figure 2: Each column shows three consecutive frames of a simulation of a NHTBM in a
512 × 512 window. First and second column with exponential random duration and (a)
λ0 = 1.0e − 07 and (b) λ0 = 5.0e − 07. Third and fourth column with uniform random
duration and (c) λ0 = 1.0e− 07 and (d) λ0 = 5.0e− 07.
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we applied this test to all the sequences of simulated images. Different sample sizes were

used to obtain batch means samples and, in all cases and all simulated sequences, the

p-value obtained from the Friedman test was almost equal to 0. Thus, the hypothesis

of homogeneity was clearly rejected in all cases.

The Molchanov method was used to estimate the intensity function of each 2D

realization and, for smoothing purposes, we used the Epanechnikov kernel with band-

widths of h = 84 for λ0 = 1.0e− 07 and h = 80 for λ0 = 5.0e− 07. The same value of

h was used for both the density of the exposed tangent point process and the coverage

function. These choices of the bandwidth correspond to the means of the optimal for

10 realizations. We used an approach based on functional data analysis [17] in order

to obtain a more precise and smoother estimation of fD(δ). Functional data analysis

converts the raw data α̂(δ, x) into a functional form for each x, and so both it and

its derivatives can be evaluated in a more precise way at all values over an interval

in time. A basis must be specified to achieve our aim and among several possibilities,

we chose a polynomial spline basis with 8 basis functions of order 5 (implying piece-

wise fourth-order polynomials). Order 5 was used to obtain a smooth second-order

derivative.

We wrote a library of functions to be used to carry out the different tasks in

MATLAB1.

The estimation of the spatial intensity function in all cases, can be seen in Fig 3.

This figure compares the theoretical density functions for the two values of λ0 with

the estimates obatined for the 4 simulated sequences of images. New images that show

the differences between theoretical and estimated functions are also included in Fig

3. Regarding the estimation of the density function of the duration of the events,

Figures 4 (a) and (b) show the theoretical density functions for the different simulation

scenarios, and the mean of the estimates obtained for these temporal density functions.

In order to give a numeric measure of the errors in the estimation of the intensity

1MATLAB is a trademark of The MathWorks Inc.
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Figure 3: Results of the simulation to estimate the intensity functions. In all the images,
the darker the color, the lower the intensity is. First column: theoretical intensity functions
with (a) λ0 = 1.0e− 07 and (f) λ0 = 5.0e− 07. Second column: estimation of the intensity
functions . (b) Estimation of the sequence simulated with λ0 = 1.0e−07 for the exponential
distribution, (d) with λ0 = 1.0e−07 for the uniform distribution, (g) with λ0 = 5.0e−07 for
the exponential distribution and (i) with λ0 = 5.0e− 07 for the uniform distribution. Third
column (figs (c),(e),(h) and (j)): contour plots of the differences between first and second
column (theoretical and simulated intensity functions).
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function, we calculated the mean square errors of the estimations over all the positions

and simulations. To get a relative measurement, we obtain their square root and divide

them by their mean. Results are given in Table 1. In the two first rows of Table 2 the

average and standard deviation of the estimates of the mean of durations are given.

The results obtained with our method are completely satisfactory. As can be seen,

better values are obtained for lower intensity values. This can be due to the own

features of the tangent point method.

λ0 = 1.0e− 07 λ0 = 5.0e− 07
Exponential 0.2575 0.2301
Uniform 0.2187 0.1795

Table 1: Relative errors in the estimation of the Intensity function for the different temporal
distributions and λ0 values.

Once our methodology has been proposed and explained, we would like to compare

the results that we have obtained with the ones obtained analyzing the same image

sequences with other methods existing in the literature, which deal with the same kind

of information.

As stated above, the main novelty of our methodology is its ability to estimate

the spatial intensity of events per unit area and time at different spatial sites and also

their life time. Other methods existing in the literature, such as working with manually

labeled isolated points or the methodology proposed by Sebastián et al. [22, 2], assume

spatial homogeneity and therefore, they provide a single value as an estimation of the

”common” spatial intensity. This makes it impossible to compare the estimate of the

spatial intensity obtained with our method (a 2D function of the spatial site as shown

in Fig 3) to the estimate obtained with the other methods (a single number). On the

other hand, all these methodologies (manual labeling, HTBM and NHTBM) assume

temporal homogeneity, so all the estimates of the mean life time of the events obtained

with the three methodologies can be compared.

Only simulated images with λ0 = 1.0e − 07 will be used for the comparison. The
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lower the spatial intensity is, the easier it will be for us to identify, label and analyze

isolated events. On the other hand, as Ayala et al. [6] say, the use of this biased sample

can lead to a very high bias in the estimation of the distribution of the duration. The

greater overlap among grains is, the more biased the estimation will be.

Table 2 also shows the mean and standard deviation of the estimates for the mean of

the durations of the events, obtained with the three methods, for both the uniform and

exponential temporal distributions. Figure 4 also shows the temporal density function

for both distributions. Figures 4(c) and 4(d) show the theoretical density functions

(solid lines), the density functions estimated by using our method (dotted lines), those

estimated from manually identified and processed isolated points (dashed lines), and

those estimated by using the method proposed by Sebastián et al. (dash-dot lines). As

it can be seen, the results obtained with our method do not differ too much of those

obtained with the methods nowadays in use. Regarding the estimation of the mean

of the duration of the events (Table 2), they represent a slight improvement. In the

estimates obtained for the uniform distribution, our method obtains the closest average

of the estimates of ED to the real value. We also obtained a value for the standard

deviation much smaller than the obtained with the rest of methods. In the case of

the exponential distribution, although the mean estimated with our method differs a

bit more of the real value than the obtained with the other methods, the standard

deviation continues being smaller, which means that the estimations obtained with our

method are more reliable than the obtained in the other cases.

4 Application

In this section we show the application of our models and methods to sequences of

images used to analyze clathrin-mediated endocytosis dynamics.

As an illustration, we are going to work with image sequences derived from three

videos of COS-7 monkey fibroblast cells. These cells themselves most resemble fibrob-
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Figure 4: (a) Temporal density function for exponential duration. Theoretical value (solid
line); estimated function for λ0 = 1.0e − 07 (dash-dot line) and estimated function for
λ0 = 5.0e−07 (dotted line). (b) Temporal density function for uniform duration. Theoretical
value (solid line); estimated function for λ0 = 1.0e − 07 (dash-dot line) and estimated
function for λ0 = 5.0e − 07 (dotted line). (c) Temporal density function for exponential
duration. Theoretical density function (solid line); estimate density function by using our
method (dotted line); from manually identified and processed isolated points (dashed line)
and by using the method proposed by Sebastián et al. (dash-dot line). (d) Temporal density
function for uniform duration. Theoretical density function (solid line); estimate density
function by using our method (dotted line); from manually identified and processed isolated
points (dashed line) and by using the method proposed by Sebastián et al. (dash-dot line).
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mean ED standard dev. ED
λ0 = 5.0e− 07 Our method Uniform 16.47 0.26

Exponential 18.38 0.30
λ0 = 1.0e− 07 Our method Uniform 14.92 0.28

Exponential 15.99 0.73
λ0 = 1.0e− 07 Isolated points Uniform 14.09 0.38

Exponential 15.48 2.34
λ0 = 1.0e− 07 Sebastian et al. Uniform 12.56 4.7

Exponential 14.16 5.64

Table 2: Mean and standard deviation of the estimates of the expectation of durations for
the different temporal distributions and lambda values. Two first rows show our results.
Third and fourth rows show the results obtained using isolated points and Sebastian et al.
methods respectively

last cells in humans that are the most common cells of connective tissue. COS is a cell

line often used by biologists in cell biology experiments. Cells expressed clathrin light

chain coupled to the green fluorescent protein (GFP). Each one of these sequences

consists of 300 frames acquired at one frame every four seconds. These sequences

correspond to sequences 1, 3 and 5 used in [22].

Other kind of sequences of endocytic images could be analyzed using our method-

ology provided that the homogeneity test of section 2.3 confirms that does not fulfil

the homogeneity assumption.

As a previous step, several pre-processing algorithms must be applied to obtain

noise-free segmented images. A detailed explanation of this procedure can be found

in [22]. After applying the pre-processing algorithms, our data set consists of three

sequences of binary images displaying the segmented endocytic spots. Figure 5(a)

shows an image of one of the original sequences, while Figure 5(b) shows the same

image once processed and segmented.

Once the images have been segmented, the first necessary step in our methodology

consists in checking whether our data can be really considered as a realization of a non-

homogeneous process, therefore, we apply the homogeneity test proposed in Section
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Figure 5: (a) A frame of a sequence of 300 TIRFM images of a cell expressing fluorescent
clathrin protein; (b) segmented endocytic spots after imaging processing of the frame showed
in (a); (c) Estimated spatial intensity function for the Cell 2, obtained from the full sequence.

2.3. With respect to the estimation of the intensity function of each 2D realization

we use again the Epanechnikov kernel. The optimal bandwidth for the kernel was

chosen by using the normal approximation as described in [3]. The edge effects near

the boundary of the image were corrected by simply reducing the window. On the

other hand the sample size for the batch means method was chosen as equal to 5. The

results of applying the Friedmand test for each sequence are shown in Table 3, we

can find the Chi-square statistic and their corresponding p-values to contrast the null

hypothesis of homogeneity. P-values are always almost zero and so the homogeneity

hypothesis is clearly rejected. Therefore we can assume our data set as a realization of

a NHTBM.

As said above, the use of NHTBM can provide a powerful tool to analyze the behav-

ior of the clathrin-dependent endocytic machinery. On the one hand using NHTBM

allows us to estimate the intensity function, so that information about the spatial

distribution of the events in the whole membrane is obtained. This fact has a great
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Cell Chi-sq p-value
1 17137.41 0
2 34438.24 0
3 38600.42 0

Table 3: Results of applying the Friedman test following the methodology explained in
Section 2.3.

interest from the biological point of view. Obtaining that information has not been

possible up to now using the existing methods. On the other hand, NHTBM allows us

to estimate the probability distribution for the duration of events.

Fig. 5(c) shows the spatial intensity function estimated for one of the analyzed cells

(Cell 2). This estimation has been obtained from the full sequence of images available

for this cell. We can clearly observe a greater density of endocytic spots in the image

centre.

As regards to distribution of event durations, Table 4 shows the estimation of

mean duration of endocytic events for the three analyzed cells, while Fig. 6 shows the

estimation of the density function of event durations for Cell 2. Comparing our results

to the ones obtained by Sebastin et al [22], it can be seen that our procedure provides

lower values when estimating the mean duration of the endocytic events.

Cell 1 2 3

ÊD 37.95 33.39 40.17

Table 4: Estimates of the mean of the durations.

Due to the fact of working with real images, we can not compare our results with the

true values of the parameters, since these are unknown. However, it is expected that

our results improve theirs for two reasons. On the one hand, because our methodology

is based on a model that fits better to the features of the studied process, taking

into account the spatial non-homogeneity of our images (that has been tested). On

the other hand, from the study with simulated data in Section 3, we found that our
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Figure 6: Estimated density functions of durations for Cell 2.

methodology yields better results in a situation of spatial nonhomogeneity.

We have shown a methodological tool that can be applied in the study of endocytosis

but a deeper study conducted jointly with experts in biological sciences and a larger

sample would be necessary to achieve biological conclusions.

5 Conclusions

In this paper we have proposed both a probabilistic model and a statistical method-

ology that generalize the methodology proposed by Sebastián et al. [22] to study the

kinetics of endocytosis in living cells. The novelty of our approach is the relaxation of

spatial homogeneity hypothesis by introducing the concept of a non-homogeneous tem-

poral Boolean model. The homogeneity assumption is a common hypothesis in most

applications because it facilitates estimating the parameters of the Boolean model, al-

though it fails when the spatiotemporal distribution of endocytic spots is analyzed. In

fact, this is one of the questions that remain unsolved in the biological understanding

of the endocytic process.

Using formulas obtained in Section 2.2, to estimate the parameters of the model

requires the application of previous statistical techniques and methodologies, such as
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functional data analysis [17], to estimate the spatial intensity function of 2D non-

homogeneous Boolean models [16]. Moreover, these previous techniques depend on a

large number of tuning parameters which often have a great effect on the results. As an

example, the adequacy of Molchanov’s method to estimate the intensity function [16]

depends on the choice of the bandwidth, and may not be very satisfactory when there

are few tangent points. Despite everything, the results obtained in the simulation study

are quite satisfactory. On the other hand, more precise techniques for working with

functional data would also be advantageous in order to obtain better fits. Nonetheless,

our methodology opens up a door to achieve the analysis of a great number of real

applications where the underlying spatial process clearly does not fulfil the homogeneity

assumption, like the sample that has been analyzed in this work.

Regarding the application to endocytosis, we have detected that there are parts of

the cellular membrane with a higher accumulation of endocytic spots and we obtain

slightly lower estimates for the durations of the endocytic events than the obtained

with the methods nowadays in use. A deeper study conducted in conjunction with

experts in biology and with a larger data set of image sequences would be necessary to

reach biological conclusions.
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A Appendix

In this appendix we show the proof of the proposition 2.

Let us define Υ = {ti}i≥1 as the marginal temporal Poisson point process of the

birth time, with intensity
∫
W Λ(x)dx; and Υsi := {tn ∈ Υ : tn ≤ si ≤ tn + dn}. It is

trivial to prove that the mean number of points in
⋃i+k

j=i Υsj (the union of all points

alive at some of the k temporal cross-sections) is:

∫

W
Λ(x)dx

[
kp(0)− (k − 1)p(δ)

]
,

with p(s) and p(0) as in eq. (5).

On the other hand, as the mean number of points in
⋃i+k

j=i Υsj is equal to the mean

number of points in Φ̃si , and by definition this is equal to
∫
W λs(k, δ, x)dx, then

∫

W
λs(k, δ, x)dx =

∫

W
Λ(x)dx

[
kp(0)− (k − 1)p(δ)

]
(10)

and as Equation (10) holds for all W ⊂ R2, it can be concluded that

λs(k, δ, x) = Λ(x)

[
kp(0)− (k − 1)p(δ)

]
∀x (11)
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