38 research outputs found

    Explainable artificial intelligence model to predict acute critical illness from electronic health records

    Get PDF
    We developed an explainable artificial intelligence (AI) early warning score (xAI-EWS) system for early detection of acute critical illness. While maintaining a high predictive performance, our system explains to the clinician on which relevant electronic health records (EHRs) data the prediction is grounded. Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Early clinical prediction is typically based on manually calculated screening metrics that simply weigh these parameters, such as Early Warning Scores (EWS). The predictive performance of EWSs yields a tradeoff between sensitivity and specificity that can lead to negative outcomes for the patient. Previous work on EHR-trained AI systems offers promising results with high levels of predictive performance in relation to the early, real-time prediction of acute critical illness. However, without insight into the complex decisions by such system, clinical translation is hindered. In this letter, we present our xAI-EWS system, which potentiates clinical translation by accompanying a prediction with information on the EHR data explaining it

    NPRL: Nightly Profile Representation Learning for Early Sepsis Onset Prediction in ICU Trauma Patients

    Full text link
    Sepsis is a syndrome that develops in response to the presence of infection. It is characterized by severe organ dysfunction and is one of the leading causes of mortality in Intensive Care Units (ICUs) worldwide. These complications can be reduced through early application of antibiotics, hence the ability to anticipate the onset of sepsis early is crucial to the survival and well-being of patients. Current machine learning algorithms deployed inside medical infrastructures have demonstrated poor performance and are insufficient for anticipating sepsis onset early. In recent years, deep learning methodologies have been proposed to predict sepsis, but some fail to capture the time of onset (e.g., classifying patients' entire visits as developing sepsis or not) and others are unrealistic to be deployed into medical facilities (e.g., creating training instances using a fixed time to onset where the time of onset needs to be known apriori). Therefore, in this paper, we first propose a novel but realistic prediction framework that predicts each morning whether sepsis onset will occur within the next 24 hours with the help of most recent data collected at night, when patient-provider ratios are higher due to cross-coverage resulting in limited observation to each patient. However, as we increase the prediction rate into daily, the number of negative instances will increase while that of positive ones remain the same. Thereafter, we have a severe class imbalance problem, making a machine learning model hard to capture rare sepsis cases. To address this problem, we propose to do nightly profile representation learning (NPRL) for each patient. We prove that NPRL can theoretically alleviate the rare event problem. Our empirical study using data from a level-1 trauma center further demonstrates the effectiveness of our proposal

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos

    Digital Twin of Cardiovascular Systems

    Get PDF
    Patient specific modelling using numerical methods is widely used in understanding diseases and disorders. It produces medical analysis based on the current state of patient’s health. Concurrently, as a parallel development, emerging data driven Artificial Intelligence (AI) has accelerated patient care. It provides medical analysis using algorithms that rely upon knowledge from larger human population data. AI systems are also known to have the capacity to provide a prognosis with overallaccuracy levels that are better than those provided by trained professionals. When these two independent and robust methods are combined, the concept of human digital twins arise. A Digital Twin is a digital replica of any given system or process. They combine knowledge from general data with subject oriented knowledge for past, current and future analyses and predictions. Assumptions made during numerical modelling are compensated using knowledge from general data. For humans, they can provide an accurate current diagnosis as well as possible future outcomes. This allows forprecautions to be taken so as to avoid further degradation of patient’s health.In this thesis, we explore primary forms of human digital twins for the cardiovascular system, that are capable of replicating various aspects of the cardiovascular system using different types of data. Since different types of medical data are available, such as images, videos and waveforms, and the kinds of analysis required may be offline or online in nature, digital twin systems should be uniquely designed to capture each type of data for different kinds of analysis. Therefore, passive, active and semi-active digital twins, as the three primary forms of digital twins, for different kinds of applications are proposed in this thesis. By the virtue of applications and the kind of data involved ineach of these applications, the performance and importance of human digital twins for the cardiovascular system are demonstrated. The idea behind these twins is to allow for the application of the digital twin concept for online analysis, offline analysis or a combination of the two in healthcare. In active digital twins active data, such as signals, is analysed online in real-time; in semi-active digital twin some of the components being analysed are active but the analysis itself is carried out offline; and finally, passive digital twins perform offline analysis of data that involves no active component.For passive digital twin, an automatic workflow to calculate Fractional Flow Reserve (FFR) is proposed and tested on a cohort of 25 patients with acceptable results. For semi-active digital twin, detection of carotid stenosis and its severity using face videos is proposed and tested with satisfactory results from one carotid stenosis patient and a small cohort of healthy adults. Finally, for the active digital twin, an enabling model is proposed using inverse analysis and its application in the detection of Abdominal Aortic Aneurysm (AAA) and its severity, with the help of a virtual patient database. This enabling model detected artificially generated AAA with an accuracy as high as 99.91% and classified its severity with acceptable accuracy of 97.79%. Further, for active digital twin, a truly active model is proposed for continuous cardiovascular state monitoring. It is tested on a small cohort of five patients from a publicly available database for three 10-minute periods, wherein this model satisfactorily replicated and forecasted patients’ cardiovascular state. In addition to the three forms of human digital twins for the cardiovascular system, an additional work on patient prioritisation in pneumonia patients for ITU care using data-driven digital twin is also proposed. The severity indices calculated by these models are assessed using the standard benchmark of Area Under Receiving Operating Characteristic Curve (AUROC). The results indicate that using these models, the ITU and mechanical ventilation can be prioritised correctly to an AUROC value as high as 0.89

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Continuous Estimation of Smoking Lapse Risk from Noisy Wrist Sensor Data Using Sparse and Positive-Only Labels

    Get PDF
    Estimating the imminent risk of adverse health behaviors provides opportunities for developing effective behavioral intervention mechanisms to prevent the occurrence of the target behavior. One of the key goals is to find opportune moments for intervention by passively detecting the rising risk of an imminent adverse behavior. Significant progress in mobile health research and the ability to continuously sense internal and external states of individual health and behavior has paved the way for detecting diverse risk factors from mobile sensor data. The next frontier in this research is to account for the combined effects of these risk factors to produce a composite risk score of adverse behaviors using wearable sensors convenient for daily use. Developing a machine learning-based model for assessing the risk of smoking lapse in the natural environment faces significant outstanding challenges requiring the development of novel and unique methodologies for each of them. The first challenge is coming up with an accurate representation of noisy and incomplete sensor data to encode the present and historical influence of behavioral cues, mental states, and the interactions of individuals with their ever-changing environment. The next noteworthy challenge is the absence of confirmed negative labels of low-risk states and adequate precise annotations of high-risk states. Finally, the model should work on convenient wearable devices to facilitate widespread adoption in research and practice. In this dissertation, we develop methods that account for the multi-faceted nature of smoking lapse behavior to train and evaluate a machine learning model capable of estimating composite risk scores in the natural environment. We first develop mRisk, which combines the effects of various mHealth biomarkers such as stress, physical activity, and location history in producing the risk of smoking lapse using sequential deep neural networks. We propose an event-based encoding of sensor data to reduce the effect of noises and then present an approach to efficiently model the historical influence of recent and past sensor-derived contexts on the likelihood of smoking lapse. To circumvent the lack of confirmed negative labels (i.e., annotated low-risk moments) and only a few positive labels (i.e., sensor-based detection of smoking lapse corroborated by self-reports), we propose a new loss function to accurately optimize the models. We build the mRisk models using biomarker (stress, physical activity) streams derived from chest-worn sensors. Adapting the models to work with less invasive and more convenient wrist-based sensors requires adapting the biomarker detection models to work with wrist-worn sensor data. To that end, we develop robust stress and activity inference methodologies from noisy wrist-sensor data. We first propose CQP, which quantifies wrist-sensor collected PPG data quality. Next, we show that integrating CQP within the inference pipeline improves accuracy-yield trade-offs associated with stress detection from wrist-worn PPG sensors in the natural environment. mRisk also requires sensor-based precise detection of smoking events and confirmation through self-reports to extract positive labels. Hence, we develop rSmoke, an orientation-invariant smoking detection model that is robust to the variations in sensor data resulting from orientation switches in the field. We train the proposed mRisk risk estimation models using the wrist-based inferences of lapse risk factors. To evaluate the utility of the risk models, we simulate the delivery of intelligent smoking interventions to at-risk participants as informed by the composite risk scores. Our results demonstrate the envisaged impact of machine learning-based models operating on wrist-worn wearable sensor data to output continuous smoking lapse risk scores. The novel methodologies we propose throughout this dissertation help instigate a new frontier in smoking research that can potentially improve the smoking abstinence rate in participants willing to quit
    corecore