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Abstract

Patient specific modelling using numerical methods is widely used in understanding
diseases and disorders. It produces medical analysis based on the current state of
patient’s health. Concurrently, as a parallel development, emerging data driven
Artificial Intelligence (AI) has accelerated patient care. It provides medical analysis
using algorithms that rely upon knowledge from larger human population data. AI
systems are also known to have the capacity to provide a prognosis with overall
accuracy levels that are better than those provided by trained professionals. When
these two independent and robust methods are combined, the concept of human digital
twins arise. A Digital Twin is a digital replica of any given system or process. They
combine knowledge from general data with subject oriented knowledge for past, current
and future analyses and predictions. Assumptions made during numerical modelling
are compensated using knowledge from general data. For humans, they can provide
an accurate current diagnosis as well as possible future outcomes. This allows for
precautions to be taken so as to avoid further degradation of patient’s health.

In this thesis, we explore primary forms of human digital twins for the cardiovascular
system, that are capable of replicating various aspects of the cardiovascular system
using different types of data. Since different types of medical data are available, such
as images, videos and waveforms, and the kinds of analysis required may be offline or
online in nature, digital twin systems should be uniquely designed to capture each type
of data for different kinds of analysis. Therefore, passive, active and semi-active digital
twins, as the three primary forms of digital twins, for different kinds of applications are
proposed in this thesis. By the virtue of applications and the kind of data involved in
each of these applications, the performance and importance of human digital twins for
the cardiovascular system are demonstrated. The idea behind these twins is to allow
for the application of the digital twin concept for online analysis, offline analysis or a
combination of the two in healthcare. In active digital twins active data, such as signals,
is analysed online in real-time; in semi-active digital twin some of the components
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being analysed are active but the analysis itself is carried out offline; and finally, passive
digital twins perform offline analysis of data that involves no active component.

For passive digital twin, an automatic workflow to calculate Fractional Flow Reserve
(FFR) is proposed and tested on a cohort of 25 patients with acceptable results. For
semi-active digital twin, detection of carotid stenosis and its severity using face videos
is proposed and tested with satisfactory results from one carotid stenosis patient and a
small cohort of healthy adults. Finally, for the active digital twin, an enabling model is
proposed using inverse analysis and its application in the detection of Abdominal Aortic
Aneurysm (AAA) and its severity, with the help of a virtual patient database. This
enabling model detected artificially generated AAA with an accuracy as high as 99.91%
and classified its severity with acceptable accuracy of 97.79%. Further, for active digital
twin, a truly active model is proposed for continuous cardiovascular state monitoring.
It is tested on a small cohort of five patients from a publicly available database for
three 10-minute periods, wherein this model satisfactorily replicated and forecasted
patients’ cardiovascular state. In addition to the three forms of human digital twins for
the cardiovascular system, an additional work on patient prioritisation in pneumonia
patients for ITU care using data-driven digital twin is also proposed. The severity
indices calculated by these models are assessed using the standard benchmark of Area
Under Receiving Operating Characteristic Curve (AUROC). The results indicate that
using these models, the ITU and mechanical ventilation can be prioritised correctly to
an AUROC value as high as 0.89.
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Chapter 1

Introduction

The three forms of digital twins for the human cardiovascular system, passive, semi-
active and active, are conceptualised and developed in this thesis. Utilising a com-
bination of computational mechanics and state-of-the-art artificial intelligence, each
of the three proposed forms of digital twins is envisioned for potentially diagnosing
cardiovascular diseases and monitoring of cardiovascular state in human patients. This
chapter introduces the concept of digital twins, provides an overview of the origins and
current usage of digital twins and explains the role of human digital twins in healthcare.
The outline and objectives of this thesis are presented at the end of this chapter.

1.1 The concept of digital twins

The term ‘unique’ is pertinent to each system, process, living being and inanimate
object. No two of these entities are the same, even if they are similar in shape,
size and make. Distinct microscopic variations exist even if macroscopic similarities
can be observed. For example, consider two cars of the same make, with the same
configurations and delivered at the same time at the same location. In addition, let us
assume that these cars are from the same batch and are manufactured parallelly at the
same production unit. At the time of delivery, even with such high levels of similarity,
if the materials in each of these cars are to be observed microscopically, features such as
crystal structure, microscopic cracks and their locations will be observed to be distinct.

As mentioned above, not just objects but also their life-cycle is unique. Every
individual object is subjected to different levels, forms and durations of mechanical
forces during its life-cycle. Of the two similar cars in the example above, let us assume
that one of them is bought by Subject A, who lives in a geographically flat urban
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environment and the other car is bought by Subject B, who lives in a mountainous
rural region. After three years of regular use by each of the subjects, it will be observed
that the clutch plates and brake pads would have worn out to a much higher degree in
Subject B’s car than Subject A’s car. This exemplifies the fact that every individual
object is both physically unique as well as subjected to a unique life-cycle.

As a need to analyse, monitor and predict the above-mentioned uniqueness in every
object and process, digital twins were conceptualised. Digital twins are virtual or
digital replicas of objects and processes. These replicas digitally capture information
such as features, trends, functions and various other fields from the physical entity
and use them to build its representation in the current state. Past information from
the physical entity in combination with the knowledge of artificial intelligence models,
trained on vast amounts of general data, is utilised by these twins to predict the future
state of the entity.

1.2 The origins and current usage of digital twins

The origins of the term ‘Digital Twin’ can be traced back to a description of the concept
by John Vickers in NASA’s 2010 road map [1]. The concept, however, has existed since
2002 when Michael Grieves introduced it with the title ‘Conceptual Ideal for PLM’ in
a University of Michigan presentation [2], where PLM stands for Product Lifecycle
Management. The term has since been bolstered with usage in multiple publications
spanning various disciplines [3]. To prevent any ambiguity, it is worth noting that
digital twins are also sometimes referred to as ‘Virtual twins’.

When the question of a formal definition for digital twins arises, IBM defines it as
"A digital twin is a virtual representation of an object or system that spans its lifecycle,
is updated from real-time data, and uses simulation, machine learning and reasoning
to help decision-making" [4]. Over the years, this concept has been adopted by various
disciplines, likes those of which range from aerospace and manufacturing to healthcare
and IoT. To begin with, the digital twin concept has been used in recent publications
such as Zhao et al [5], to reduce carbon emission in machining; Thies et al [6], for use
in AR/VR training; Joos et al [7], for the design of Lithium-Ion battery cathodes; and
Rjabtvšikov et al [8], in service unit for AC motor stator inter-turn short circuit fault
detection. For larger-scale applications, usage of this concept has been proposed for
Industry 4.0 by Uhlemann et al [9], Qi and Tao [10] and Vachálek et al [11]; for smart
cities by Shirowzhan et al [12] and Ford and Wolf [13].
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1.3 The role of human digital twins in healthcare

Similar to all objects in this universe, every individual human being, including those
who have identical twins, have a unique physical, mental and emotional form as a result
of their unique genetic code [14]. General medical treatments in such a genetically
variegated human population tend to have low levels of efficacy. The emergence of
human digital twins in healthcare provides a platform for patient-specific analysis for
accurate diagnosis and patient care. For patient care, digital twins have potential in
six critical applications: personalised diagnosis, monitoring, drug development, surgery
and implant manufacturing. These twins are generally designed to either replicate any
one particular organ/organ system or the overall body as one system. Human digital
twins, such as those proposed by Liu et al[15] capture and record patient data, as
signals using sensors such as accelerometers, oximeters and Holter monitor; as images
such as MRI and CT scans; and as discrete data such as physiological data (height,
weight etc.) and patient’s medical history. This data is modelled and analysed for
understanding the current state of the patient and use for personalising care in the
above-mentioned applications (See Figure 1.1). In the Figure 1.1, representing an ideal
digital twin system, the data flow starts from the measurement of the patient’s vitals
and other parameters, which then is fed to a computational system that uses the input
data to modify or update a personalised virtual replica of the patient. The virtual
replica then can be used by the computational system to diagnose any problem in the
patient as well as calculate an estimate of the patient’s health in future.

The widely accepted definition of digital twins mentioned in Section 1.2 encapsulates
the essence of ideal digital twins, however, in the case of healthcare most of the existing
forms of human digital twins cannot still replicate the physics in action behind the
physical entities being twinned in a human interpretable form. Most of these existing
forms rely on the-state-of-the-art artificial intelligence models, such as deep neural
networks, that use compounded multidimensional mapping of parameters to model the
body functions and provide a diagnosis or prediction. These models, when trained to
replicate or twin a human being, provide a highly accurate representation as well as
predictions for the individual and their health state. However, owing to the complex
mapping, the reasoning behind an analysis or prediction from these AI models is in some
cases not possible to comprehend using human intelligence. To resolve this issue, in
this thesis, each of the three forms of digital twin being proposed utilise a combination
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Fig. 1.1 The data flow in human digital twins.

of computational mechanics with artificial intelligence so as to provide patient-oriented
diagnosis of cardiovascular diseases and monitoring of the cardiovascular system.

1.4 The objectives and outline of this thesis

In this thesis, three forms of human digital twins, passive, semi-active and active twins,
for different kinds of applications are proposed. By the virtue of applications and the
kind of data involved in each of these applications, the performance and importance of
human digital twins for the cardiovascular system are demonstrated. The idea behind
these twins is to allow for the application of the digital twin concept for online analysis,
offline analysis or a combination of the two in healthcare. In active digital twins active
data, such as signals, is analysed online in real-time; in semi-active digital twin some of
the components being analysed are active but the analysis itself is carried out offline;
and finally in passive digital twins perform offline analysis of data that involves no
active component (for example, image-based modelling).
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The outline of this thesis is as follows:
Chapter 2: In this chapter, the one-dimensional haemodynamic models used in

this thesis are explained. The different numerical schemes for solving the differential
equations and various configurations of the haemodynamic model used in this thesis
are described. This chapter ends with information on the scaling of the arterial network
for personalised representation of the patient’s haemodynamic model.

Chapter 3: The chapter begins with a comprehensive review of existing artificial
intelligence (AI) methods and their usage in healthcare. Then the popular trends of AI
usage within the healthcare industry, standards and current performance are discussed.
To exemplify the digital twins in healthcare that are purely data-driven, a three-tiered
strategy to prioritize ITU care for pneumonia patients is proposed. Results from this
example are presented at the end of the chapter.

Chapter 4: The passive digital twin, the first of the three forms of human
digital twins is presented in this chapter. A workflow for automating the calculation
of Fractional Flow Reserve (FFR) from CT scans, a critical parameter to analyse
the functional relevance of coronary stenoses, is proposed as an example of a passive
digital twin. The proposed workflow is tested with retrospective CT scan data from
twenty-five patients and their results are presented and discussed at the end of the
chapter.

Chapter 5: In this chapter, head-neck vibration due to the pulsatile nature of
blood flow is exploited to detect carotid stenosis and its severity. To analyse this
vibration, a coupled computer vision and computational mechanics method is proposed,
which introduces the second form of the human digital twin, the semi-active digital
twins. Preliminary results of this method on healthy subjects and a patient with
carotid stenosis are presented at the end of this chapter. Work presented in this chapter
is available as a peer-reviewed article, Chakshu et al[16].

Chapter 6: The final form of a human digital twin, active digital twin, is
presented in this chapter. It begins with purely data-driven digital twins trained to
perform forward analysis using in vivo measurements as well as inverse analysis using
in silico data. The generation of in silico data and potential application for inverse
analysis in detection of Abdominal Aortic Aneurysms(AAA), published in Chakshu et
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al[17], is described in detail within this chapter. Then a system to adapt parameters of
a one-dimensional haemodynamic model in real-time for replication of blood waveforms
measured in vivo is proposed. At the end of this chapter, a combination of purely
data-driven digital twins and the actively adaptive one-dimensional haemodynamic
model is presented as a complete active digital twin capable of replicating the current
cardiovascular state as well as predicting it for the near future.

Chapter 7: In this chapter, the forms of human digital twins developed in this
thesis are summarised and conclusions are drawn from their results. Future research
for this topic is also discussed at the end of this chapter.



Chapter 2

One Dimensional Haemodynamic
modelling

The circulatory system in the human body is an organ system critical for the circulation
of blood, which is essential for the transportation of oxygen, carbon dioxide and other
nutrients such as electrolytes to every cell of the body. This system primarily consists
of the cardiovascular and lymphatic system, with the former made up of blood, heart
and blood vessels and the latter made up of lymph, lymph nodes and lymph vessels.
The cardiovascular system further can be divided into the systemic circulation and
pulmonary circulation, where the former is responsible for the supply of oxygenated
blood from the heart to the tissues of the body and returning of deoxygenated blood from
these tissues to the heart and the latter is responsible for transporting deoxygenated
blood from the heart to the lungs and returning oxygenated blood back to the heart. In
this work, within the systemic circulation, only the arterial network is being analysed
in all proposed forms of the human digital twin.

In order to analyse blood circulation in the arterial system or parts of it under
healthy conditions as well as when affected by diseases or medical intervention, various
numerical models have been proposed over the years [18 30]. Analysis of the entire
arterial tree is carried out using 1D modelling in most of the published models as
complete 3D modelling of the entire tree is computationally challenging. Factors such
as modelling of fluid-structure interaction between the blood and vessel walls, lack of
material data and others severely affect the computational analysis in 3D modelling.
Additionally, blood flow can be considered quasi-1D as wavelengths of the pressure-
flow waves generated by the heart are much greater than the diameter of the blood
vessels. Thus, taking all these factors into account and recognising the need for greater
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computational speeds in our work, 1D modelling has been adopted for all proposed
forms of digital twins in this work.

Primarily two forms of 1D modelling have been adopted in this work. The first
model referred to as ETM model in this thesis, utilises a coupled 1D-0D model and
incorporates enhanced trapezoidal rule as the numerical scheme. The second model
referred to as LCG model in this thesis, uses a 1D model with tapered vessels for
terminal vessels and incorporates locally conservative Taylor-Galerkin as the numerical
scheme.

2.1 Model equations

In this section, the equations used to model blood flow in one dimension is described.
It starts by describing governing equations for an elastic vessel and its numerous
formulations. Then, the velocity profile used in this thesis is explained before ending
the section with an overview of constitutive relations used by models in this thesis.

2.1.1 Governing equations for an elastic vessel

The flow in elastic vessels, cylindrical vessels with elastic walls, in one-dimensional
flow for a vessel section can be represented using continuity and momentum equations
[31, 32, 29] given as,

∂A

∂t
+ ∂Q

∂x
= 0 (2.1)

∂Q

∂t
+

∂(αQ2

A
)

∂x
= −A

ρ

∂P

∂x
+ f

ρ
(2.2)

respectively, where A is the vessel cross-sectional area, u is the average flow velocity,
P is the pressure, Q is the volumetric flow rate (Q = Au), ux is the axial component
of the flow velocity, x is the coordinate in the axial direction, f is the friction force per
unit length, and α is a momentum correction factor given by

α =
∫

CS u2
xdσ

Au2 , u =
∫

CS uxdσ

A
(2.3)

It accounts for the non-uniform velocity distribution along the radial direction.
The above set of equations (2.1 and 2.2) are generally represented in three formula-

tions, AU, AQ and PQ. Out of which AU and PQ formulations are used by the models
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in this thesis and shown below in Equations (2.4) and (2.5) respectively.


∂A
∂t

+ ∂Au
∂x

= 0
∂u
∂t

+ (2α − 1)u∂u
∂x

+ (1 − α)u2

A
∂A
∂x

+ 1
ρ

∂P
∂x

− f
ρA

= 0
(2.4)


∂A
∂P

∂P
∂t

+ ∂Q
∂x

= 0
ρ
A

∂Q
∂t

+ ρ
A

∂(α Q2
A

)
∂x

+ ∂P
∂x

− f
A

= 0
(2.5)

2.1.2 Velocity profile

In the above equations, the term f , representing frictional forces on the fluid, is derived
for both models used in this thesis using an axi-symmetric velocity profile given as

ux(x, ξ, t) = U
ζ + 2

ζ
[1 − ( ξ

R
)ζ ] (2.6)

where ux(x, ξ, t) is the axial velocity profile, U = Q/A is the average axial velocity in
the cross-section, R is the vessel radius, ξ is the radial coordinate, and ζ is a constant
pertaining to a chosen velocity profile. In this work, ζ is taken as 2. This gives f as

f = −2(ζ + 2)µπU (2.7)

where µ is the dynamic viscosity and is considered to be constant. Here, ux(x, ξ, t)
is the x-component of the velocity vector, u(t) = 1

A

∫
A(ux(x, ξ, t)dA) is the average

velocity (averaged over cross-section).

2.1.3 Constitutive relations

To provide a relationship between a vessel’s cross-sectional area and transmural pressure,
difference between pressure inside the vessel to pressure outside the vessel (from the
surrounding tissue), is given by a constitutive relation. It helps close the set of governing
equations, continuity and momentum equations (Equations (2.1) and (2.2)). Various
linear and non-linear equations have been proposed for this relation [18, 33, 34]. In
this thesis, the LCG model uses a non-linear relation [35, 22, 31, 29] given as

P − Pext = P0 + β

A0
(
√

A −
√

A0), β(x) = 4
3

√
πEh (2.8)
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where Pext is the external pressure on the vessel from surrounding tissue, P − Pext

is the transmural pressure, A0 and P0 refer to stress free vessel area and diastolic
pressure respectively, and β(x) accounts for the material properties of the vessel wall
with thickness h(x) and elastic modulus E(x).

In the ETM model, however, a visco-elastic relation is used which combines power
law (for elastic term) [30, 36, 37] and a Voigt model for the viscous wall term [38, 30],
and is given as

P − Pext − P0 = 2ρc2
0

b

((
A

A0

)b/2
− 1

)
+ Γ

A0
√

A0

∂A

∂t
, b = 2ρc2

0
P0 − Pcollapse

(2.9)

where Pcollapse is the pressure at which the vessel is fully collapsed and c2
0 is the wave

speed.

2.1.4 Characteristic Analysis

A characteristic system is required to numerically solve the set of equations given by
Equations (2.1) and (2.2). To develop such a system, the chain rule is often applied on
the pressure term in the momentum equation. An example from [32] is presented to
show such a derivation. Consider Equation (2.5) written in the form


∂A
∂P

∂P
∂t

+ ∂Q
∂x

= 0
ρ
A

∂Q
∂t

+ ρ
A

∂(α Q2
A

)
∂x

+ ∂P
∂x

− f
A

= 0
(2.10)

along with Equation (2.9). With application of chain rule on the pressure term, we get,

∂P

∂x
= ∂P

∂A

∂A

∂x
+ ∂P

∂β

∂β

∂x
+ ∂P

∂A0

∂A0

∂x

∂P

∂Pext

∂Pext

∂x
(2.11)

which allows for a quasi-linear representation of the system of equations as,

∂U
∂t

+ H
∂U
∂x

= C (2.12)

where

U =
A

Q

 H =

 0 1
β

√
A

2ρA0− Q2
A2

2Q
A


and
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C =
 0
− ζπµQ

ρA
− A

ρ
∂P

∂Pext

∂Pext

∂x
− A

ρ
∂P
∂A0

∂A0
∂x

− A
ρ

∂P
∂β

∂β
∂x


For the above equation, by solving |ΛI − H| = 0, eigenvalues Λ are calculated as

Λ =
λ1

λ2

 =

u +
√

β
√

A
2ρA0

u −
√

β
√

A
2ρA0

 =
u + c

u − c

 (2.13)

where λ1 and λ2 are forward and backward propagation speeds respectively and c is
the wave speed. Under physiological arterial flow conditions, maximum velocity U is
smaller compared to the pulse wave velocity c,

Left eigenmatrix can be determined using liH = λili as

L =
lT

1

lT
2

 =
−u + c 1
−u − c 1


Noting that H can be represented as H = L−1Λ̄L, where

Λ̄ =
λ1 0

0 λ2

 (2.14)

Equation (2.12) can be written as

L
∂U

∂t
+ Λ̄L

∂U

∂x
− LC = 0 (2.15)

Then characteristic variables w1 and w2, from ∂w1
∂U

= l1 and ∂w2
∂U

= l2 respectively,
in the form W = [w1, w2] can be used to write Equation (2.15)

∂W

∂t
+ λ̄

∂W

∂t
= 0 (2.16)

Note that the term C has been ignored as A0 and β are assumed to be constant and
the viscous resistance term is small enough to be neglected.

The characteristic variables, w1and w2, can be calculated from

w1,2 = u − u0 +
∫ A

A0

c

A
dA = u − u0 +

∫ P

P0

1
ρc

dP (2.17)

w1 = u − u0 + 4(c − c0) w2 = u − u0 − 4(c − c0) (2.18)
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by manipulating the characteristic variables, primitive variables A and u can be found
as

A =
(

w1 − w2

8

)4
(

2ρA0

β

)2

, u = w1 + w2

2 (2.19)

2.2 Boundary conditions

2.2.1 Heart function

In 1D haemodynamic modelling, the heart function has been modelled using numerous
approaches, with some using heart model in a closed-loop framework [30, 34] while
others taking only ventricular activity [29] into consideration to calculate cardiac outflow
into the aorta. The heart function used in thesis varies for different applications. For
example, in LCG model, used in Chapter 6 for active digital twin, uses an aortic
valve and ventricular pressure approach [29]. In this approach, modelling is carried
out with respect to the aortic valve, which opens for uni-directional blood when the
ventricular pressure is higher than the aortic pressure during systole and remains closed
during diastole.

The input for this model starts a point in the left ventricle, just before the aortic
valve. Two sigmoid waveforms, each in the form shown below in Equation (2.20) are
fused at mid-ejection to form a realistic pressure waveform.

psig(t) = a1 + (a2 − a1)
1 + e

a3−t

a4

(2.20)

where a1 = ped − 9.11 × 10−4ppeak, a2 = ppeak, a3 = 7tc, a4 = tc, where ped is pressure
at the end of diastole, ppeak is peak ventricular pressure and tc is a time constant that
controls isovolumic upstroke or downstroke.

However, in the ETM model, a lumped model, proposed by Mynard and Smolich
[30], is used to represent the function of the heart, as shown below in Figure 2.1
where Rs and Enat are source resistance and native elastance of the chamber. In valves,
B, R and L are Bernoulli’s resistance, viscous resistance and inertance respectively.
Detailed description of the lumped models and their implementation are available in
[32] [30].
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then, substituting (2.22) into (2.23) , we get

∂2U
∂t2 = ∂S

∂U

(
S − ∂F

∂x

)
− ∂(FUS)

∂x
+ ∂

∂x

(
FU

∂F
∂x

)
(2.24)

where FU = ∂F
∂U

. Further, the Taylor series expansion in time gives,

Un+1 = Un + ∆t
∂Un

∂t
+ ∆t2

2
∂2Un

∂t2 + O(∆t3) (2.25)

where n is the current time step and ∆t is the time step. The final explicit semi-discrete
form can be obtained by substituting Equations (2.22) and (2.24) in the above Taylor
expansion, after ignoring higher order terms,

Un+1 − Un

∆t
= Sn − ∂Fn

∂x
− ∆t

2

[
∂

∂x

(
F n

U Sn − F n
U

∂Fn

∂x

)
− Sn

U

∂Fn

∂x
− Sn

USn

]
(2.26)

The above discrete form (Equation (2.26)) helps in formulation of a residual equation
for finite element method, explained below.

Global Taylor-Galerkin method For finite element method, standard spacial
discretisation is performed over the global domain Ω, with boundaries Γ. A resid-
ual equation is possible by using Galerkin weighting NT along with linear spatial
discretisation, which is given as,

∫
Ω

NT ∆Û
n

∆t
− NT R̂

n

 dΩ = 0 (2.27)

where R is RHS of Equation (2.26), and hat signifies that the respective variables are
approximated by the finite element method. Using this Equation (2.27), the following
equation in compact matrix form may be derived,

[M]{∆U} = ∆t([K]{F}n + [L]{S}n + {fΓ}n) (2.28)

where [M] is the mass matrix, [K] and [L] are coefficient matrices for convection,
Taylor-Galerkin and source terms and f accounts for boundary fluxes.

Locally conservative Taylor-Galerkin method Introduced by Thomas and Nithiarasu
[45, 46], LCG is a method that treats element as a sub-domain with its own boundaries.
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Using this method, Equation (2.28), can be written as

[Me]{∆U} = ∆t([Ke]{F}n + [Le]{S}n + {fΓe}n) (2.29)

Here, [Me], [Ke] and [Le] are all elemental matrices, i.e for each element, and this
system of equations solved within the element. A neumann boundary condition is
applied with the flux term which represents the information transmitted between the
elements.

To derive this method for inviscid cases, terms dealing with S and SU are removed
and the following reduced form is obtained,

∫
Ωe

NT ∆Û
n

∆t
= −

∫
Ωe

NT ∆F̂
n

∆x
+ ∆t

2

∫
Ωe

NT ∂

∂x

F̂ n
U

∂F̂
n

∂x

 dΩe = 0 (2.30)

Solving the above equation we get an element mass matrix as,

[Me] = le
6

2 1
1 2

 (2.31)

where le is the element length. The lumped matrix for this may be written as,

[Me] = le
2

1 0
0 1

 (2.32)

Further, integrating the convection term we get,

−
∫

Ωe

NT ∂F̂
n

∂x
dΩe =

∫
Ωe

∂NT

∂x
F̂

n
dΩe −

∫
Γe

NT ˆ̄FnndΓe (2.33)

where ˆ̄F is computed in a small post-processing step as the average value of F from
adjacent elements. The Taylor-Galerkin term is also integrated as,

∫
Ωe

NT ∂

∂x

F n
U

∂F̂
n

∂x

 dΩe = −
∫

Ωe

∂NT

∂x
F n

U

∂F̂
n

∂x
dΩe +

∫
Γe

NT F̄ n
U

∂ ˆ̄Fn

∂x
dΓe (2.34)

[Ke] is obtained by solving Equations (2.33) and (2.34, along with source terms as,

[Ke] =
(

1
2 + ∆t

4 Š
n

U

)−1 −1
1 1

− ∆t

2le
F̌ n

U

 1 −1
−1 1

 (2.35)
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where ŠU and F̌U are average values over the elemental sub-domain. Similarly, [Le] is
obtained as

[Le] =
(

le
6 + ∆tle

12 Š
n

U

)2 1
1 2

+ ∆t

4 F̌ n
U

−1 −1
1 1

 (2.36)

We get the flux term as

{fe} =


˜̄Fn
i

˜̄Fn
j

 (2.37)

since the Taylor-Galerkin terms, that arise from the numerical technique, are not
included as they will be zero on the boundaries.

In this scheme, flow in vessel junctions is solved by evaluating outgoing characteris-
tics, conservation of mass, given as

Q = Apup =
N∑

i=1
Aiui (2.38)

where p is the parent vessel and N is the number of daughter vessels, and Continuity
of total pressure(solved using Newton-Raphson method), given as

ρu2
p

2 + pext(p) + β(
√

Ap −
√

Ap0) = ρu2
i

2 + pext(i) + β(
√

Ai −
√

Ai0) (2.39)

Detailed information on implementation of this scheme as well as the above derivation
are available in [29].

2.4.2 Enhanced trapezoidal method

Enhanced trapezoidal method (ETM) is developed by enhancing the Simplified trape-
zoidal rule method (STM) proposed by Kroon et al [47]. In STM, all flows Q are
directed inwards, towards element the element center. It is developed by solving PQ
formulation, shown in Equation (2.5), for a domain discretised into non-overlapping
two noded elements. To achieve this, following steps are used. To begin with, the PQ
formulation is linearised as,

Cn+1
a ≈ Cn+1,k

a , Qn+1 ≈ Qn+1,k+1, P n+1 ≈ P n+1,k+1,
Q2n+1

A
≈ Q2n+1,k

A
, ρn+1

A
≈ ρn+1,k

A
,(

2(ζ+2)µπQ
A2

)n+1
≈
(

2(ζ+2)µπQ
A2

)n+1,k

(2.40)

where k is the iteration level, giving a system of equations with continuity
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Cn
A

∂P

∂t
+ ∂Qn+1

∂x
= 0, CA = ∂A

∂P
(2.41)

and momentum

ρ

An

∂Q

∂t
+ ∂P n+1

∂x
=
−2(ζ + 2)µπQ

A2 − ρ

A

∂
(

Q2

A

)
∂x

n

(2.42)

equations. The domain Ω is then split into smaller elements (e) with two nodes each.
Using trapezoidal rule, the system is integrated in space, giving continuity equation as,

∫
e

(
Cn

A

∂P

∂t

)
dx = ∆x

2

(
Cn

A,1
∂P1

∂t
+ Cn

A,2
∂P2

∂t

)
(2.43)

∫
e

(
∂Qn+1

∂x

)
dx = (Qn+1

2 − Qn+1
1 ) (2.44)

and momentum equation as,

∫
e

(
ρ

An

∂Q

∂t

)
dx = ∆x

2

(
ρ

An
1

∂Q1

∂t
+ ρ

An
2

∂Q2

∂t

)
(2.45)

∫
e

(
∂P n+1

∂x

)
dx = (P n+1

2 − P n+1
1 ) (2.46)

for LHS terms and taking RHS term as h

h =
−2(ζ + 2)πµQ

A2 − ρ

A

∂
(

Q2

A

)
∂x

n

(2.47)

integration gives ∫
e
(h)ndx = ∆x

2 (h1 + h2)n (2.48)

Further, by using second-order backward difference for the time derivatives, given
as

∂U

∂t
≈ 3

2∆t
Un+1 − 2

∆t
Un + 1

2∆t
Un−1 (2.49)



2.4 Numerical schemes 20

the above integrated system can be written as
 3

2∆t
∆x
2 Cn

A,1
3

2∆t
∆x
2 Cn

A,2

−1 1

P1

p2

n+1

e

+
 −1 1

3
2∆t

∆x
2

ρ
An

1

3
2∆t

∆x
2

ρ
An

2

Q1

Q2

n+1

e

=
 0

∆x
2 (hn

1 + hn
2 )


e

+
∆x

2

(
Cn

A
2

∆t
P n − Cn

A
2

∆t
P n−1

)
1

∆x
2

(
ρ

An
2

∆t
Qn − ρ

An
2

∆t
Qn−1

)
1


e

+
∆x

2

(
Cn

A
2

∆t
P n − Cn

A
2

∆t
P n−1

)
2

∆x
2

(
ρ

An
2

∆t
Qn − ρ

An
2

∆t
Qn−1

)
2


e

(2.50)

which can be generalised as,

FePn+1
e + Gc

eQc,n+1
e = hn

e (2.51)

where c represents conventional discretisation and e represents elemental domain.
At this point, flow direction is towards the element center, which leads to the

changing of sign for Q at second node, thereby changing the sign of the second column
of Gc

e,giving the matrix Gc
e as

Ge =
G11 −G12

G21 −G22

 (2.52)

and Qc
e as Qe = [Q1, −Q2]T . Matrix Ge is then inverted to give a final elemental

system of equations, given as

[
−G−1

e Fe

]
Pn+1

e =
[
−G−1

e hn
e

]
+ Qn+1

e (2.53)

These elemental systems are assembled to form a global system matrix, in which it
can be observed that continuity of mass is automatically satisfied. Since this scheme
uses the same pressure node at vessel junction for parent and daughter vessels, static
pressure is also conserved. This is enhanced by the ETM scheme, where constraints
are put at the vessel junction, using Lagrange multipliers to conserve total pressure,
and not just static pressure. For more detailed information on implementation and
Lagrange multipliers, please refer to [44].
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2.5 Summary

In this chapter, the different haemodynamic models used in this thesis are described.
The governing equations behind these models, boundary conditions applied, arterial
networks employed, and numerical schemes used to solve them are briefly explained.
The models described in this chapter are employed in Chapters 4, 5 and 6 along with
machine learning algorithms (described in Chapter 3) to develop three primary forms
of digital twin for cardiovascular systems.
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Table 2.1 The basic arterial tree and properties used by the LCG model, adapted
from [39]. Here, L is the vessel length, D1, D2 and D3 are daughter vessels, βi and
βf are the material properties of the vessel wall at the proximal and distal end of the
vessel respectively, and Ai and Af are the vessel’s cross-sectional area at the proximal
and distal end respectively.

Ves. No. Vessel Name L(cm) D1 D2 D3 βi(dyne/cm3) βf (dyne/cm3) Ai(cm2) Af (cm2)
1 LV Outflow Tract 1 2 0 0 226955 226955 7.01 7.01
2 Aortic Root 1 3 6 9 226955 226955 7.01 7.01
3 Left Coronary Artery 3 4 5 0 7202352 7202352 0.21 0.21
4 Left Endocardial 7 0 0 0 12604116 25208233 0.12 0.06
5 Left Epicardial 7 0 0 0 12604116 25208233 0.12 0.06
6 Right Coronary Artery 3 7 8 0 8402744 8402744 0.18 0.18
7 Right Endocardial 7 0 0 0 14684407 29368815 0.103 0.0515
8 Right Epicardial 7 0 0 0 14684407 29368815 0.103 0.0515
9 Ascending Aorta I 4 10 11 0 226974 236530 6.7887 6.5144
10 Aortic Arch I 2 22 23 0 302244 302244 3.9408 3.9408
11 Brachiocephalic 3.5 12 13 0 640973 704503 1.3273 1.2076
12 Right Subclavian I 3.5 14 15 0 837109 912790 0.5675 0.5204
13 Right Carotid 9.4 20 21 0 780114 1547491 1.4314 0.3848
14 Right vertebral 13.5 64 0 0 5500848 5500848 0.1257 0.1257
15 Right Subclavian II 39.8 16 17 0 912790 1905517 0.5204 0.1662
16 Right Radius 22 65 0 0 6865458 9076928 0.0962 0.0616
17 Right Ulnar I 6.7 18 19 0 4491547 4491547 0.1452 0.1452
18 Right Interosseous 7 66 0 0 29488309 29488309 0.0314 0.0314
19 Right Ulnar II 17 67 0 0 9236815 10680132 0.1295 0.1018
20 Right Int.Carotid 17.8 68 0 0 2708944 3661587 0.2552 0.1452
21 Right Ext. Carotid 10.2 69 0 0 3285840 5158305 0.1963 0.0962
22 Aortic Arch II 3.9 26 27 0 302241 302241 3.5968 3.5968
23 Left Carotid 13.9 24 25 0 921510 1843019 1.131 0.2827
24 Left Int. Carotid 17.8 70 0 0 3133271 4027528 0.2206 0.132
25 Left Ext. Carotid 10.2 71 0 0 3718696 5158305 0.1735 0.0962
26 Thoracic Aorta I 5.2 34 35 0 331654 331654 3.1353 3.1353
27 Left subclavian I 3.5 28 29 0 824615 899167 0.5675 0.5204
28 Left vertebral 13.5 72 0 0 5500848 5500848 0.1257 0.1257
29 Left subclavian II 39.8 30 31 0 912790 1905517 0.5204 0.1662
30 Left radius I 22 73 0 0 6865458 9076928 0.0962 0.0616
31 Left ulnar I 6.7 32 33 0 4491547 4491547 0.1452 0.1452
32 Left interosseous 7.9 74 0 0 29488309 29488309 0.0314 0.0314
33 Left ulnar II 17 75 0 0 9236815 10680132 0.1295 0.1018
34 Intercostals 8 76 0 0 383563 511417 1.2076 0.6793
35 Thoracic Aorta II 10.4 36 37 0 660414 723277 1.4314 1.307
36 Abdominal Aorta I 5.3 42 43 0 727791 727791 1.169 1.169
37 Celiac I 1 38 39 0 1266119 4814418 0.4778 0.1257
38 Celiac II 1 40 41 0 4814418 4814418 0.1257 0.1257
39 Hepatic 6.6 77 0 0 3046313 3046313 0.1521 0.1521
40 Gastric 6.3 78 0 0 4179182 4179182 0.1018 0.1018
41 Splenic 7.1 79 0 0 2148583 2148583 0.2376 0.2376
42 Sup. Mensenteric 5.9 80 0 0 2306909 2306909 0.2827 0.2827
43 Abdominal Aorta II 1 44 45 0 691528 691528 1.0936 1.0936
44 Left Renal 3.2 81 0 0 2359136 2359136 0.2124 0.2124
45 Abdominal Aorta III 1 46 47 0 691528 691528 1.0936 1.0936
46 Right Renal 3.2 82 0 0 2359136 2359136 0.2124 0.2124
47 Abdominal Aorta IV 10.6 48 49 0 670856 751491 1.0568 0.9434
48 Inf. Mesenteric 5 83 0 0 5054198 5054198 0.0804 0.0804
49 Abdominal Aorta V 1 50 51 0 723320 723320 0.8495 0.8495
50 Left Com. Iliac 5.9 52 53 0 1128379 1318778 0.5027 0.4301
51 Right Com. Iliac 5.8 58 59 0 1128379 1318778 0.5027 0.4301
52 Left Ext. Iliac 14.4 54 55 0 2329841 3234971 0.4301 0.3097
53 Left Int. Iliac 5 84 0 0 12036044 12036044 0.1257 0.1257
54 Left Femoral 44.3 56 57 0 3051859 3978858 0.3097 0.2376
55 Left Deep Femoral 12.6 85 0 0 7071176 14142352 0.1257 0.1257
56 Left Post. Tibial 32.1 86 0 0 17685616 17685616 0.0962 0.0962
57 Left Ant. Tibial 34.3 87 0 0 6207018 7510492 0.2376 0.1963
58 Right Ext. Iliac 14.5 60 61 0 2329841 3234971 0.4301 0.3097
59 Right Int. Iliac 5 88 0 0 12036044 12036044 0.1257 0.1257
60 Right Femoral 44.4 62 63 0 3051859 3978858 0.3097 0.2376
61 Right Deep Femoral 12.7 89 0 0 7071176 14142352 0.1257 0.1257
62 Right Post. Tibial 32.2 90 0 0 17685616 17685616 0.0962 0.0962
63 Right Ant. Tibial 34.4 91 0 0 6207018 7510492 0.2376 0.1963



Chapter 3

Artificial Intelligence

From multi-speciality hospitals to community centres, healthcare infrastructure gener-
ates large amounts of medical data. Starting from inpatient records, medical history
to diagnosis, monitoring, care charts and discharge summary, every patient generates
large volumes of data. Generation of this patient data takes place in various types and
volumes across different healthcare settings. The primary types of which are:

• Text : Data such as inpatient details, medical history, clinicians’ notes and so
on are generally generated in textual form.

• Time series (signals) : Patient data such as Electrocardiogram (ECG),
blood pressure waveforms, SpO2 (Oxygen saturation) and so on are generated
as time-dependent information. Apart from patient data, signals from medical
devices and equipment are also generated, analysis of which is necessary for their
maintenance.

• Image : Every scan used to analyse patients’ internals such as Computerised To-
mography(CT), Magnetic Resonance Imaging(MRI) and ultrasound are generated
as image matrices (2-D and 3-D images).

A brief overview of the current machine learning algorithms, working principles
and their use in the analysis of the above patient data is discussed in the first half of
this chapter. In the second half, an application with these algorithms in a three-tiered
strategy to prioritise ITU treatment for pneumonia patients is presented to exemplify
the capacity of AI algorithms.
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Fig. 3.1 Classification of artificial intelligence.

3.1 An overview of machine learning algorithms

Artificial intelligence is synonymous with machine learning. However, artificial intel-
ligence is the science of mimicking intelligence using machines and machine learning
is the means of achieving this. Machine learning can broadly be divided into super-
vised, unsupervised and reinforcement learning, as shown in Figure 3.1. The following
subsections will explain the first two types of learning, supervised and unsupervised
learning, their sub-classifications, examples of their use in medical analysis and working
principles. The last type of learning, reinforcement learning, is not adopted in any of
the digital twins presented in this thesis therefore not being discussed in this chapter
to avoid any ambiguity.
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3.1.1 Supervised learning

In supervised learning labelled data is provided, using which machine learning algo-
rithms are adapted or fit to provide an output for a given task. The majority of
machine learning based biomedical applications adopt this kind of learning. These
algorithms are predominantly used for classification and prediction, therefore are used
for the diagnosis and prognosis of diseases.

Based on the complexity or depth of knowledge captured in these algorithms,
supervised machine learning can be divided into shallow and deep learning. The depth
of knowledge required for an application is heavily influenced by the amount of available
training data, required efficacy, computational constraints and data type.

Shallow learning

In shallow learning, also known as traditional machine learning, data defined by
predefined features are trained upon by lower-dimensional algorithms. In other words,
features manually extracted from any given data is used to perform actions such as
classifications and regressions. For biomedical usage, multiple applications using such
algorithms have been developed and deployed over the last two decades [48 51].

Within shallow supervised learning, following types of algorithms are widely adopted:

• Regression algorithms: In these algorithms, to get predictions using a univariate
or multivariate function, the relationship between the variables are iteratively
refined using a measure of error. Examples of such algorithms are:

– Linear regression,

– Logistic regression and

– Multivariate Adaptive Regression Splines (MARS)

• Decision tree based algorithms: These algorithms use flowchart-like models of
decisions and their possible consequences to model outcomes in any given task.
Examples of such algorithms are:

– Conditional Decision trees

– Classification and Regression Tree (CART)

– Random Forests
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• Instance based algorithms: In such algorithms, comparison of new data with
existing database using a measure of similarity is used to perform any given task.
Examples of such algorithms are:

– K-Nearest Neighbour (KNN)

– Support Vector Machine (SVM)

– Locally weighted learning [52]

Deep learning

In deep learning, algorithms with multiple layers of weighted non-linear or linear
mapping are used to progressively extract features of the given data and learn its
higher-dimensional representation, representative of both recognisable features as well
as hidden or not easily deducible features within the data. Owing to their efficacy
and speed, these algorithms are widely being proposed and adopted in almost every
part of healthcare. Multiple examples of such applications have been proposed for
patient record management [53, 54], diagnosis [55, 56], prognosis [57, 58] and drug
development [59, 60].

Deep learning predominantly consists of artificial neural networks. These artificial
neural networks use units known as artificial neurons (see Figure 3.2)(inspired by the
real human neurons) as their building blocks. These deep neural networks use vast
amounts of data to train and perform various tasks. Primary forms of such deep neural
networks include Feedforward neural networks and recurrent neural networks. The
sections below will provide an overview of each of these types of neural networks and
suitable applications for them in healthcare.

Feedforward neural network In this form of neural networks, the information
flow from input to output is forward and unidirectional during calculations. Multilayer
perceptron (MLP) and convolution neural networks (CNN) are widely used feedforward
neural networks in healthcare. Owing to their unidirectional information flow, these
networks are preferred for diagnostic applications.

Multilayer Perceptron In an artificial neural network, several of the artificial
neurons, similar to the neuron shown in Figure 3.2, are put together parallelly to
form a neural layer. In Multilayer Perceptron (MLP) models, multiple such layers
are connected progressively, such that neurons from each layer are connected to each
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neuron in the previous layer. In other words, every neuron in one layer is connected to
every neuron in the next layer. The outputs from one layer to the next are generally
mapped or activated using non-linear or linear functions. As shown in Figure 3.3, in
an MLP, the first layer which accepts the input data is known as the input layer, the
final layer which provides an output is known as the output layer and every layer in
between them are usually known as hidden layers. Such a network allows for different
higher-dimensional features to be identified in input data. Some of the widely used
activation functions in an MLP are:

• ReLU (Rectified linear unit): σ = max(0, x)

• TanH (Hyperbolic tan): σ = ex−e−x

ex+e−x

• Sigmoid: σ = 1
1+e−x

Equations (3.1) and (3.2) represent the calculation of output in an artificial neuron,
as shown in Figure 3.2, where wi are the weights, b is the bias, σ is the activation
function, O is the output and xi are the inputs.

z =
n∑

i=1
xiwi + b (3.1)

O = σ(z) (3.2)

Fig. 3.2 An artificial neuron.
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Once initialised, the outputs generated by the network for input training data are
compared against expected output. Quantification of the error between the predicted
output and the expected output is carried out using loss or cost functions (C) such as
absolute mean error

C = 1
n

n∑
i=1

|yi − ŷi| (3.4)

and mean squared error
C = 1

n

n∑
i=1

(yi − ŷi)2, (3.5)

where y, ŷ and n are the predicted value, expected value and number of training
samples respectively, for applications such as prediction, where numerical output is
required. For applications such as classification where probabilities are involved, cost
functions such as binary cross-entropy

C = 1
n

n∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (3.6)

is used. In Equation (3.6), y is the expected label, a 0 or 1, and ŷ is the calculated
value, which in practice lies between 0 and 1. The output from cost functions is then
used to optimize the weights and biases.

Popularly neural networks are trained using backpropagation, a technique that uses
simple chain rule to optimise weights and biases, however, various other optimisation
algorithms such as extended Kalman filter [62], difference target propagation [63] also
are available to train neural networks. In this thesis, all neural networks are trained
using backpropagation. In this algorithm, the derivatives of the cost function with
respect to weights and biases in the last layer is used to propagate and consequently
optimise weights and biases, using the chain rule, of the previous layers, extending
back up to the first hidden layer (the one after input layer). For example in the output
layer,

∂C

∂wn

= ∂C

∂σ

∂σ

∂z

∂z

∂wn

(3.7)

where C is the cost, wn are the weights in the output layer, z is the output from
the output layer (prior to output activation) and σ is the output activation.

The steps followed in backpropagation could be generalised as:

Calculate the derivatives of the cost function with respect to weights and biases in the
output layer.
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↓
Calculate the derivatives of the cost function with respect to weights and biases in the

hidden layer before the output layer.
↓
...

Calculate the derivatives of the cost function with respect to weights and biases in the
first hidden layer after the input layer.

The gradients calculated in this manner are then used by algorithms, known as
optimisers, such as Adam [64] and stochastic gradient descent (SGD), to update the
weights and biases.

Further, training of neural networks involves the usage of multiple techniques and
methods to optimally train the network to prevent problems such as overfitting and
increase the overall performance of neural networks. Overfitting is a condition where
the network is optimised strongly with respect to the training data such that their
performance drops when inputs not in the training dataset are given. Generally, the
training dataset is divided into training and validation subsets. Neural networks are
trained on the training subset and concurrently tested using the validation subset,
monitoring of losses between the two subsets allows for tracking of the networks’
performance. This allows for monitoring of networks for overfitting and allows for
early stopping of training if required. To prevent overfitting, apart from early stopping,
multiple methods such as regularisation, K-fold cross-validation are also available. In
this thesis, multiple methods and various combinations of parameters have been used to
train neural networks for different applications. The particular configuration of neural
networks and their respective configurations used during training in each instance have
been provided.

Recurrent neural network Recurrent neural networks are a class of neural networks
designed to handle sequential data such as time series. In each recurrent cell, the
building block for this type of neural network, the input for each sequential step is
concatenated with the cell’s output from the previous step (as shown in Figure 3.6).
This type of close-looped architecture allows for these networks to perform dynamically
in any given sequential input.

In biomedical applications, these networks are best suited for places where time
series data are generated such as signals (ECG, ABP etc., as explained in the beginning
of this chapter).
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(Xi) and output from the previous step (Yi−1), is passed through the lower channel.
Gates Fi, Ii and C are used to learn from previous steps and predict the next one.
Each of these gates refers to a combination of neural layer connected to the cell state
through a logical operator or combination of logical operator and other gates. Based
on the logical operation carried at the end of their respective neural layer, gates can be
identified for their functions such as to forget, retain, select or modify cell state which
in turn affects the output value.

Transfer learning

Many times, in biomedical research, a minimal amount of data is available or is
generated at the sites of research, for example in a rare or novel disease. Developing
deep learning based applications in such situations is very hard as deep learning needs
vast amounts of data during training. To alleviate, a concept known as transfer learning
is adopted. In this method neural networks pre-trained on data, in most of the cases
similar to the desired application, are adopted and re-trained on the available small
amounts of data. In this way, a lot of features present in the current data are already
identified and smaller novel features, specific to the current data are extracted.

3.1.2 Unsupervised learning

In unsupervised learning, unlabelled data is provided, upon which an analysis is carried
out without any guidance. This form of learning is widely used for the analysis and
identification of data. This kind of learning is in general carried out using either
clustering or dimensionality reduction.

• In clustering, data points similar to one another are grouped or clustered. These
algorithms are used for applications such as big data analysis. In this form of
unsupervised learning, three widely used algorithms are:

– K-means

– Hierarchical clustering

– density-based clustering

• Dimensionality Reduction is used to detect patterns within the provided
data. This form of analysis is widely used for applications such as object or
face detection and big data visualisation. Widely used dimensionality reduction
algorithms include:
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– Independent Component Analysis (ICA)

– Self Organising Maps (SOM)

– Principal Component Analysis (PCA)

3.2 Application : An AI based digital-twin for pri-
oritizing pneumonia patient treatment

In this section, a data-driven digital twin based three-tiered system is proposed to
prioritise patients for urgent intensive care and ventilator support. The deep learning
methods are used to build patient-specific digital-twins to identify and prioritise critical
cases amongst severe pneumonia patients. The three-tiered strategy is proposed
to generate severity indices to: 1) identify urgent cases, 2) assign critical care and
mechanical ventilation, and 3) discontinue mechanical ventilation and critical care
at the optimal time. The severity indices calculated in the present study are the
probability of death and the probability of requiring mechanical ventilation. These
enable the generation of patient prioritisation lists and facilitates the smooth flow of
patients in and out of Intensive Therapy Units (ITUs). The proposed data-driven
digital-twin is built on pre-trained deep learning models using data from more than 1895
pneumonia patients. The severity indices calculated in the present study are assessed
using the standard benchmark of Area Under Receiving Operating Characteristic
Curve (AUROC). The results indicate that the ITU and mechanical ventilation can be
prioritised correctly to an AUROC value as high as 0.89. This model may be employed
in its current form to COVID-19 patients, but transfer learning with COVID-19 patient
data will improve the predictions. The digital-twin model developed and tested for
this application is available in a public repository, that can be found here.

The COVID-19 pandemic [68] put an unprecedented stress on the already strained
healthcare infrastructure [69, 70]. This situation forced the healthcare providers to pri-
oritise patients in critical need to access Intensive Therapy Units (ITU) and mechanical
ventilation. Some of the currently used scoring systems for patient prioritisation include
SOFA (Sepsis-related Organ Failure Assessment) [71], APACHE (Acute Physiology and
Chronic Health Evaluation) [72], and SAPS II (simplified acute physiology score) [73].
These systems have been validated over time for analysis of intensive care treatments
[74 77]. In recent past, several works have been published on severity scoring using
neural networks and other machine learning algorithms [78 80]. Majority of these
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algorithms were trained on large ITU datasets to calculate severity scores, covering a
wide range of diseases and medical conditions. Such systems, though valuable during
normal times, may not be sufficiently specific to address the COVID-19 pandemic.
In the case of COVID-19 (and in other similar forms of influenza), more precise and
dynamically evolving system may be necessary to address the sudden increase in
severity and the need for mechanical ventilation. With more mutations of the virus
being identified over time [81], an evolving knowledge of the disease severity of each
virus variant has become extremely important. A robust and dynamically adaptable
model that takes into account the progression of severity over the course of care, which
may be different for different variants of the disease, is therefore needed.

A data-driven digital twin can provide real-time feedback on how patients are
likely to behave based on their current known condition using periodic input data
from the patient’s vitals (such as heart rate, respiration rate). The severity scores
calculated by these models can form the basis for prioritising potential pneumonia
patients for ITU and mechanical ventilation. The three-tiered strategy of identify,

Fig. 3.8 Three tiered patient prioritisation strategy to reduce mortality rate in intensive
care units.

assign and discontinue, as shown in Figure 3.8, is employed in this application to
produce a patient priority list. The three-tiers are: 1) identify urgent cases amongst
those awaiting care, 2) assign mechanical ventilation to critical cases amongst patients



3.2 Application : An AI based digital-twin for prioritizing pneumonia patient
treatment 36

receiving care, and 3) discontinue mechanical ventilations and other care at the optimal
time, thereby freeing-up vital resources. In this application, each of these steps are
enabled by artificial neural network models, a type of artificial intelligence system, that
are well established for complex diagnosis with unprecedented levels of accuracy [82 85].
These methods require significant amount of data for training and testing. However,
acquiring, de-identifying and indexing huge amounts of COVID-19 patient data from
ITU is currently challenging. Hence, to expedite progress, a transfer learning [86]
approach may be adopted. In such approaches, as explained in Section 3.1.1, artificial
neural networks are trained using large amounts of data from similar backgrounds
to that of COVID-19. The trained model can be bolstered with smaller amounts of
COVID-19 data, when available, to improve accuracy. Since the background data used
here is from pneumonia patients, the model proposed should be representative of severe
COVID-19 patients. All the artificial neural networks used in the three tiers of Figure
3.8 together forms an individual patient’s digital-twin system.

3.2.1 Methodology

An interconnected system, comprising multiple independent neural networks, designed
to assist a concerted decision making process, is proposed. Independent severity indices
are calculated at the three tiers shown in Figure 3.8 to assist in identifying cases that
are severe but with a high chance of survivability. The indices used in each of the tiers
are as follows (see Figure 3.8):

(i) Tier One, Patients awaiting intensive care - (a) Difference between probabilities
of death with and without mechanical ventilation support and (b) Probability of
requiring mechanical ventilation.

(ii) Tier Two, Intensive care inpatients awaiting mechanical ventilation support -
(a) Probability of death (based on data from continuous monitoring of vitals),
(b) Probability of requiring mechanical ventilation support (based on data from
continuous monitoring of vitals) and (c) Severity indices used in Tier One.

(iii) Tier Three, Discontinuation of mechanical ventilation support amongst inpatients
- (a) Probability of requiring mechanical ventilation support (based on data from
continuous monitoring of vitals) and (b) Probability of death (with consideration
of mechanical ventilation data).
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Within each tier, based on probabilities calculated, thresholds can be set by the
ITU professionals for decision making. Independent severity score thresholds can be
set within each tier to allow situations in which different stages of ITU care may be
needed at different healthcare units or settings (Example - A patient moving from one
hospital to another).

Data Selection and Pre-Processing

Primary sources of data used in this application are from MIMIC-III [87][88] and
eICU Collaborative Research Database v2.0 [89] [90], obtained from PhysioNet [91].
MIMIC III is a publicly-available database comprising de-identified health-related data
associated with approximately sixty thousand admissions of patients who stayed in
critical care units of the Beth Israel Deaconess Medical Center between 2001 and
2012. eICU Collaborative Research Database v2.0 is multi-center database comprising
de-identified health data associated with over 200,000 admissions to ITUs across the
United States between 2014-2015 (see Table 3.1). Both of these databases consist of
various vital sign measurements, de-identified information on patient stay, diagnosis
information, records of medical procedures carried out, drugs administered and various
other intensive care information.

Since severe COVID-19 patients suffer from pneumonia [92], the selection and
aggregation of data here is based on critical symptom of pneumonia. Therefore, various
subsets of MIMIC-III and eICU databases with pneumonia are chosen for training. All
patient data with missing vital information are ignored. The subsets chosen are:

(a) Pneumonia Mortality subset - Patients who suffered from any form of pneumonia.
This subset included both survived and died cases at the time of discharge.

(b) Pneumonia Ventilator subset - This consists of all survived patients at the time
of discharge, but suffered from some form of pneumonia.

In the case of MIMIC-III database, a total of 493 ITU stays of pneumonia patients
were considered. Patient data with available matching and admissible quality waveform
data (collected from MIMIC-III matched waveform subset) were considered. Out
of which, 211 (42.79%) stays required mechanical ventilation and 95 (19.26%) stays
resulted in death.
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Table 3.1 Baseline characteristics of subset selected from eICU Collaborative Research
Database v2.0

Overall population, n=1895
Age 68 [56-79]
Gender(Male) 994
On Mechanical ventilation 1155 (60.94%)
HR (bpm) 112 [98-128]
MAP(mmHg) 62 [51-123]
RR (cpm) 33 [25-41]
Na (mmol/l) 138 [133-141]
Glucose (mmol/l) 146 [96-201]
WBC (103/mm3) 9.7 [5.33-15.06]
PaO2/FiO2 1.66 [1.12-2.37]
Bilirubin (mg/dl) 0.6 [0.4-0.9]
Dead 230 (12.13%)

Neural Networks and Architecture

The proposed three-tiered system is constructed primarily using multiple independent
neural networks. However, the type of neural networks used can be classified into
two categories, Multilayer Perceptron (MLP) and Recurrent Neural Networks (RNN).
Artificial neural networks may be used to perform functions such as classification
and prediction. As explained in Section 3.1.1, MLP models use a series of cascaded
non-linear transformations of weighted coefficients, as shown in Figure 3.9 (a), to
perform these functions. The MLPs typically accept discrete values as inputs. In the
case of patient data, some examples of discrete inputs are patient gender, blood glucose
level and sodium levels. These input values can be used to calculate the probability of
death and the probability of a patient requiring mechanical ventilation.

In ITU, waveforms (time series) of body vitals measured are examples of sequential
input. In order to predict or classify patients, LSTM cells (explained in Section 3.1.1)
are designed to ‘retain’ and/or ‘forget’ parts of input data sequence(s). These abilities
make them the appropriate choice of neural networks to calculate severity indices and
assess patient criticality continuously or at regular time intervals. The RNN based
models used in this application use a combination of sequential and discrete value
inputs. As seen in Figure 3.9 (b), a combination of LSTM cell layer and additional
MLP model is used to predict severity index of interest using fully connected neural
layers. All models were built using Tensorflow library [93], using Keras [94] library, on
Python.
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Table 3.2 Baseline characteristics of subset selected from MIMIC-III [87][88]. Note:
Since every field in this table is not measured for the entire population of the subset,
the 95% CI provided in the brackets are representative of only those patients in whom
the respective field was measured and recorded.

Overall population, n=493
Age 67 [66-69]
Gender (Male) 264
HCO3 (mmol/l) 23 [22-25]
Carboxyhaemoglobin (%) 2.34 [1.51-3.17]
Chloride (mmol/l) 102 [100-104]
Calcium (mmol/l) 1.10 [1.04-1.07]
Glucose (mg/dL) 154 [143-165]
Hematocrit (%) 33 [32-34]
Haemoglobin (g/dL) 11 [10.54-11.46]
Lactate (mmol/l) 1.88 [1.72-2.05]
Methemoglobin (g/dL) 0.38 [0.21-0.56]
K (mmol/l) 4.05 [3.93-4.18]
Na (mmol/l) 136 [134-139]
Temperature (℃) 36.73 [36.52-36.95]
On Mechanical ventilation 211 (42.79%)
FiO2 0.68 [0.64-0.72]
SO2 (%) 86 [84-88]
PCO2 (mmHg) 39 [37-40]
PEEP (cmH2O) 6 [6-7]
Ph 7.31 [7.30-7.33]
PO2 (mmHg) 114 [104-123]
O2flow (lpm) 14.21 [8.11-20.31]
Tidal volume (mL) 505 [488-523]
Dead 95 (19.26%)
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(a) MLP (b) RNN

Fig. 3.9 Multilayer Perceptron (MLP) and Recurrent Neural Networks (RNN) for
calculating severity indices.

The MLP Models consisted of three dense hidden layers. These layers are non-
linearly activated using Rectified Linear Unit (ReLU) functions. Depending on the
severity index to be predicted, the input layer consisted of 21-22 input parameters. As
the final value being predicted in these models is a single value between 0 and 1, an
output layer with single neuron and sigmoid activation is used. Detailed architecture
of MLP models and training parameters are provided in Appendix A.

In the case of RNN based models, sequential input data is processed by a network
model with single or double LSTM layer(s). These layers use input arrays with 8 input
parameters. Discrete inputs are processed by an independent network model with a
21-26 input parameters, depending on the severity index. The outputs of these networks
are then merged and fed to final model activated with ‘ReLU’ functions. Similar to the
MLP models, the final model has an output neuron with sigmoid activation. Dropouts
and activity regularizers, were used in these models to avoid over-fitting. A detailed
description of RNN based model architectures and training parameters have been
provided in the Appendix A.

The discrete input data was standardised within a similar range. All MLP models
were trained and cross-validated on data subsets chosen from eICU Collaborative
Research Database v2.0. All RNN based models were trained on the MIMIC-III
database, owing to the waveform datasets available in them. Datasets were split into
training (80%) and testing dataset (20%). Cross-validation of models were carried out
on the training to tune the hyper parameters and analyse model performance using
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K-fold method, for which the training dataset was divided into 10 folds. The K-fold
validation method splits the training dataset into K-folds or K bins, from which one
of the folds is held out for validation and the remaining folds are used for training.
The neural network is independently trained K times, one for each fold held out as the
validation fold. The results obtained by training over K cycles are averaged to analyse
model performance and tune the hyper parameters. The final model selection is based
on best accuracy obtained for the testing dataset, which is never used during training.

Tier One-"Identify": Identification of ill patients amongst those awaiting
intensive care

Since this class of patients are not monitored continuously, data obtained within 24
hours of hospital admission is used. A subsystem of two MLP models were trained
on a subset containing pneumonia patient data from eICU Collaborative Research
Database v2.0 database. One was used to predict the probability of death, and the
other for calculating the probability of requiring mechanical ventilation.

The first model was trained on ‘Pneumonia mortality subset’, consisting of 1895
patients and the second model was trained on ‘Pneumonia ventilator subset’, consisting
of 1665 patients. The twenty input fields chosen for the first MLP are age, gender,
ventilation status (a binary value), intubation status (a binary value), dialysis status (a
binary value), heart rate, respiration rate, Glasgow coma scale, white blood cells (WBC)
count, blood glucose levels, PaO2, PaCO2, mean blood pressure, body temperature,
sodium, potassium, bicarbonate, bilirubin, FiO2, chronic diseases (Metastatic cancer,
AIDS or Haematologic malignancy) and Blood Urea Nitrogen (BUN) levels. These
inputs are also used by APACHE IV scale. The second MLP for predicting probability
of requiring mechanical ventilation used the same input parameters as the first except
for ventilation status, which is now added as additional parameter. To remind the
reader, the data set used for this model consists of only patients who survived at the
time of discharge. Thus, the training criteria should include mechanical ventilation
support data to successfully discharge the patient alive.

Using the predicted severity indices, a patient priority list may be generated to
admit patients with more urgent need for care into ITU. Since mechanical ventilation
is the indication of severity in COVID-19 patients, probability of requiring mechanical
ventilation is the primary severity index in preparing such a list. The patients with
similar probabilities of requiring ventilation are prioritised using difference between
probabilities of death, with and without ventilation. The probability of death with
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mechanical ventilation may also be used to further refine the prioritisation list. The
prioritised patients in Tier One may be admitted to the ITU and the prioritisation list
may be further refined in Tier Two for providing mechanical ventilation.

Tier Two-"Assign": Identifying and providing mechanical ventilation sup-
port amongst intensive care patients

The patients selected from Tier One to go into ITU can now be continuously monitored.
However, with limited number of mechanical ventilators it becomes a necessity to provide
this support to the more urgent cases. To identify urgent cases amongst the inpatients in
an ITU, a continuous monitoring based severity index is required. The primary severity
indices used here are probability of requiring mechanical ventilation support (based on
continuous monitoring) and Probability of death (based on continuous monitoring).
The RNN based model shown in Figure 3.9 (b) is used to predict these severity indices.
The sequential (continuous) inputs used here are heart rate, pulse, systolic and diastolic
blood pressures, respiration rate and SpO2, in addition to multiple discrete input
fields[95], AADO2 (alveolar-arterial difference of oxygen partial pressure), HCO3,
carboxyhaemoglobin, chloride, calcium, base excess, glucose, haematocrit, haemoglobin,
sodium, potassium, SO2, FiO2, PO2, methemoglobin, temperature, age and gender.
The lowest measured discrete input value in a 24 hour period is used in the training. A
direct allocation of ventilation support at the first tier is also possible when required.

Tier Three-"Discontinue": Identifying patients who can discontinue me-
chanical ventilation support

The patients identified in Tier Two to receive mechanical ventilation can now undergo
continuous monitoring to decide when to discontinue treatment. The probability of
requiring mechanical ventilation support (based on continuous monitoring of patient)
and probability of death (considering continuous ventilation support) are used as the
indices to safely remove the mechanical ventilation support. The RNN used in Tier
Two with similar inputs is continued here to observe the probability of still requiring
mechanical ventilation support. The patients with probability of requiring mechanical
ventilation lower than a set threshold may be removed from the ventilator support. To
reduce the risk of false negatives, probability of death is also monitored in this tier.
An additional RNN based model is trained to take ventilator settings along with the
inputs used in Tier Two to predict probability of death. The additional input fields
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include PEEP, required O2 and tidal volume. The person with probability of requiring
mechanical ventilation less than the set limit must also have a probability of death
lower than the set threshold limit to discontinue treatment.

3.2.2 Results and Discussion

All three tiers discussed in the previous section together form the digital-twin of
a patient. A total of five independently trained neural network models take the
measured patient vitals and provide various severity indices as output. All models
in this application are designed with ease of use in mind. Many healthcare units
lack the state of the art IOT (Internet of Things) based health monitoring systems
or face issues with platform compatibility. Manual inputting of data, including time
dependent sequential inputs, would be necessary in units where electronic recording
capabilities are unavailable. Thus, all inputs are designed to allow manual intervention
(see supplementary information). The MLP models are designed to take, the most
severe value for each input field, within a 24 hour period. All RNN based models require
two types of inputs, discrete input fields once every 24 hour period, that are most
severe, and all sequential input fields such as heart rate, SpO2, and blood pressures at
regular time intervals. These models inherently take note of time elapsed from the start
of care and use latest data for calculating severity indices. The two patient databases
used for training the models are explained in the previous sections (see for example
Table 3.1).
Performance measures: All models, performing classification to calculate probabili-
ties, are evaluated using the Area Under Receiving Operating Characteristic Curve
(AUROC), reported with corresponding 95% confidence interval (CI). Receiving Operat-
ing Characteristic (ROC)[96, 97] curve is a probability curve. Performance is measured
using the AUROC. It represents the degree of separability between classes. In the
context of the present work, this separability represents the difference between severe
and not so severe cases, for each severity index. Higher AUROC represents better
performance. The parameters used to estimate AUROC are true and false positive
rates. The graphs representing ROC are plotted for false positive rate (1-specificity) vs
true positive rate (sensitivity). At AUROC of 0.5, the model loses its discrimination
capacity to distinguish between classes. It is represented by a dashed diagonal line in
the figures below for reference.
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(a) Probability of death (b) Proabability of requiring mechanical ven-
tilation

Fig. 3.10 AUROC (shaded area) curve for MLP models used to predict the probability
of death and the probability of requiring mechanical ventilation support.

Tier One-"Identify"

Here, two MLP models are used to predict the probability of death and the probability
of requiring mechanical ventilation using patient vital data, measured over a period
of 24 hours. The AUROC obtained over the total dataset are respectively shown in
Figures 3.10 (a) and (b). An AUROC of 0.89 (95% CI: 0.88-0.91) is obtained for the
probability of death and 0.84 (95% CI: 0.82-0.86) is obtained for the probability of
requiring mechanical ventilation. Cross-validated accuracy scores of 0.86 (SD: ± 0.005)
and 0.70 (SD: ± 0.055), respectively, were obtained in these models on the training
dataset. Furthermore, an accuracy score of 0.88 and 0.72 over the testing dataset.
Figure 3.10 (a) also shows APACHE IV score with a predicted probability of death
with an AUROC of 0.72. Thus, the proposed approach appears to be a substantially
better predictor. The model shows that the probability of death and the probability of
requiring ventilation with respectively 86% and 85% chances of accurate prediction.
From the data computed, a patient prioritisation list for ITU admission may be created
by calculating

(a) Difference in probabilities of death with and without mechanical ventilation.

(b) Probability of death with mechanical ventilation.

(c) Probability of requiring mechanical ventilation support.
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(a) Probability of death (b) Probability of requiring mechanical ven-
tilation

Fig. 3.11 AUROC (shaded area) curve for RNN based model results of the probability
of death for patients and the probability of requiring mechanical ventilation support.

Tier Two-"Assign"

The inpatients within ITUs, whose vitals are continuously monitored, can be assessed
for severity of lung disease periodically using the RNN model. As seen in Figure
3.11 (a), an AUROC of 0.86 (95% CI:0.81-0.90) is obtained from the model for the
probability of death, over the entire dataset. The probability of requiring mechanical
ventilation is calculated with an AUROC of 0.83 (95% CI: 0.79-0.86) as shown in
Figure 3.11 (b). These models obtained a cross validated accuracy scores of 0.73 (SD:
± 0.04) and 0.74 (SD: ± 0.12) respectively. Furthermore, accuracy scores of 0.82 and
0.71 respectively were obtained over the testing dataset. This indicates that with
continuous or regular inputs of measured vitals (heart rate, respiration rate, SpO2 and
blood pressures) and discrete inputs such as Haemoglobin, WBC, and sodium, need
for mechanical ventilation can be identified with 83% chance. This calculation can be
continued into Tier Three to discontinue ventilation as demonstrated below.

Tier Three-"Discontinue"

For patients in ITU an approach for the probability of death must be calculated by
including the mechanical ventilation. Unlike the RNN based model used in Tier Two,
the model here includes mechanical ventilator settings along with the other inputs
to calculate the probability of death. As seen in Figure 3.12, the model performed
classification with an AUROC of 0.89 (95% CI: 0.85-0.93) over the entire dataset. This
model obtained a cross validated accuracy score of 0.81 (SD: ± 0.025) and testing
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accuracy score of 0.80. This severity index is required to support the probability of
still requiring mechanical ventilation support. A combined analysis of probability of
requiring mechanical ventilation support and death is necessary to reduce the chances
of erroneous decisions of early removal of support. If both indices are substantially
low, the mechanical ventilation may be discontinued.

Fig. 3.12 ROC curve for RNN based model used to predict probability of death for
patients in Tier Three

Comparison with other existing machine learning based models

As explained in Section 3.2, multiple machine learning based models exist in literature
[78 80, 98, 99] for severity scoring. However, most of these models are designed or
trained on larger patient datasets or for conditions other than pneumonia, thereby
making them less suitable as a base upon which a prioritisation system can be built
for patients with pneumonia-related characteristics, similar to those seen in COVID-19
patients. Nevertheless, these models may provide added benefits to clinicians if different
or additional severity scoring is required as a result of non-pneumonia complications.
Therefore, a comparison between the above proposed digital twin and some of the
existing models is carried out here to provide a brief overview of their functionality. Ye
et al [98], proposed a knowledge-guided CNN (Convolutional Neural Network) which
predicted mortality in critically ill patients with diabetes with an AUROC of 0.97.
This model used Unified Medical Language System (UMLS) resources and clinical
notes as input. In the case of COVID-19, with diabetes patients at a higher risk of ICU
admission [100], this model could be used as an additional tool for patient prioritisation
in high patient volume areas. Barbieri et al [79], benchmarked the use of RNNs as well
as attention-based networks for predicting readmission to the ICU within 30 days of
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discharge, with the highest achieved AUROC of 0.739. This type of prioritisation adds
well to the Tier-3 of the proposed digital twin. Since Tier-3 models predict the removal
of mechanical ventilation support, this type of prioritisation based on readmission to
ICU can assist clinicians in deciding discharge. Further, prediction of hospital length
of stay using machine learning models, trained on larger patient datasets, has been
proposed by Gentimis et al with an accuracy of 80%. An alternative for mortality
prediction using a Super Learner Algorithm, known as Super ICU Learner Algorithm
(SICULA), which has outperformed traditional SOFA and SAPS II score, was proposed
and made available by Pirrachio et al [80]. SICULA predicted probabilities of death
with a cross-validated AUROC of 0.85-0.88.

3.2.3 Conclusion

The digital-twin system proposed in the present study to construct a subject-specific
digital twin appears to provide better results than existing scoring methods. Although
the data used to train the models is for non-COVID-19 patients with pneumonia, the
similarity of the data to COVID-19 patients appears to be strong. The symptoms,
severity, the type of intensive care required and provided and the necessity of mechanical
ventilation during care are fairly similar between pneumonia patients and COVID-19
patients. Thus, the proposed digital twin can be used as a starting point to further
refine the scoring system. Overall, the accuracy of prediction is satisfactory with
a minimum AUROC of 0.8 in all cases. By adapting transfer learning on emerging
COVID-19 data, this accuracy may be substantially enhanced for severe COVID-19
patients.

The code used in this work is open to everyone to download, that could be found here,
and train on additional data. With further refinement by the community and our own
research group, we believe that the model will serve the healthcare community to deal
not only with the COVID-19 pandemic but any future influenza patient prioritisation.

3.3 Summary

This chapter provides an overview of state-of-the-art artificial intelligence and introduces
the machine learning algorithms used in this thesis. Different types of algorithms
described in this chapter will be employed in subsequent chapters for building different
forms of digital twins for the cardiovascular system. In the second half of the chapter,
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some of the machine learning algorithms explained are employed in developing a
data-driven digital twin which will help in the three-tiered prioritisation of ITU care
for pneumonia patients. This purely data-driven digital twin explores the concept of
a digital twin that purely relies on artificial intelligence, unlike the different forms of
digital twins proposed in the subsequent chapters which incorporate computational
mechanics. The machine learning algorithms used in this twin are trained on ITU
patient data from publicly available databases (eICU Collaborative Research Database
v2.0 and MIMIC-III). The overall accuracy of prediction for patients’ severity with this
twin is satisfactory with a minimum AUROC of 0.8 at all levels of patient prioritisation.



Chapter 4

Passive Digital Twin

In this chapter, the first type of human digital twin, the passive digital twin, is explored
through an application for calculating Fractional Flow Reserve (FFR). Passive digital
twins are useful for offline analysis of any organ system and have no active components.
The example presented in this chapter exemplifies offline geometrical and physiological
replication of coronary artery system for calculating Fractional Flow Reserve (FFR),
which provides the functional relevance of coronary atheroma.

The FFR guided strategy has been shown to reduce unnecessary stenting, improve
overall health outcome, and to be cost-saving. The non-invasive, coronary Computerised
Tomography (CT) angiography-derived FFR (cFFR) is an emerging method in reducing
invasive catheter based measurements. This CFD based method is laborious as
it requires expertise in multidisciplinary analysis of combining image analysis and
computational mechanics. In this chapter, we present a rapid method, powered by
unsupervised learning, to automatically calculate cFFR from CT scans with no manual
intervention.

The chapter begins with an introduction to fractional flow reserve and a brief
overview of published research in this field. Subsequent sections describe unsupervised
geometry extraction from CT scans, mesh generation and computational haemody-
namics used to calculate the FFR. The results obtained using the proposed method on
CT scans from a cohort of 25 patients are presented and explained at the end of this
chapter.
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4.1 Introduction

In 2019, 218,032 people in the UK were affected by Coronary heart disease (CHD)
and a 63,237 people died as a result of it [101]. These figures, however, reflect public
health before the onset of COVID-19 pandemic. The living conditions as a result
of this pandemic has in fact increased the risk of mortality. In Great Britain, 9 in
10 coronavirus deaths had a pre-existing condition and CHD was one of the most
common ones [102]. Further, with over 7.6 million living with cardiovascular diseases
in the UK and ever growing waiting lists, stress on healthcare is expected to increase
astronomically. A rapid and automatic screening for functional relevance of coronary
stenoses is one of the potential solutions for easing this situation. With such screening,
patients with advanced deterioration of coronary haemodynamic state can be prioritised,
thereby reducing mortalities.

Until recently, Coronary Computerised Tomography Angiography (CCTA) was the
widely adopted screening tool for Coronary Artery Disease (CAD). However, detection
of lesions and their severity, on its own, is insufficient to determine their functional
relevance in oxygen supply to the cardiac tissue. Currently, invasive coronary catheter
angiography-based measurements of Fractional Flow Reserve (FFR) has become the
gold standard for the functional assessment of coronary artery obstructive lesions. The
care planning, based on FFR, has shown to reduce unnecessary stenting and improve
overall health of the patient.

Although measuring FFR is beneficial, invasive nature involved has its challenges.
In terms of procedure, time involved and expertise required makes it an extremely
laborious and slow procedure. A risk of failure, sometimes fatal in nature, is also present
in this procedure. About 0.05% patients lose their life as a result of catheterization,
due to complications such as vessel rupture and internal bleeding [103]. To reduce
challenges in determining FFR values, a non-invasive CCTA based FFR (referred to
simply as cFFR) calculation procedure has been proposed as passive digital twin to
analyse the functional relevance of obstructive coronary lesions [104]. This approach,
through mathematical modelling and computer simulation, integrates anatomical
and physiological information. Until now, the majority of the approaches that use
computational modelling incorporate semi-automated algorithms to segment the patient-
specific coronary geometry. The blood flow simulations are conducted on the extracted
geometry and the boundary conditions are calculated using patients’ physiological
conditions. These boundary conditions are usually expressed in terms of prescribed
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usually two-dimensional grayscale images, use regions of different grey intensities to
display various internal organs and tissues (Figure 4.1). A form of this scan, known
as Coronary Computerised Tomography Angiography (CCTA) is used to image the
blood supply to the heart. These scans are employed in the present work to extract
the geometry of the coronary arteries. The extracted arteries are used in simulating
and analysing haemodynamics within them.

In the present work, data acquisition was carried out from the same site as that
of Carson et al [112]. All procedures were carried out according to standard CCTA
protocols . To moderate heart rate and improve image quality during scanning,
Metoprolol (Beta-blocker) was administered intravenously for some patients. The tube
potential used in the scans ranged between 100 - 120kV with prospective gating and
zero padding. The prospective gating uses an electrocardiograph as a trigger to scan
at a particular point in the cardiac cycle. The average in-plane pixel spacing was 0.458
± 0.051 mm and the slice-spacing was 0.625 mm. The CCTA data was provided in an
anonymised DICOM format. The data made available is analysed in this chapter for
coronary geometry, primarily using segmentation and lumen size estimation.

4.2.1 Segmentation

Image segmentation is a widely researched topic in computer vision and machine
learning [116][117][118][119]. The applications of segmentation, within medical imaging,
cover most parts of the human body i.e, from arteries to bones, brain to lungs, and
other organs [120]. Geometries obtained from segmentation play a vital role in the
diagnosis and monitoring of fatal conditions and diseases, such as malignant tumours
and vascular stenoses [121].

Methods for segmentation using traditional image processing techniques have been
popular amongst researchers from the late 20th century. A number of methods using
techniques such as Hessian based filtering have been widely adopted to segment coronary
arteries [122 125]. However, lately, the supervised learning approach using deep neural
networks has gained popularity [126]. The convolutional neural networks (CNN) hold
the capacity to learn various features from images using cascading filters with non-linear
mapping. These networks are trained on vast amounts of data, thus can segment scans
without pre-processing to remove issues such as noise and leaks in the images. However,
this method has two major drawbacks, i) requirement for vast amount of data and ii)
manual segmentation and labelling during the training phase. There are methods such
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as transfer learning [127] to reduce data requirement, but manual segmentation and
labelling takes a lot of work hours.

To reduce the time taken, an unsupervised approach for segmentation is adopted
in the present work. Here, using a density based clustering, voxels relating to the
coronary arteries are clustered. A similar approach has been proposed by Li et al [128].
However, significant variation lie in our workflow. The objective here can be divided
into three parts, i) Pre-processing - Identifying all coronary size regions ii) Clustering -
Clustering of voxel centres with similar intensity that are close to each other, to form
clusters of voxels iii) Identification - Identifying the correct clusters corresponding to
coronary arteries. These three steps are elaborated in the following subsections.

Pre-processing

To begin with, slices of the scan are automatically cropped to focus on the cardiac
region and subsequently refined with de-noising and thresholding processes (Figure 4.2).
This allows for unwanted artefacts to be removed from the images and convert them
into binary images. For de-noising, non-local means method [129] with parameters
shown in Table 4.1 is adopted. This method removes noise from the images but
preserves the different textures present in various regions, making it an optimal choice
for CCTAs. The non-local means works on the principle of finding different regions,
usually disconnected, in the image that have similar grey intensities and averaging the
pixel intensity within these regions.

Table 4.1 Filter settings used in de-noising and Frangi filters for preprocessing of
images.

Non-local means de-noising filter parameters
Filter strength 2σ

Template window size 5
Search window size 7

Frangi filter parameters
α 0.5
β 0.5
γ 15

In Table 4.1, σ is the standard deviation of Gaussian noise, calculated using wavelet
based estimator from scikit-image library [130, 131]. In the present work, it is assumed
that the noise in images follows a Gaussian distribution.

Following denoising, Frangi filter is used to preserve critical vessel features in the
images. Frangi filter, which is a Hessian based filter, calculates eigenvectors of the
Hessian matrix to compute the similarity of different regions in a given image to vessels
[132]. The values used for filter’s sensitivity to deviation from a plate-like structure,
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components with area larger than the coronary are removed using an area threshold,
which is set at 900 voxels. These steps allow for voxels corresponding to components
in the size range of coronary arteries to be extracted. Figure 4.2 shows the entire
pre-processing starting with cropping of the images.

Clustering

Before starting the clustering process, detection of aorta and coordinates of its centre is
essential to calculate a spatial reference point. Such a reference point is later necessary
to assist in identification of voxel clusters that belong to the coronary arteries. In
order to detect aorta, hough circle transform [134] is chosen in this work (see Figure
4.3). This algorithm searches for circular regions in an image having radii within a
prescribed range, using edges (regions of significant local change in the image intensity),
detected with the help of canny edge algorithm [135].

Fig. 4.3 Automatic detection of aorta using Hough circle transform. The detected
aorta is encircled in black.

For this work, minimum radius to be detected is set to 25 pixels and max radius to
be detected is set at 60 pixels. These values, chosen using trial and error, allow for
the detection of only one circle closer to the heart. The centre of the detected circle is
used as the reference point for cluster selection in the following subsection.

The filtered white voxels of the pre-processed image (with grey intensity of 255),
need to be grouped in order to find different voxel clusters within the scan. In principle,
two of these clusters will represent the left and right coronary arteries. Unsupervised
method of clustering is one of the efficient and robust method to carry out such a
grouping process. However, clustering works on the principle of grouping spatial points,
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which in the case of voxels can only be represented by the voxel centres. Therefore,
voxel centres are used as the spatial points here.

To perform clustering, many existing clustering algorithms are available, however,
only those approaches that preserve the geometry of vessels be selected. The K-means,
hierarchical and density based clustering, along with other variations of these methods,
are a few of the widely used clustering algorithms. Amongst the three, K-means and
hierarchical clustering are ill suited for our objective. In the K-means [136] clustering, a
number of cluster centres are pre-selected, about which different points will be grouped
iteratively. However, location for these cluster centres is usually chosen randomly. This
is not preferable in our case as it allows for cluster centres to be selected outside the
coronary arteries, which could lead to grouping of points that do not belong to the
arteries or worse exclusion of those that actually belong to the arteries.

Further, in hierarchical clustering [137], nearby clusters are merged iteratively to
create clusters at a higher level. The process starts with clusters of two points and then
different clusters are merged iteratively based on their proximity to create clusters with
increasing hierarchy. In order to get the clusters belonging to coronary, it is necessary
to choose the correct hierarchy level. This selection is difficult to automate, especially
if the scan contains discontinuities.

Thus, in the present work, a density-based spatial clustering of applications with
noise (DBSCAN) [138], is adopted. This algorithm identifies clusters in an array of
points based on their density in a given spatial region. Since points, representing
centres of white voxels, corresponding to coronary arteries are densely packed, this
algorithm is optimal to cluster them. Among the many clusters that emerge after
DBSCAN clustering, two clusters will, in principle, represent the coronary geometry. In
this algorithm, as shown in Figure 4.4, points that lie within each other’s preset search
radius, represented by ϵ, and also have a preset minimum number of points within this
search area are grouped together (blue and grey points). Within such a group, points
with more than preset minimum neighbouring points form the core points (blue points)
and those which are reachable by the core points but have no further neighbouring
points are considered outer points (grey points). Further, points with less than the
preset minimum number of neighbouring points in the search area are considered as
noise points (orange point).

For clustering of points belonging to the coronary arteries, ϵ, search radius, is chosen
as 1.6 voxels and minimum points needed within the search area is chosen as 2.
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Cluster identification

After clustering, various clusters of voxels (represented by their centres) emerge.
However, only two of these clusters are the coronary arteries. In order to make our
process automatic, two clusters corresponding to the left and right coronary arteries
are chosen based on their proximity and orientation to the aorta (see Figure 4.5). By
adopting this approach we eliminate the chances of incorrect cluster labelling, especially
to avoid vessels in the pulmonary region, which sometimes can have geometry similar
to that of the coronary arteries. Out of all clusters detected in Section 4.2.1, two
clusters with points having least distance to the aortic centre, a spatial reference point
identified in Section 4.2.1, are chosen as the coronary clusters.

4.3 Estimation of Lumen size for mesh generation

The voxel volume corresponding to coronary arteries, extracted from the above processes,
is studied here for extracting geometrical values of the lumen. The coronary geometry
is extracted using a combination of skeletonisation and surface meshing. However,
before extracting the geometry, voxel volume is filtered to remove vessels smaller
than a fixed size and also large volumes belonging to aortic root, thereby focusing
on coronary vessels. To perform this DBSCAN is used. The density based clustering
using DBSCAN was previously employed to detect coronary voxel volume from the
filtered images. This algorithm is used again, however this time only on the selected
voxel volume, with a setting of 7 voxel search radius,ϵ, and a minimum 700 points
in this radius to detect and remove voxels from aortic root and a setting of 1.5 voxel
search radius and a minimum 3 points in this radius to remove small vessels.

The skeletonisation algorithm, adopted from Scikit image [130], originally proposed
by Lee et al [139], uses the logic of removing boundary voxels in order to thin down a
volume of voxels until a middle voxel along the vessel axis is left out. These thinned
down voxels make up the skeleton of vascular volume and act as the centreline for
mesh generation (see Figure 4.6). The obtained centreline, which usually is a tree
representing the coronary artery network, is split into individual branches for radii
estimation in each of them. To split the skeleton into individual vessel branches,
Skeleton network from ImagePy library [140][141] is used.

In order to extract radius from the volume, a surface Mesh is generated using
marching cube algorithm [142](see Figure 4.6). This popular algorithm utilises a
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(a) Skeleton (b) Surface mesh

Fig. 4.6 Skeleton obtained from voxel cluster is used as centreline along which lumen
radii is calculated.

traversing cube, in a volume discretised into cubes, for extracting a polygonal mesh of
an iso-surface from voxels.

The cross-section of blood vessels are assumed to be circular for modelling purposes
as explained in Section 4.4. Thus, an approximate circular radii needs to be calculated
along the centreline. The vertices on the surface mesh are utilised to calculate such a
vessel radius from the centre line. In the present work, the shortest normal distance
between a point on the centreline to the wall vertices is chosen as the radius for that
given point.

Finally, the points on the centreline and radii corresponding to them are interpolated
using PCHIP, Piecewise Cubic Hermite Interpolating Polynomial, to generate an
approximately uniform one-dimensional mesh along the vessel’s centreline.

4.4 Haemodynamic modelling

The coronary lumen geometry extracted from CT scan is used to analyse blood flow
using a coupled 1D-0D model, explained in Chapter 2 as the ETM model. The one
dimensional model, formulated using Equations (4.1) and (4.2), is used to analyse
vascular flow with the help of lumped models, to represent downstream resistance from
the microvasculature or capillary beds. As explained in Chapter 2, the continuity and
momentum equations are

CA
∂P

∂t
+ ∂Q

∂x
= 0, (4.1)
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and
ρ

A

∂Q

∂t
+ ρ

A

∂ (Q2/A)
∂x

+ ∂P

∂x
= −22µπQ

A2 (4.2)

respectively, where CA is the compliance, P is the hydrostatic pressure, Q is the
volumetric flow rate, A is the cross-sectional area ρ = 1.06g/cm3 is the density of
blood, and µ = 0.04P (Poise) is the dynamic viscosity, t and x are the temporal and
spatial coordinates, respectively. The viscous friction term on the right side of the
momentum equation is responsible for predicting the pressure drop due to the vessel
narrowing. The second term on the left side of this equation is also important for
predicting the pressure drop, particularly if the area before and after a stenosis is
different. A fine spatial mesh of 0.1 mm is required to accurately account for sudden
changes in geometry. A non-linear visco-elastic constitutive law (Equation (4.3)) [30],
is used to complete the system.

P − Pext − P0 = 2ρc2
0

b

((
A

A0

)b/2
− 1

)
+ Γ

A0
√

A0

∂A

∂t
(4.3)

where Pext is the external pressure, P0 is a reference pressure, A0 is the cross-sectional
area at the reference pressure, and b is

b = 2ρc2
0

P0 − Pcollapse

(4.4)

with Pcollapse, collapsing pressure, and c0, reference wave speed of the vessel, which is
calculated as

c0 =
√

2
3ρ

(k1exp(k2r0) + k3) (4.5)

with k1 = 2 × 107g2/cm/s, k2 = −22.53cm−1, k3 = 8.65 × 105g2/cm/s and r0 being
the reference radius of the vessel.

The boundary conditions, inlet conditions and ventricular pressures, for left and
right coronary arteries are created using a closed-loop model, shown in Figure 4.7. In
this figure, Cart and Rbeds refer to arterial compliance and peripheral resistance from
various capillary beds in the ETM model described in Chapter 2. Rbeds is representative
of various capillary beds across the arterial network in the ETM model and must not be
confused with Rcor described below, which is the resistance pertaining to the coronary
system. The heart lumped model from [30], is used to calculate ventricular pressures
and flow in aorta, from which the boundary conditions for the coronary system, Qcor,
coronary inflow, PLV , left ventricular pressures, and PRV , right ventricular pressures
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Fig. 4.7 The closed-loop used to estimate the boundary conditions for the coronary
system. Detailed description is available in previous studies [143, 32, 144]. Here, CO
is the cardiac output, SBP is the systolic blood pressure, DBP is the diastolic blood
pressure, HR is the heart rate, Cart is the arterial compliance, Rbeds is the peripheral
resistance, Vblood is the blood volume, Qcor is the coronary inflow, PLV is the left
ventricular pressure, and PRV is the right ventricular pressure. Rbeds and Cart refer to
peripheral resistance from various capillary beds and arterial compliance in the ETM
model (described in Chapter 2). Rbeds is representative of various capillary beds across
the arterial network in the ETM model and must not be confused with Rcor described
below, which is the resistance pertaining to the coronary system. The cardiac cycle
uses the heart lumped model proposed in [30].

are determined. However, the boundary conditions are chosen to be the same for all
patients, as we have no additional patient information other than the CT data. The
inflow rate of the left and right coronary arteries are shown in Figure 4.8. Due to
this lack of patient data, coronary dominance was not considered in this modelling
approach.

The coronary artery resistance is calculated as

Rcor,i = MAP

Qcor,i

(4.6)

where MAP is a weighted average of an idealised diastolic and systolic pressure and
Qcor,i is the inflow rate in the left (or right) coronary artery. The weighted average
for MAP is 2

3× diastolic pressure +1
3× systolic pressure, where diastolic pressure is

80mmHg, and systolic pressure is 120mmHg. The distribution of resistance throughout
each branch is determined using a variant of Murray’s power law, with a power of 2.27
as in van der Giessen et al [145], with vascular bed compliance distributed in a similar
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Fig. 4.8 Inflow boundary conditions used for left and right coronary arteries.

way [146]. The coronary vascular bed model is shown in Figure 4.9, which includes an
external pressure acting from the heart ventricles. In Figure 4.9, the parameters of
lumped-parameter model for each coronary vascular bed is calculated as R1 = ρ c0

A0,end
,

R2 = 0.79 × (RT f − R1), R3 = 0.21 × (RT f − R1), where A0,end is the area at the end
of the terminal vessel to which the vascular bed is connected and RT f is the resistance
corresponding to the terminal vessel’s fraction of total coronary resistance as per the
distribution of resistance calculated using Murray’s power law.
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Fig. 4.9 A lumped-parameter model connected to the outlets of the patient specific
coronary network to represent the micro-circulation. Part connects to the 1D domain,R1
is the characteristic impedance, R2 is the resistance of the micro-circulation at the
arterial side, R3 is the micro-circulatory resistance at the venous side, C1 is the micro-
circulatory arterial compliance, C2 is the intra-myocardial compliance, PLV is a scaled
pressure from the left ventricle (or right ventricle for the right coronary artery [RCA]),
and Pven represents the pressure in the venous system which is set to 5mmHg

The full 1D-0D system is solved implicitly using a sub-domain collocation scheme
referred to as the enhanced trapezoidal rule method [44][147]. The scheme uses a
second-order backward difference temporal discretisation, and a composite trapezoidal
rule for the spatial discretisation of the 1D domain. The steps taken in this section for
haemodynamic modelling of coronary geometries have been summarised in Table 4.2.

4.5 Results and Discussions

The quintessence of methodology presented in this work is to process every step from
CCTA scan to final cFFR value calculation without any manual intervention. Twenty
five CCTAs, each belonging to different patients, were chosen to test the proposed
automatic methodology. This section analyses the performance of the proposed workflow
in terms of accuracy of segmented coronary geometry and the cFFR results obtained
for the test patient cohort. Limitations to the degree of automation and their potential
solutions have also been discussed in this section.
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Table 4.2 A summary of steps followed in this chapter for haemodynamic modelling of
the coronary artery geometries obtained using the proposed automatic method.

• Import 1D mesh

• Set boundary and initial conditions
→ Input inlet boundary conditions ( as shown in Figure 4.8, calculated using

closed-loop model)
→ Calculate total resistance
→ As per Murray’s power law-

-Distribute resistance throughout each branch
-Distribute coronary vascular bed compliance

→ Calculate parameters for lumped-parameter models at each terminal vessel

• Solve full 1D-0D system using enhanced trapezoidal rule method

• Calculate cFFR using blood pressure values obtained.

Segmentation accuracy is one of the primary factors that will affect the accuracy
of cFFR calulated using the proposed workflow. In order to estimate this accuracy,
comparison with manually segmented coronary geometry is carried out for the CCTAs
from the test patient cohort. The manual segmentation was carried out using widely
available VMTK (Vascular Modelling toolkit) software. Table 4.3, summarises the
results obtained from this geometry comparison, however, a detailed comparison for
each case from the test patient cohort is made available to the readers in B2. In
Table 4.3, it can be observed that the automatically segmented coronary geometry,
using the proposed workflow, is similar to that of manually segmented geometry. The
average vessel length (L), radii at the start of the vessel (R0) and radii at the end
of the vessel (Rf) of both left (LCA) and right (RCA) coronary arteries obtained
automatically are similar or close to that of manually segmented geometry. However,
the average length and final vessel radius obtained for left circumflex artery (LCX)
and left anterior descending artery (LAD) using proposed workflow is higher than that
of manual segmentation, providing an observation that automatic workflow can detect
narrower vessels with ease. Further, the similarity in minimum vessel radius at the
stenosis (Rs), provides confidence in geometry obtained automatically from CCTAs.
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Fig. 4.10 cFFR values obtained from models using automatically and manually seg-
mented coronary geometries are compared against invasively measured FFR. The cases
for which invasive FFR values were not available have been excluded from the graph
to avoid any confusion, however, cFFR values for such cases are available in Table 4.4.
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In Table 4.4 and Figure 4.10, the cFFR values obtained are shown. In most of the
cases, the cFFR value calculated are observed to be close to that of actual measured
FFR, which is invasive in nature.

Though most of the results are in acceptable range, significant difference in patients
2, 6 and 12 can be observed. This could be attributed to either poor scan quality or
incorrect selection of boundary conditions. It must be recollected that a fixed input
boundary conditions for left and right coronary arteries are used in this work owing
to lack of patient details. However, if a threshold of 0.8 is assumed as the critical
value, none of the results have any false negatives. Thus, the proposed workflow
produced satisfactory results, providing confidence towards using such a system in
clinical environments.

4.5.1 Limitations

Proposed automatic method gives satisfactory cFFR values in most cases, however, in a
small number of cases (20%), the automatic method either failed to produce or produced
erroneous cFFR values. In all such cases, minor changes to the configuration, such
as changes in filter settings, were observed to resolve any breakdown and satisfactory
cFFR values were calculated without any further manual intervention. Since only
minor adjustments to parameters were sufficient to resolve any problems, confidence is
established in the core working principle of the proposed methodology. Majority of
breakdowns in the automatic process occurred when analysis was carried out on scans
of poor quality. Such scans usually had too many holes in them. In the process of
making minor adjustments, the following challenges and their possible solutions were
identified in the system.

During segmentation, binary thresholding is vital for identifying all voxels of interest
so as to obtain their co-ordinates for clustering. The selection of the grey intensity
threshold value is extremely vital for extraction of correct and complete vascular
geometries. Various factors such as dye concentration, blood composition, calcification
and pre-existing stents can affect the grey intensity in the scans. The intensity also
decreases along the downstream direction of an artery. Since the orientation of arteries
and patient parameters vary drastically, intensity-based thresholding methods in some
cases either fail completely or partially in capturing the geometry. To alleviate this,
5-7 copies of the CCTA were simultaneously filtered and clustered individually. Each
of these individual copies used a different grey intensity threshold varying within the
range of 125 to 145. Upon completion, voxels from each individual copy classified as
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Table 4.4 cFFR values calculated using geometries obtained automatically and manually
on test patient cohort is compared against actual invasively measured FFR.

Location cFFR (automatic) cFFR (manual) FFR (invasive)
Patient 1 Left 0.76 0.69 0.74
Patient 2 Left 0.60 0.76 0.74
Patient 3 Left 0.66 0.65 0.65
Patient 4 Left 0.79 0.82 0.85
Patient 5 Left 0.76 0.68 0.79
Patient 6 Right 0.79 0.83 0.94
Patient 7 Left 0.78 0.75 0.80
Patient 8 Left 0.79 0.62 0.72
Patient 9 Left 0.73 0.78 NA
Patient 10 Left 0.91 0.69 0.90
Patient 11 Left 0.80 0.84 0.87
Patient 12 Left 0.71 0.85 0.90
Patient 13 Left 0.88 0.77 0.84
Patient 14 Right 0.83 0.85 0.87
Patient 15 Left 0.74 0.66 0.73
Patient 16 Left 0.58 0.62 NA
Patient 17 Left 0.75 0.77 NA
Patient 18 Left 0.67 0.62 0.73
Patient 19 Left 0.88 0.77 0.83
Patient 20 Left 0.72 0.75 0.88
Patient 21 Left 0.72 0.68 NA
Patient 22 Left 0.76 0.76 0.81
Patient 23 Right 0.87 0.83 0.85
Patient 24 Right 0.94 0.85 0.89
Patient 25 Left 0.51 0.42 NA
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that of belonging to the coronary arteries, were combined. This approach, however,
was not efficient in scans with discontinuities or inaccurate data. Since density based
scanning identifies neighbouring points (voxel centres) using a search radius, incorrect
voxels(from discontinuities) within this search area lead to major leaks. Interestingly, it
was observed that most of the leaks occurred in regions closer to the aortic root. Manual
intervention was required in order to select only those individual copies that had good
quality cluster, which consequently was merged and analysed upon automatically.

The other issue faced was during cleaning/filtering of arterial voxel volume after
clustering to remove small vessels. In some geometries, due to a presence of occlusion,
lumen had cross-sectional area with very small voxel volume. These regions had a voxel
density lower than the threshold values preset to remove small vessels, leading to loss
of vessel geometry around the occlusion. This was undesirable as lowering the density
threshold value in order to preserve geometry would allow for smaller vessels to be
added to the mesh. Such geometry would reduce the performance of one dimensional
code by delaying convergence and affecting approximations. In the two cases where
this issue was observed, the density threshold had to be decreased and the smaller
vessels had to be ignored during haemodynamic modelling.

The final issue faced was the deletion of initial few nodes in either of the coronary
arteries. The section of coronary artery emerging from the aortic root is affected during
filtering of coronary volume. This removal of geometry, belonging to aortic root, in
some cases removed voxels disproportionately from the initial lumen region of the
coronary arteries. This lead to smaller diameter being calculated for nodes in such
regions. In turn it affected the complete cFFR calculation downstream. To alleviate
this issue, first 4 to 6 nodes were not considered during haemodynamic analysis.

For future work, breakdowns like these can be avoided by training a supervised
monitoring system. Such a system could intervene and adjust parameters if any of the
above observed problems arise. A simple closed loop system or neural networks can be
used for such control.

4.6 Conclusions

The proposed methodology, built on a combination of unsupervised learning and
computational fluid dynamics, provides a robust platform to automatically calculate
cFFR values. Satisfactory results observed by testing it on a patient cohort of twenty-
five patients, with the average difference between the automatically calculated cFFR
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and invasively measured FFR is 0.06, provides the required assurance that the method
is reliable. Thus, it can be concluded that automating the process of calculating cFFR
from CT scans is feasible and reliable. The entire workflow presented in this chapter
take only between 12 to 25 minutes per patient. Thus, the automated method proposed
is rapid and suitable for fast functional assessment of arteries.

In addition, it is worth noting that even though the working principle fundamentally
varies from the popular rising trend of using supervised neural networks, present work
provides a potential for future combination of such methodologies to enhance accuracy
of cFFR calculation and computational performance.

4.7 Summary

In this chapter, the concept of a passive digital twin is explored by the development
of an automatic workflow for calculating Fractional Flow Reserve (FFR) from CT
scans, also known as coronary Computerised Tomography (CT) angiography-derived
FFR (cFFR). The workflow begins with geometry extraction from the CT scan using
filtering and density-based clustering. The extracted geometry is then used to build a
one-dimensional mesh, using which the ETM model, a haemodynamic model described
in Chapter 2, calculates the cFFR values in the coronary arteries. The proposed
workflow is tested on CT scans from a cohort of twenty-five patients to calculate cFFR
and compared against invasively measured FFR as well as cFFR calculated using
manually segmented FFR. A satisfactory average difference of 0.06 is observed in values
between the automatically calculated cFFR and invasively calculated FFR. The digital
twin proposed in this chapter is an example of the first of the three forms of a human
digital twin being explored in this thesis, wherein twins perform offline analysis of data
that involves no active component.



Chapter 5

Semi-Active Digital Twin

To explore the concept of semi-active digital twin, in this chapter, we propose a
methodology to detect the severity of carotid stenosis from a video of a human face
with the help of a coupled blood flow and head vibration model. This semi-active
digital twin model is an attempt to link non-invasive video of a patient face to the
percentage of carotid occlusion. The pulsatile nature of blood flow through the carotid
arteries induces a subtle head vibration. This vibration is a potential indicator of
carotid stenosis severity and it is exploited in the present study. A head vibration
model has been proposed in the present work that is linked to the forces generated by
blood flow with or without occlusion. The model is used to generate a large number of
virtual head vibration data for different degrees of occlusion. In order to determine
the in vivo head vibration, a computer vision algorithm is adopted to use human
face videos. The in vivo vibrations are compared against the virtual vibration data
generated from the coupled computational blood flow/vibration model. A comparison
of the in vivo vibration is made against the virtual data to find the best fit between
in vivo and virtual data. The preliminary results on healthy subjects and a patient
clearly indicate that the model is accurate and it possesses the potential for detecting
approximate severity of carotid artery stenoses. The work presented in this chapter is
available as a published journal paper [148].

5.1 Introduction

The digital twin concept is becoming a common theme in traditional engineering disci-
plines, and such a concept is yet to be completely realised in cardiovascular engineering.
The digital twin concept can be broadly described by three characterisations: active,
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where a digital replica (digital twin) of a physical system (physical twin) is continuously
updated by information and data collected from the physical twin; semi-active, where
time-varying data are collected, but rather than performing a continuous update, the
information is analysed after the data are collected; and passive, where the digital
twin utilises measurements from a physical twin which are not continuously updated,
which may include some modelling assumptions. It is also possible to have a mix
of active and passive digital twin models, where only specific sections or parameters
of the digital twin are continuously updated via data collected from a physical twin,
while other components of the model either use assumptions, or utilise measurements
from a physical twin, but are not being continuously updated. The active and pas-
sive digital twin concepts of the systemic circulation are currently being considered
by researchers [149, 150]. While the passive digital twin concept has been realised
through off-line calculations in cardiovascular flow modelling, the active concept is fairly
new. These passive concepts include off-line fractional flow reserve (FFR) calculations
[151, 146, 147] and a large number of subject-specific blood flow calculations through
aneurysms and stenoses. The active digital twin has all the ingredients to be the
basis for future non-invasive diagnostic methods of cardiovascular problems, as we
are increasingly making active and continuous online measurements of subject-specific
cardiac signals. An active FFR calculation would require producing an FFR value
instantaneously while a scan of the a coronary artery is being carried out. With the
fast computational methods and emerging machine learning algorithms, we believe that
such an active digital twin model is now plausible. In the present work we attempt a
semi-active digital twin model for non-invasively detecting a carotid artery stenosis.
In this method a time dependent face video of a subject is used to calculate the head
vibration before comparing the in vivo value to computationally generated data, to
approximately determine the severity of a carotid artery stenosis.

The carotid arteries are the main vessels that carry blood to the head. Due to
ageing, hypertension, life style choices and injuries to the blood vessel wall, plaques
build over time in the carotid artery wall layers. This is called atherosclerosis and it
causes a progressive narrowing of carotid artery, known as carotid stenosis. As the
plaque builds up, the inward growth of mass narrows the internal lumen diameter.
Such a narrowing of the carotid artery can lead to reduced blood supply, and hence
oxygen supply, to the brain. This reduction in oxygen supply may cause the death of
brain tissue, leading to ischemic strokes or transient ischemic attacks (TIA). Annually,
sixteen million people suffer from stroke around the globe [152], making it the third
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highest cause of death in the world after cancer and coronary heart disease (CHD). In
the UK alone, 85% of the 100,000 cases reported were ischaemic in nature [153]. In
majority of the cases assessing the severity of carotid narrowing after a TIA is still a
major challenge. The current assessment procedure of carotid duplex ultrasound often
is delayed due to waiting time and other issues. Thus, development of other easier
and non-invasive methods will add value to existing screening technologies. In other
developing countries, availability of medical devices is very limited and a procedure like
the one proposed can provide low cost screening of suspected TIA patients. Furthermore,
there are other perceived barriers to the use of ultrasound in developing countries,
which include lack of training or training opportunities; unable to afford the cost of
obtaining, maintaining, or updating the equipment; lack of reliable electricity supply
[154]. Furthermore, ultrasound is dependant on the Doppler, which can influence the
peak systolic velocity value [155]. Thus development of a more consistent and reliable
method would be useful to estimate stenosis severity. Conventionally carotid stenosis
is clinically detected using either a doppler ultrasound of the neck, magnetic resonance
angiography (MRA), CT angiography (CTA) of the neck, or a cerebral angiography.
In the present work, a non-conventional method is proposed.

The forces generated as a result of pulsatile blood flow in major arteries lead to low
amplitude vibrations of human body parts. These vibrations are potentially a vital sign
for assessing the health of arteries. Many non-invasive methods to detect and analyze
such vibrations have been developed, such as Seismocardiography, kinetocardiography,
and ballistocardiography. Out of these, ballistocardiography (BCG) was once a topic
researched upon extensively, but has been falling out of favour over time due to a
lack of sophisticated and accurate measuring equipment, and techniques. A detailed
analysis of the development of BCG, and the reasons for why it was discarded, have
been well documented by Giovangrandi et al [156]. Proposed in the 19th century, BCG
was given importance in 1940’s to 1980’s. Originally, setups such as sensitive vibration
beds were developed to capture these vibrations. It has again gained momentum in
2010 after accurate and more sensitive sensors and vibration measuring devices have
emerged. A type of BCG that records head movements or vibrations in the head due
to blood flow, also known as head-BCG, was analyzed by He et al [157].

Blood flow, primarily in the carotid arteries, causes subtle head motions. Occlusion
in these arteries can cause changes in this head motion due to a substantial change
in amplitude of pressure waves in comparison to nonoccluded arteries. A procedure
capable of detecting very subtle movements can be used for accurately capturing these
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Fig. 5.1 Diagnosis of carotid stenosis by comparing results of computer vision and
biomechanical model (digital twin).
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motions, which cannot be sensed by our naked eye is essential to make progress. One
such powerful tool is computer vision, which can analyse extremely small motions in a
video. This has been made possible by advancements in camera technology and the
raw power of processing. In Balakrishna et al [158], computer vision is used to capture
this subtle head motion to determine heart rate and variability. In older computer
vision algorithms, the pulse was detected using colour change in the skin. One of the
future research possibilities mentioned in the past was to detect blockages in arteries,
which provided a motivation to investigate the possibility of using cameras to detect
the severity of carotid stenoses. This type of predictive methodology could potentially
prevent strokes as widely accessible devices such as smart phones could be used for
screening.

In the present work, we are attempting to mechanically model head vibrations
and then use the model to predict vibrations corresponding to carotid stenoses. The
proposed methodology has the following steps: (a) Generate synthetic head vibration
data (computational) for different degrees of carotid artery occlusions by combining a
systemic circulation blood flow model and a head vibration model; (b) Estimate the
vibration of a human head as a result of blood flow by analysing the face video via
a principal component analysis; and (c) Compare and match the measured vibration
against the synthetic data to come to a conclusion on the severity of carotid artery
occlusion. These steps are schematically presented in Figure 5.1. This chapter is
organised into following sections. In the section that follows the introduction, analysis
of face video is discussed. In Section 5.3, the methodology used to create the synthetic
data is discussed in detail. This includes the blood flow model, vibration model, and
the interface between these two models. In Sections 5.4 and 5.5 respectively some
preliminary results and limitations of the present work are discussed and finally Section
5.6 provides some important conclusions and potential future research directions.

5.2 Detection of head oscillations

An algorithm proposed by Balakrishnan et al. [158] that uses computer vision to detect
small motions in the head has been implemented in this work. A few modifications
have been incorporated to enhance and simplify small motion analysis and help detect
stenoses, such as changing the region of interest (ROI) from part of the face to only
the forehead region. The proposed methodology analyses between 30 and 40 seconds
of captured video. The analysis is not carried out in real time and thus we refer to the
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method as "semi-active digital twin". A smart phone based camera is used to improve
accessibility, which could eventually provide a low-cost and non-invasive technique
for detection of carotid occlusion. The videos were captured on a Motorola G (2nd
Generation) for android devices, which comes with an 8MP camera, and an iPhone
6s with a 12MP camera, for iOS devices. Due to its built-in features such as higher
resolution, the iPhone 6s provides a better solution. In this work, samples are captured
using both cameras.

5.2.1 Assumptions and guidelines

A basic assumption has been made that the subject remains still. Most of the involuntary
actions such as respiration and blinking of eyes are removed digitally when the signal
is passed through a bandpass filter. For an accurate detection of motion during the
video recording, the following set of guidelines are followed:

1. The subject has been rested sufficiently before screening to ensure a relatively
stable heart rate and respiration rate.

2. The video is shot in an environment with no direct lighting over the subject’s
face which ensures reliable feature tracking.

3. Neither the subject nor the camera is subjected to any small vibrations. For
example, a camera placed on a table with a desktop computer can produce
erroneous results.

5.2.2 Facial recognition and region of interest (ROI)

In order to detect the region of the video covered by the face, the Viola-Jones face
detector is used [159][160]. This detector provides an object detection framework which
allows competitive object detection rates in real-time. A small region, usually the
central forehead or area below the eyes, is taken as the region of interest (although
regions from other parts of the face may also work successfully). Unlike in Balakrishna
et al [158], in which 50% to 60% of the face width and 60% to 70% of the face length
is selected, only a small rectangular (forehead) region has been used in the present
work (see Figure 5.2). This helps in maintaining a consistent average distance between
the pivoting point at the base of the neck and the monitoring points, simplifies the
conversion of angular displacement to linear displacement, as explained in Section 5.3.





5.2 Detection of head oscillations 78

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Frequency (Hz)

0

1

2

3

4

5

6

A
m

p
li

tu
d

e
(c

m
)

10
3 Power spectral density

Fig. 5.3 Energy at different frequencies for the results of blood-flow-driven-head-neck
vibration predicted by the proposed mechanical model.

Fig. 5.4 Workflow used in the present work to detect carotid stenosis and its severity
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5.2.4 Principal component analysis

In the present work, we are interested in head vibrations that are driven by haemody-
namics. However, as head motion is caused by several factors, which includes blood flow,
respiration, facial expressions, and neurological processes, it is necessary to separate
the components of this mixed head motion into sub-motions in order to isolate blood
flow driven vibration. This is carried out by performing a principal component analysis
(PCA) using a similar technique to that of Balakrishna et al [158]. Later works (Haque
et al [161], Li et al [162], Irani et al [163], Shan et al [164]) have implemented other
methods, such as the discrete cosine transform, in order to isolate different types of
motion. However, they generally gave results close to PCA, and thus PCA is chosen in
the present work due to its simplicity (see Figure 5.4).

PCA is described by the following algorithm: let yfn be the vertical displacement
of the nth point at the fth frame: n = {1, . . . , N} and f = {1, . . . , F} where N is the
number of points accounted and F is the total number of frames in the recording. We
define the mean as

µn = 1
F

F∑
f=1

yfn (5.1)

and the matrix Y of centred displacements with the entries as

Yfn = yfn − µn. (5.2)

We define the covariance matrix as

C = 1
F − 1Y Y T (5.3)

The PCA finds the principal axes of variation of the position as the eigenvectors of the
covariance matrix from

CU = ΛU (5.4)

where Λ = diag{λ1, . . . , λN} is a diagonal matrix of the eigenvalues and U =
[u1, . . . , uN ] is a matrix with each column of it being an eigenvector, un, correspond-
ing to the eigenvalue λn. In our work only the eigenvectors are of interest and not
eigenvalues.

The final required signal, in the form of head displacement, can be written as
follows:

Si(t) = yfnui (5.5)
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where t = f∆t with ∆t being the time-step between two neighbouring frames and i in
the above equation represents the eigenvector of interest.

The eigenvector (principal component) of interest is selected by analysing two
properties of time series signals calculated from different eigenvectors. A signal having
a frequency corresponding to the heart rate of the subject with good periodicity
(reflecting a healthy heart rate variability) is chosen as the component of interest for
the healthy condition, without the presence of a carotid stenosis.

However, since the majority of stenosis cases occur in older subjects and thus it is
highly likely to be coupled with other cardiovascular diseases, an ambiguity may arise
when choosing the eigenvector of interest for these subjects; thus a different technique
must be performed. In these subjects, the head-neck vibration is not only affected by
heart rate, but is also significantly affected by factors such as cardiac output, heart
rate variability, and the occurrence of multiple stenosis or aneurysms. The heart rate
variability, unlike in healthy conditions, leads to a non-periodic signal. For these cases,
component selection requires more sophisticated and trial-tested techniques such as
machine learning, where multiple input parameters can be used to select the required
component. However, such techniques require substantial amounts of data that can
only be collected through an extensive retrospective study; hence in this work the
selection of components for all subjects, including the stenosis patient, is performed
by analyzing only the frequency and heart rate variability of the subject. Although
the same technique is implemented for the selection of eigenvectors for both healthy
subjects and the stenosed subject, the stenosis patient was on medication for CVD and
had been treated for irregular heartbeats, thus making the signal relatively periodic.

5.3 Mechanical modelling of head oscillations

A mechanical model is required to produce a database of virtual patients. The database
surrogates the data required for developing an automated detection system, which
otherwise would require a significant number of patients suffering from different forms of
carotid stenoses. It also serves as a reference for choosing the number of filtration levels
and types of digital filters, along with refinement of the virtual patient parameters.

The arterial network present in the head-neck system is extremely complicated
and analysing each of the arteries for their contribution to the head-neck oscillations
is a daunting task, particularly as there are anatomical variations of the cerebral
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1. Friction force Ff acting in direction t

2. Force Fd caused by deflection of the flow in the element in the case n1 ̸= n2

3. Force Ft caused by vessel tapering.

The friction force can be calculated as

Ff = Fft, Ff = τAw (5.7)

where τ is the wall shear stress and Aw is the area of the element wall. The wall shear
stress is given as

τ = γµ
v

R
(5.8)

Here γ is the friction coefficient, µ is dynamic viscosity, v is cross-sectional average
velocity and R is the cross-section radius. The friction force per unit of length along
the axis is τ times cross-sectional perimeter 2πR:

dFf

dx
= γµ

v

R
× 2πR = 2πγµv (5.9)

Integrating (5.9) by the trapezoidal rule, we have

Ff = πγµ (v1 + v2) h (5.10)

The force acting on a curved pipe with the steady state flow is

Fd = (v2 − v1) ṁ (5.11)

where ṁ = ρQ̄ is the mass flow rate and Q̄ = 1
2 (A1v1 + A2v2) is the average volumetric

flow rate in the element. The normal component of this force can be approximated by

Fd = (n2 − n1) v̄ ṁ = (n2 − n1) ρv̄Q̄, (5.12)

where v̄ = 1
2 (v1 + v2). Finally,

Fd = 1
2 (n2 − n1) ρ

(v1 + v2)
2 (A1v1 + A2v2) (5.13)
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Force associated with tapering is

Ft = Ftt, Ft =
∫ A1

A2
pdA (5.14)

where p is pressure and is written as p = ρQ̄2

2 ( 1
A2

2
− 1

A2 ). Force due to taper is
formulated as

Ft = ρQ̄2

2

∫ A1

A2
( 1
A2

2
− 1

A2 )dA (5.15)

Ft = ρQ̄2 (A1 − A2)2

2A1A2
2

(5.16)

Total force acting on the the element can now be written as

Fe = Ff + Fd + Ft (5.17)
Ff = t πγµ (u1 + u2) h (5.18)
Fd = 1

2 (n2 − n1) ρ (v1 + v2) Q̄ (5.19)

Ft = tρQ̄2 (A1 − A2)2

2A1A2
2

(5.20)

This force, calculated in each element of the vessel, contributes to the total force
being applied on the head due to blood flow.

Spatial mapping of elements

In order to link the blood flow and vibration models, all the individual finite elements
in the carotid artery are identified with respect to the origin C7 in Figure 5.8. This is
essential in order to calculate the moments about the origin for the vibration model,
around which the head pivots. A CAD model developed from a scan is used to locate
the relative locations of the finite elements along the carotid artery with respect to the
pivot point [165].

The morphology of carotid arteries vary among the general population , making
patient specific spatial mapping of elements an impossible task without a CT-scan of
the head. By incorporating scans, the primary goal of developing a low cost and fast
detection system goes unaccomplished. In order to solve this issue, the CAD model
chosen is such that the morphology of carotids, by their relatively closer distance to
the base of neck and smaller angle with respect to the reference axes (see Figure 5.8),
produces the least amplitude possible for different stenoses conditions. By producing
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the least possible amplitudes, false negatives (subjects suffering from stenoses but
detected to be healthy) can be minimized, as lower threshold values are chosen for
categorizing severity.

5.3.3 Dynamic equation of head-neck system

A mathematical formulation is required to calculate the head-neck motion. The dynamic
equation formulated by Wang and Rahmatalla [166] is used to analyse the head-neck
vibration induced by forces created from blood flow. The equation consists of the Is

matrix representing moments of inertia of the head and the first seven vertebral discs
about the three primary axes (See Figure 5.8). Moments are applied by blood flow in
the carotid arteries about X0 at C7. An assumption is made that the subject rests
their back on a backrest allowing only for the head-neck vibration to take place. This
assumption helps to simplify the modelling, which would otherwise need a complex
estimation of forces imparted in body parts below C7. For example, the force due
to blood flow in major arteries such as the abdominal aorta, pumping of heart, and
breathing. The dynamic equation used in the present study is

Isθ̈ + Csθ̇ + Ksθ = Mb (5.21)

where the inertia and stiffness matrices, Is and Ks are defined as follows [166]:

Is =


LLcmcos2θ20 + I11 0 −1

2LcmLcosθ10sin(2θ20)
0 LcmL + I22 LcmLsinθ10

−1
2LcmLcosθ10sin(2θ20) LcmLsinθ10 b33


where b33 is,

b33 = 3LLcm
4 − 1

4mcos(2θ10)LLc − 1
8mcos(2(θ10 − θ20))LLc − 1

4mcos(2θ10)LLc

−1
8mcos(2(θ10 + θ20))LcL + I33

and

Ks =


1
2(2K11 − 2gLcmcosθ10cosθ20) 1

2(2K12 + 2gLcmsinθ10sinθ20) K13
1
2(2K12 + 2gLcmsinθ10sinθ20) 1

2(2K22 − 2gLcmcosθ10cosθ20) K23

K13 K23 K33


Lh and Ln are length of the head and neck respectively, L is the distance between
C0 and C7, Lc = mn × Ln + mh × L/m, and m is the sum of mh and mn, masses of
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distance of the cerebral arteries, the next major force contributing arteries after the
carotid arteries, from X0. They are then used to find out moments, M1, M2 and M3

at X0 about the three principal axes. The calculated values form the moments matrix
Mb = [M1, M2, M3]T are substituted into the dynamic equation, Equation (5.21). The
completed dynamic equation is then solved for angular displacement using MATLAB’s
inbuilt ode solvers. The calculated angular displacements are further converted into
linear displacements using the fixed distance between the forehead and X0, which are
then projected onto a two-dimensional plane using trigonometric relations, Y − Z

(face). This projection is necessary to predict head-neck motion along two axes as a
single lens camera can capture only two dimensional arrays, leading to the tracking of
points along two directions. An overview of the full algorithm from the video capture
and modelling components, to the prediction is given in Figure 5.4.

5.3.5 Modeling stenoses

Deweese et al [169] observed that the plaque build up starts about 1 cm before
the bifurcation in the common carotid artery, and extends up to 1.5 cm into the
internal carotid artery. The haemodynamic model is modified to artificially represent
the occlusion by altering the vessel geometry. In the 1D haemodynamic model, the
diameter in the last centimetre in the common carotid arteries and the first one and a
half centimetres of the internal and external carotid arteries, are changed to values
calculated from the following equation that depends on the percentage of blockage
being analysed. The length and location of the stenosis are kept constant in this work,
however, for future clinical application, scenarios with different lengths and locations
of stenosis must also be considered during analysis as the force being exerted upon the
head-neck system will vary for each scenario. The blockage in the left and right set of
carotid arteries are set independently to accommodate different percentage of blockage
in the respective arteries.

% Blockage = (internal diameter of vessel−diameter of lumen at maximum occlusion point)×100
internal diameter of the vessel

. (5.22)

Treatment of a stenosis in this manner assumes the most severe case possible, with the
stenosis being treated a step decrease in the vessel area, which leads to the highest
resistance estimation possible for a stenosis of a specific % blockage. The ETM model
(Chapter 2), used in this work, has previously been compared with three-dimensional
blood flow models for fractional flow reserve, in which the pressure drop across a
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coronary artery stenosis is estimated. Satisfactory agreement is observed between these
1D and 3D modelling methodologies [170, 147]. During the simulation of the 1D blood
flow model, the axial force is calculated as described in Section 5.3.2 which is coupled
to the dynamic equation of the head-next system, which is described in Section 5.3.3.

5.4 Results and discussions

The results presented here are the first attempt to validate the proposed model.
Although a precise match of head vibration against synthetic data is unlikely, the
clinically relevant data required may simply be the amplitude of the head vibration.
If the amplitude of a head vibration can be linked directly to the severity of carotid
stenosis, the impact on the patient treatment pathway could be hugely significant. For
example, the technique could be used to prioritise patient treatment when screening
patients who are at risk of stroke. Considering the potential of such a technique to
separate healthy and unhealthy individuals, we have provided two categories of results
in this work. In the first category, the proposed procedure is applied to a group of
healthy volunteers, while the second category involves a patient with a severe carotid
stenosis.

The healthy subjects are chosen with the assumption that volunteers aged between
20 and 30 years do not suffer from carotid stenoses. We believe that this assumption
is valid in most cases (95.5%) [171]. In addition to healthy volunteers, we also had
access to the data of a single patient with a severe carotid stenosis, left untreated. This
patient previously suffered from a stroke, as a result of the carotid stenosis, and in
order to access the data, we obtained the required signed consent from the patient via
the treating clinician. All the data used is anonymous and no personal information is
disclosed at any point. The results of the model implemented in this work was not
used in any way to inform patient treatment.

For both healthy subjects and the patient, individual face videos, weight, age and
height are recorded with their consent. Once the basic data is collected, the computed
systemic arterial circulation and vibration models of the individuals are scaled to
closely resemble reality. The synthetic data is then generated for normal and stenosed
carotid arteries. When dealing with stenosed arteries, the severity of the stenosis is
varied between 50 and 92%. The synthetic data thus generated is presented in the
form of time-dependent head vibrations. The synthetic vibrations are then compared
against the measured vibrations to determine the approximate severity of the stenosis.
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5.4.1 Sensitivity analysis

An analysis of the effect of each main input parameter on head-neck vibration is
necessary in order to understand their interactions within the model. Among the
main parameters, three that need to be analyzed critically are the input of age, neck
length, and percentage of blockage. Age, which primarily affects the compliance of
arteries, tends to cause a directly proportional increase in amplitude as the pulse wave
velocity increases leading to increase in the friction force. Neck length, accounted in
the dynamic equation, affects the amplitude by a significant amount. Variation of the
blockage percentage is required to show how the mechanical model reacts to different
severities of the stenosis. Figure 5.11 displays the effect of age, height, percentage
of blockage (in the case of stenosis) when varied independently. For all simulations
the heart rate is kept consistently at 72 beats-per-minute, allowing a straightforward
comparison of the cases considered.

The input for the age sensitivity tests are shown in Table 5.2. For the age related
simulations, it is assumed that all individuals are healthy, and do not have a stenosis.
The pulse wave velocity estimation in the haemodynamic model increases with age.
The amplitude of head oscillations predicted by the model in the virtual patient aged
80 years old are larger in magnitude than the 60 year old, which in turn are larger in
magnitude than the 40 year old. This occurs even with a decrease in cardiac output
for older individuals.

The neck length varies the model predicted amplitude of vibration for the head-neck
system, and a phase shift is observed in Figure 5.11(b). This indicates that an accurate
measure of the neck length could be crucial for the dynamic model to accurately predict
the magnitude of head-neck oscillations. As expected the amplitude of vibration
increases with an increased percentage blockage. The amplitude increase from 0.0034
cm in the case of a 50 % blockage, to 0.0041 cm in the case of an 80 % blockage.
Noting the significant increase in estimation from approximately a 0.002 cm (or less)
amplitude of the head-neck vibration in the healthy case, to over 0.003 for a 50%
blockage, the model shows significant promise in potentially estimating the severity of
a blockage in the carotid artery.

5.4.2 Discussions

The preliminary results presented in the previous section require further refinement.
Although promising, the insufficient number of patients do not allow us to produce a
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(a) Head-neck vibration that can be observed when age is varied keeping other parameters constant.
The neck length is kept constant at 12 cm and no stenosis is considered.

(b) Effect of subject’s Neck length on vibration. The age is kept constant at 60 years and no stenosis
is considered.

(c) Effect of blockage percentage in case of stenosis on vibration. The selected age is 80 years and
neck length is 10 cm.

Fig. 5.11 Sensitivity analysis of different input parameters on head-neck vibration when
other quantities have been kept constant
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Table 5.2 Parameters of the sensitivity analysis for different ages, where PWV is the
pulse wave velocity [172], MAP is the mean arterial pressure, and HR is the heart rate

Age Cardiac Output (L/min) PWV (m/s) MAP (mmHg) HR (bpm)
40 7.57 7.09 95.5 72
60 7.25 8.88 92.9 72
80 6.98 10.72 90.6 72

precise categorisation at this stage. Another important observation made is that only
blockages above 60% gave significantly higher vibration amplitudes than unblocked
arteries. This rise in vibration amplitude is due to the increase in force imparted by
the fluid on the plaque.

Another point that requires refinement is the location of the occlusions. The
synthetic data generated assumes that the locations of stenoses (both left and right
side) have been fixed. By varying the locations of the stenoses, a large number of
synthetic data can be generated but a manual comparison will then no longer be
plausible. Thus more advanced methods such as well trained machine learning methods
to find the right match between synthetic and measured data would be required.

Another difficulty that arises in this work is the selection of components from the
PCA for models with stenosis. The selection of the correct component for analysis is
an absolute necessity as the magnitude of signal is important here for estimation of
the blockage percentage. The most efficient way this selection can be performed is by
re-training a machine learning algorithm using cardiac output, arterial condition and
physiological values from various patients as parameters. This will be possible only
with the help of a large number of patient data, which will help us to produce a more
accurate digital patient twin model.

5.5 Limitations

In this exploratory study, data from only one patient suffering from a stenosis was
available. Typically someone suffering from a stenosis would undergo treatment to
rectify this, and thus it is extremely difficult to get access to patients between the
diagnostic and the treatment stages. This limits the number of classifications we
can generate, given the small cohort size. To approximately circumvent this, we
have created virtual patients with artificial stenosis to indicate what the proposed
methodology works in terms of head vibrations. In the 1D blood flow equations a
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stenosis is currently added in the common, internal, and external carotid arteries via a
step decrease in vessel diameter. This is a simplistic representation of what are often
complex geometries. In reality the stenoses may have varying geometric profiles that
need more complex force estimations. There is a potential use for a scaling factor, which
may aid in improving the accuracy of estimating these complex forces, and possibly
take into account different geometries of plaque build up. However, this scaling factor
needs to be calculated retrospectively by screening of TIA patients and potentially
estimated by using machine learning techniques. The CAD model implemented is the
same for all subjects. This is necessary as otherwise a scan for each patient would
be required, which would defeat the purpose of this study, which is to investigate an
inexpensive and fast technique to detect carotid stenosis. However, we have chosen the
geometry in such a way as to minimize the number of false negative predictions. This
is achieved by choosing a geometry which would produce the least amplitude possible
for the head-neck vibration for both healthy and stenosed subjects.

5.6 Conclusions

A preliminary and very first attempt has been made to demonstrate that a coupled
computer vision and computational mechanics model may be employed in the non-
invasive detection of severe carotid stenosis. The results clearly indicate that the
method proposed is viable but it has room for substantial improvements. Both the
healthy subject cases and a patient case presented provide us with sufficient confidence
that the proposed non-invasive procedure is simple and fairly effective. Further
development is required in order for the method to move towards a clinically usable
platform. We believe that there are many steps that require development to realise the
clinical potential and use of the proposed method. For example, a deep learning based
automatic detection system is required in order to eliminate the manual comparison
between synthetic head vibration data from the model and the in-vivo head vibration
captured through a video. The idea proposed here has a potential to non-invasively
capture a large number of other blood flow related diseases if more sophisticated
setups, such as multiple camera, accelerometer-camera, and thermal imaging cameras
can be used. Like any other new methodologies, a substantial study using patient
data is necessary to proceed from research to implementation. With further progress,
the proposed procedure can move towards an active human digital twin, in which
continuous monitoring of carotid stenosis/stroke potential may take place.
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5.7 Summary

In this chapter, the concept of a semi-active digital twin is explored through an analysis
of face videos for the detection of carotid stenosis and its severity. The amplitude
of subtle head vibration caused by the pulsatile nature of blood flow in the carotid
arteries is exploited in this chapter as it is a potential indicator of carotid stenosis.
The process begins initially by capturing head vibrations of a patient from their face
video, captured using a smartphone camera, and then comparing against expected
head vibrations in that patient for healthy and various severities of carotid stenosis,
calculated using a digital twin of the patient built using a personalised haemodynamic
model coupled with a dynamic equation. The calculated vibration that best matches
the measured vibrations allow for the detection of carotid stenosis and provide an
estimation of its severity. This system is tested on a small cohort of healthy adults and
one carotid stenosis patient, and satisfactory results are obtained providing confidence
in the proposed methodology. This is the second form of digital twin being explored
in this thesis, wherein the components being analysed by the twin are active but the
analysis itself is carried out offline.



Chapter 6

Active Digital Twin

The concept of an active human digital twin is to replicate the functioning and
physiology of an organ or organ system continuously. This concept is explored in this
chapter for online haemodynamic analysis and monitoring. To begin with, a data-driven
inverse analysis of the cardiovascular system using in silico data is proposed in the first
part. Such an inverse analysis will assist in non-invasive haemodynamic monitoring with
the least amount of input data. This section is available as a published peer-reviewed
paper in the public domain [17]. The second part of this chapter begins by exploring the
data-driven prognosis of arterial blood pressure waveforms, another crucial parameter
for monitoring and predicting outcomes to allow for medical preparedness. The final
section of the second part will propose a method to couple computational mechanics
with artificial intelligence, using methods proposed in the previous sections. The
chapter ends with a discussion on results obtained for the active digital twin method
using waveforms taken from MGH/MF database.



Part I

Enabler model
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6.1 Inverse analysis of human systemic circulation

An exponential rise in patient data provides an excellent opportunity to improve
existing healthcare infrastructure. In this section, a method to enable cardiovascular
digital twin is proposed using inverse analysis. Conventionally, accurate analytical
solutions for inverse analysis in linear problems have been proposed and used. However,
these methods fail or are not efficient for non-linear systems, such as blood flow in the
cardiovascular system (systemic circulation) that involves high degree of non-linearity.
To address this, a methodology for inverse analysis using recurrent neural network for
the cardiovascular system is proposed in this section, using a virtual patient database.
Blood pressure waveforms in various vessels of the body are inversely calculated with the
help of Long Short-Term Memory (LSTM) cells by inputting pressure waveforms from
three non-invasively accessible blood vessels (carotid, femoral and brachial arteries).
The inverse analysis system built this way is applied to the detection of Abdominal
Aortic Aneurysm (AAA) and its severity using neural networks.

6.2 Introduction

Data driven analysis and monitoring are key drivers for the evolution of state-of-the-art
healthcare. With increase in patients requiring medical care [173], data generation
and accumulation is also increasing at an alarming rate [174]. This increase has put
additional stress on an already challenging medical cyber-infrastructure. In addition to
data accumulation, increase in number of patients is also causing unprecedented delays
in critical care, as a result of rise in waiting lists. It is also important to note that late
diagnosis is a significant reason for medical complications. Since a significant number
of diagnosing and monitoring tools employed in critical care are invasive in nature, time
consuming, expensive and labour-intensive, rise in these delays have become inevitable.
This has given rise to a need for alternative but robust diagnosis and monitoring tools
that can non-invasively detect medical conditions or diseases and help to monitor them
with minimal amount of data. A potential key towards development of such tools is
artificial intelligence, owing to its capacity to perform complex analyses.

With recent advancements in artificial intelligence, especially in the area of deep
learning, medical applications are being extensively developed with the help of neural
networks and other deep learning algorithms. Many of these applications have shown
promising results [175] and are indicating a future of better and faster tools that will
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Fig. 6.1 A schematic representation of envisaged digital twin.

not only detect and monitor medical conditions and diseases but also prevent them
before they set in. However, a major issue plaguing this advancement is the treatment
of deep learning algorithms as ‘black boxes’. Logical justification of results generated
by these algorithms are difficult owing to the complexity of non-linear transformations
involved, leading to growing distrust amongst medical personnel and academicians [176].
Majority of these deep learning algorithms use supervised learning, a method wherein
the algorithms are trained using samples obtained from general patient population.
This leads to an observation that high chances of misdiagnosis still exist as the analysis
is not patient specific. To overcome the above challenges, a digital twin is envisaged as
a potential solution as shown in Figure 6.1.

A digital twin, virtual representation of an individual, can help perform patient
oriented analysis, using continuous feed of data, thereby increasing the accuracy. This
twin can take many forms ranging from investigating only a part of the body to a
comprehensive model to study the body in its entirety. The process of making a
digital twin can be classified into active, passive and semi-active digital twins. In
an active digital twin model, a systemic circulation model is continuously adjusted
by continuously monitoring the circulation, at accessible locations and feeding real
data into the model as shown in Figure 6.1. This type of digital twin has potential
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Fig. 6.2 Schematic of inverse analysis to determine wave-forms at different locations
using three measurements at accessible locations as input.

applications to diagnosis and monitoring of cardiovascular diseases such as stroke,
cardiomyopathy, arrhythmia, aneurysms, stenoses or a combination of these problems
occurring at the same time. The passive digital twins (Chapter 4) are the ones in
which we use the data obtained to create an off-line model (Chapter 5). This is very
common in many of the subject-specific blood flow modelling studies. Some examples
of such study include fractional flow reserve (FFR) calculations, understanding rupture
potential of aneurysms and stenoses, etc. These passive digital twins can be enhanced
to make active or semi-active digital twins by carrying out calculations online while
measurements supplied to the underlying model. A semi-active digital twin may have
components that have some dynamic nature built in as shown by [16].

Active digital twins work on the principle that the parameters of numerical model
being used are updated continuously. This requires constant monitoring of different
characteristics within a human system for estimating the parameters of the model. In
a human systemic circulation, such monitoring will be fast and cost effective if it can
be carried out non-invasively at the peripheral arteries. Since pressure wave forms
at the peripheral arteries are easily accessible, determining the waveforms inversely
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in the reminder of the systemic circulation may provide an easy way of assessing the
health of an individual. Thus, inversely estimating the pressure waveforms at various
locations of the systemic circulation is key to building an active digital twin. Therefore,
an inverse analysis using deep learning is proposed in this chapter. Inverse analysis will
help in estimating blood pressure waveforms at different locations of the human body
by using minimal number of input pressure waveforms. These inversely calculated
waveforms can further help in parameter estimations required for updating the systemic
circulation model. However, one of the complexities involved in performing inverse
calculation or inverse modelling, especially in non-linear problems, is the potential of
obtaining non-unique solutions. However, with the aid of deep learning and appropriate
constraints, it is now possible to obtain unique solutions [177].

As a demonstration of possible applications of inverse analysis in a cardiovascular
system, an example of Aortic Abdominal Aneurysm (AAA) detection and severity
classification is also described. An aortic aneurysm is a progressively growing dilation of
the aorta with a risk of potentially lethal rupture. Successful treatment of an aneurysm
depends on how early it is detected, as the post rupture mortality rate is around 80%
[178]. To detect an AAA in time, a continuous and expensive screening programme
is necessary. The existing methods of detection of AAA have several drawbacks.
Ultrasound echography is currently considered the most practical and inexpensive
modality in AAA screening, but it has limitations due to the fact that the aorta is
buried deep in the body. The Ultrasound measurement can be obstructed by bowel gas,
obesity, calcification, and other artefacts [179]. The shape and size of the aneurysm
can be determined accurately by 3D CT or MRI methods but they are substantially
more expensive and require injection of a contrast agent. Therefore, they are mainly
applied at the latter stages of AAA evolution [180][181]. Besides the aneurysm size,
its rupture time depends on mechanical properties of the vessel wall that cannot be
determined from the above modalities directly [182]. Since the diameter of aneurysm
is one of the key factors in assessing the severity of the condition, a neural network
model may be used to detect and classify the severity of this problem using computed
diameters. Various recent studies, such as Wang et al [183] and Jones et al [184], have
shown promising results for AAA detection using machine learning algorithms such
as neural networks. In [183], pulse waves have been successfully used for detection
of AAA using Bidirectional Recurrent Neural Networks (BRNN), built using Long
Short-Term Memory (LSTM) cells. In [184], multiple traditional machine learning
algorithms have been analysed to detect AAA using six haemodynamic measurements



6.3 Methodology 103

from the common carotid, brachial, and femoral arteries. However, in this chapter, an
upstream blood pressure waveform is first calculated near the end of abdominal aorta
using deep learning powered inverse analysis and the result obtained is then analysed
using Convolutional Neural Network (CNN) for detection and classification of AAA.
This is one of the several potential applications of inverse analysis, proposed in this
chapter.

In this chapter, three key steps are followed to build and demonstrate the use
of deep learning in inverse analysis. Firstly, a database containing computationally
generated, realistic blood pressure waveforms is produced using a reduced order model
and machine learning. Secondly, a neural network is built and trained to predict
unknown blood pressure wave forms using accessible waveforms as input data, as
shown in Figure 6.2. As seen in the figure, the data inputed at accessible locations
(left) is employed to predict pressure wave forms at other locations (right). Finally, an
additional neural network is trained to analyse the waveforms predicted by the inverse
model to detect Abdominal Aortic Aneurysms (AAA) and their severity.

Briefly, as an essential step to realize the concept of a digital twin, following
objectives are proposed. 1) Demonstrate the idea of inverse modelling using the neural
networks on human systemic circulations, and 2) Propose the idea of using inverse
analysis for the detection of an Abdominal Aortic Aneurysm (AAA) and its severity.

6.3 Methodology

In this chapter, the primary objective is to develop a system capable of performing
inverse analysis on cardiovascular time sequences such as blood pressure waveforms.
To demonstrate this, aortic blood pressure waveform, which is a critical parameter
to assess the cardiac state of a person, is inversely calculated with the help of deep
learning methods. This is carried out using blood pressure waveforms from easily
accessible and measurable arteries such as radial, femoral and carotid arteries as inputs.

Supervised learning approach is adopted to perform this deep learning based
inverse analysis. Since the usage of an existing database is a key component to this
approach, access to large amounts of data becomes a necessity. However, for biomedical
applications, access to large amounts of data means access to thousands of patients
and their medical records, which is challenging given the time required and feasibility.
To circumvent this problem, in this chapter, a method to generate virtual patients,
a close approximation of human patients, is proposed. These virtual patients are
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used to build the database required to train deep learning algorithms. The inverse
method demonstrated in this chapter may be extended to real patients using wearable
technology.

6.3.1 Virtual Patient Database

The objective of virtual patient generation for a cardiovascular system is to build a
numerical model for blood flow that closely resembles a human patient in terms of blood
flow parameters and vascular network. Previous research in virtual patient database
generation methods can be found in references [185 187]. Two key components are
required to build such realistic models, a validated one-dimensional haemodynamic
model and realistic arterial networks based on anthropometric and haemodynamic
parameters to represent a reliable human cohort.

One Dimensional haemodynamic model

The haemodynamic model used in this work is the ETM model explained in Chapter
2, which considers a vascular network of 123 of the major vessels in the systemic
circulation.

Scaling vascular network and cardiac outflow parameters to create realistic
human models

Prior to the generation of a synthetic patient database, a personalised model generation
process is proposed to realistically and physically represent human systemic circulation.
The personalised model of the systemic circulation for a human patient is generated by
adapting geometric and haemodynamic parameters using nominal and ordinal inputs,
such as gender, age, weight and height. This type of adaptation on the above 1D model
has been validated against in vivo data in previous publications [143, 144, 44].

To achieve a realistic representation of arteries in the systemic circulation model, the
geometrical parameters of the vascular network used in the above haemodynamic model
are scaled using validated empirical relations (such as Eqs. (6.1), observed or derived
by various studies [40 43] on general population, that are functions of parameters such
as weight, height and age (left half of Figure 6.3). These relations lead to the geometry
and mesh for a patient. Some of the equations used for scaling are:
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L is Length and D is Diameter 

Fig. 6.3 Example of personalised model generation using patient profiles. This includes
three parallel workflows: for generation of the geometrical mesh parameters (left),
for generation the inlet boundary conditions (centre) and for generation of elastic
parameters of the mesh segments

.
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These MLP models have an architecture of three to four hidden layers, with each layer
having the number of neurons varying between 2 and 32, along with an input layer with
the number of neurons varying between 4 and 7, and an output layer of one neuron for
predicting the value of interest. The hidden layers have ‘TanH’ or hyperbolic tangent
as activation function and output layer has either ‘sigmoid’ or ‘ReLU’ (Rectified Linear
Unit) depending on the output being predicted. For example, in the case of ejection
fraction, since the expected value is between 0 and 1, the sigmoid function is the
suitable activation function for the output layer. All models are trained with Mean
Squared Error (MSE) as the cost function and ‘Adam’ optimizer [64].

Haemodynamic parameters of the mesh, such as compliance of the vessels, calculated
using pulse wave velocity (PWV), is adjusted for ageing related changes using equations
from literature [190], as shown in the rightmost workflow in Figure 6.3.

In order to create a realistic virtual patient database and obtain a closer approxi-
mation of actual human patients, the above described personalised model generation is
adopted to create patient profiles of the required number of virtual patients, as shown
in Figure 6.3.

To train machine learning algorithms with better accuracy, virtual patient databases
need to be chosen such that it covers a wide range of data, accounting for various
combinations of input parameters (Age, weight, height, gender, blood pressure and
pre-existing heart/medical conditions). The input parameters in personalised model
generation, representing anatomical and haemodynamic input parameters of a patient,
is referred to as a patient profile in this work (see Figure 6.3). Based on required number
of virtual patients, a number of such patient profiles are generated by randomising the
input parameters, by sampling a uniform distribution of these parameters. Each of
these patient profiles are used to generate the required number of virtual patients, each
representing a unique cardiovascular system. A sample of one such virtual patient is
shown in Figure 6.3. Here, the three parallel processes for mesh generation, calculating
inlet boundary conditions and haemodynamic parameters are represented by three
workflows. In total, a database of 4137 such healthy virtual patients are generated.
Healthy virtual patients refer to patients without any Abdominal Aortic Aneurysm
(AAA), to be described in the next section. More details of generation of the database
are presented in Section 6.4.1.
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In vivo measurements of effect of AAA diameter on the wall stiffness appears to
show that the wall stiffness can increase with the growth of aneurysm [192], which
is not confirmed by [193]. This makes dependence of 4

3Eh on D questionable. Some
studies [194] indicate that aneurysm ruptures are caused by localized degradation
and weakening of the wall. Therefore, at least in a number of critical cases, when
the vessel is about to rupture, we could assume that the wall stiffness, and hence the
characteristic impedance, at the location of rupture are almost non-existent. In this
case, the aneurysm will lead to a significant wave reflection that can be detected during
the waveform analysis.

Virtual patients with AAA are modelled with fusiform aneurysms in the abdominal
aorta. The diameter is varied sinusoidally along the length of the aneurysm [195], with
the widest area occurring at mid-length. The aneurysms are classified into Small AAA
(3 cm - 4.4 cm), Medium AAA (4.5 cm - 5.4 cm) and Large AAA (> 5.5 cm) aneurysms.
Within each category, diameter for each AAA virtual patient was randomly chosen.
However, post database generation, at least one occurrence of all diameters within
one decimal place between 3 cm to 6.9 cm was verified in order to account for every
possible diameter. As the wall stiffness is of crucial importance in large aneurysms,
it is indirectly modified using pulse wave velocity (PWV). In order to mimic critical
cases, where rupture of vessel wall is imminent, in few personalised models the stiffness
is made very low by decreasing PWV drastically at randomised locations along the
aneurysm. In these locations, local PWV of 5 elements are reduced to values between
14% to 30% of their original PWV. The local stiffness for small and medium AAAs are
not modified. This allowed for wide range of possible AAA cases to be simulated. AAA
virtual patients are added to the database using their generated personalised models.
The range used for randomised selection of input parameters, required for calculating
anatomical and haemodynamic parameters, is similar as that of healthy (non-AAA)
cases (see Section 6.4.1). Generating all possible combinations of input parameters
and AAA sizes is not feasible. Hence, a randomised selection of their combinations is
chosen to generate as many different combinations as possible in the database.

In total, a database of 8659 virtual patients is created with 4137 healthy (or
non-AAA) cases and 4522 AAA cases.

Understanding blood waveforms in AAA

The database generated in subsections 6.3.1 and 6.3.2 consists of a collection of pressure
waveforms, each of which represents a different vascular geometry and aneurysm
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and 6.7, a small phase shift can be observed in volumetric blood flow rates between
healthy, large AAA and critical AAA conditions. These observations make this medical
condition a suitable application for deep learning, where parameters can be observed
in compounded non-linear domains. In this chapter, only blood pressure waveforms
are used for deep learning applications.

6.3.3 Deep learning for inverse pressure wave form calcula-
tion and AAA classification

Fig. 6.8 LSTM based inverse analysis and AAA classification.

Deep learning, a type of machine learning, involving multiple layers of non-linear
transformation is the method chosen in this work to perform supervised learning. Major
part of deep learning involves usage of artificial neural networks. Basic building blocks



6.3 Methodology 112

of these networks are nodes or connected units called artificial neurons or perceptrons,
which incorporate a non-linear mapping of weighted inputs, as shown in Figure 6.4.

The patients’ database described in Section 6.3.1 is used to train deep learning
algorithms for performing inverse analysis. Upon completion of such an inverse model,
deep learning is further used in the development of AAA classification tool to calculate
the parameters of interest, which in this example is the diameter, using outputs
generated by the inverse model (See Figure 6.8). In summary, a deep neural network
is first used to determine waveforms at various locations of a blood flow network and
then an additional neural network of a different configuration is employed to analyse
AAA diameter.

Long Short-Term Memory (LSTM) based Neural Network for Inverse Anal-
ysis

The primary objective of inverse analysis, shown in Figure 6.8, is carried out using a
Recurrent Neural Network (RNN) [196]. RNNs are a form of neural networks designed
to handle sequential data, which use a concatenated input consisting of output from
previous step and input from current time step. Output from previous time step
refers to the prediction made by the RNN cell for input values of the previous time
step. Input from current time step refers to the value present in external input data
provided to the RNN cell, at that particular time step. Since the input data of interest
is sequential in nature (pressure waveforms from available sites such as carotid, femoral
and brachial arteries), an RNN is found to be the most robust and computationally
viable option. Amongst the different types of RNNs, the most suitable form is a Long
Short Term Memory (LSTM) cell [66] [65]. Regular RNN cells perform well, especially
when the short duration data is processed. However, they fail when this duration
increases. This issue is solved in an LSTM cell of the kind shown in Figure 6.9 that
keeps track of dependencies between elements in the input sequence using a cell state.

A cell state is a parallel flow of data in an LSTM cell. It allows for certain
information to be carried in parallel to actual data to track various dependencies
between elements. For example, in the context of blood pressure wave forms, prediction
of dichrotic notch depends on information from peak blood pressure, predicted several
time steps before the notch. Such long term dependencies can be retained in the
cell state. In Figure 6.9, the cell state (Ci) is passed through the upper channel and
a concatenated signal, consisting of input from current step (Xi) and output from
previous step (Yi−1), is passed through the lower channel. Gates Fi, Ii, C, are used
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to learn from previous steps and predict the next one. Each of these gates refers to a
combination of neural layer connected to the cell state through a logical operator or
combination of logical operator and other gates. Based on the logical operation carried
at the end of their respective neural layer, gates can be identified for their functions
such as to forget, retain, select or modify cell state which in turn affects the output
value.

Fig. 6.9 Long Short-Term Memory (LSTM) cell consisting of cell state as well as forget,
input and output gates

Using blood pressure waveforms measured for one cardiac cycle at three locations,
carotids, brachial and femoral arteries, the above neural network model calculates
time sequences, which here are the blood pressure waveforms, from various arteries
of the body, some of which are located upstream. It is observed that only one or
two input blood pressure waveforms, with different combinations between carotid,
femoral and brachial arteries, failed to predict with the same level of accuracy as that
from three inputs. Thus, it can be inferred that a minimum of three input blood
pressure waveforms and their time sequences are required to achieve acceptable levels
of accuracy. The neural network architecture used is detailed in Table 6.1. The model
is compiled with Mean Squared Error(MSE) as the cost function and trained with
‘Adam’ optimizer, a modified gradient descent method [64]. The data is split into
training (80%) and testing data sets (20%). During training, the training dataset is
further split into training (80%) and validation subsets (20%).

Convolutional Neural Network for AAA Classification

In AAAs, the blood pressure waveform close to the distal end of abdominal aorta is a
superimposed wave that includes reflections and negative pressures. This waveform
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Table 6.1 Architecture of Deep learning model I

Type of RNN cell Long Short Term Memory
Number of hidden layers 2

Number of cells in hidden layers 32
Number of inputs 3

Number of fully connected layers 1(output layer)
Cost Function Mean Squared Error

Optimiser ADAM
Batch size 300

Number of Epochs 1400

contains effects of any vessel enlargement. It is important for us to extract these
features from the waveform in order to detect and analyse the severity. Traditionally,
signal processing techniques such as Fast Fourier Transforms [191] and CEPSTRUM
anlayses are considered as suitable options for such feature extraction. However, with
deep learning, these features can be extracted with compounded non-linear mapping,
thereby extracting higher number of features compared to the traditional methods. The
most suitable neural network for such application is a Convolutional Neural Network
(CNN) [197]. CNNs use convolution to extract features from the data. The weights
or coefficients in the filters, or convolutional layers, used for these convolutions are
trained using a gradient descent based optimiser to extract the features affecting the
parameter of interest, which in this work is the AAA diameter.

Fig. 6.10 1D Convolutional Neural Network used to detect severity of AAA.
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The waveform inversely calculated by the RNN model at a location on the abdominal
aorta close to the distal end, about 3cm downstream, is the input set to a 1D-CNN
(see Figure 6.10) classifier which is trained to extract features from the signal and
classify the severity of the aneurysm into categories based on the AAA diameter. The
categories or classes chosen in this work are healthy (<3cm), small AAA (3cm - 4.4cm),
medium AAA (4.5cm - 5.4cm) and large AAA (>5.4cm). The architecture of the 1-D
CNN model is detailed in Table 6.2.

The convolutional neural networks employed here utilize convolutional filters in first
two layers to capture features from the signal. Convolutional filters use the operation of
convolution, multiplication of predetermined weight matrix of a chosen size, to highlight
or extract certain aspects in the data provided. Features extracted from them are
then compressed using maximum pooling layer, which chooses the maximum amongst
extracted features in a given window. To perform with better accuracy, the output
from maximum pooling layer is further passed onto another set of convolutional layers
before pooling the features using global average (see Figure 6.10). The pooled features
are then used by fully connected layers, perceptron layers, to estimate the severity
of AAA. This network is compiled with ‘categorical crossentropy’, a combination of
softmax function and cross entropy [198], as the cost function. Since classification uses
probability distribution, categorical crossentropy uses softmax function i.e,

f(s)i = esi

ΣC
j=1e

sj
, i = 1, . . . , C (6.3)

to calculate a probability distribution. Here s are the output scores, a value in the
range of 0 to 1, calculated by the neural network for each of the C number of categories.
Equation (6.3) is used to calculate loss as

CE = −ΣC
i ti log(f(s)i) (6.4)

Here CE is the cross entropy with ti being the target or expected probabilities
and f(s)i is the calculated probabilities. In training, the data is split into training
(80%) and testing data sets (20%). Stratified K-fold cross validation method is used to
train and evaluate the model. In K-fold cross validation method, the data is split into
K subsets, and the model is iteratively trained by holding out one of the subsets as
the validation set. Each subset is marked as the validation set only once during the
iterations. Here, the number of folds, K, is 10. This approach is adopted in order to
mitigate the problem of overfitting, as it allows for tuning of hyperparameters within
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Table 6.2 Architecture of Deep learning model II

Type of Neural Network Convolutional Neural Network (CNN)

Number of hidden layers 8

Number of filters 128 (1st and 2nd convolutional layers)
256 (3d and 4th convolutional layers)

Kernel sizes (Convolutional layers) 10 (All layers)

Number of pooling layers 2 (1 max pooling and 1 average pooling)

Number of fully connected layers 3

Number of cells in fully connected layers 16,8,4

Number of input sequences 1

the training dataset by iteratively holding out one of the ten folds as validation set. The
only difference between K-fold cross validation and stratified K-fold cross validation is
that the subsets are chosen such that there is equal representation of data from each
of the categories in a multi-class classification.

6.4 Results and Discussion

In this section, results observed for inverse analysis using LSTM based neural network
(RNN) and the example of application of inverse analysis to detection of Aortic
Abdominal Aneurysm (using CNN) are presented and discussed in some detail. A brief
analysis of the above generated virtual database is also presented to give the readers
an overview of the baseline characteristics amongst the virtual patients.

6.4.1 Analysis of the virtual database

The virtual database generated consisted of a total 8516 patients, with 4137 healthy
cases and 4392 AAA cases.

Table 6.3 shows the average values as well as minimum and maximum values seen
in virtual database for healthy patients. The pulse wave velocity (PWV) recorded in
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Table 6.3 Baseline characteristics of virtual patients (without AAA) used in the virtual
database [199, 200, 172, 201].

Average [95% CI] Minimum value Maximum value
[n=4137] (Females=1734)

Age (years) 61.39 [60.87-61.90] 30.00 89.00
Weight (Kg) 96.11 [95.62-96.59] 40.00 120.00
Height (cm) 174.94 [174.47-175.41] 150.00 200.00

Ejection Fraction (%) 61.82 [61.74-61.91] 57.00 66.99
Pulse Pressure (mmHg) 53.46 [53.09-53.83] 28.08 87.81
Cardiac Output (L/min) 5.72 [5.70-5.75] 4.50 7.00

Pulse Wave Velocity (m/s) 9.20 [9.16-9.23] 6.80 11.96

this table refers to heart-femoral pulse wave velocity. The average value of PWV and
different parameters in the 1D model, which include both inputs and measured values
upon convergence, are observed to be within acceptable ranges for general human
population [201][172]. Furthermore, extreme cases within physiologically acceptable
range for each parameter, as shown in minimum and maximum values, have also been
generated and recorded in the database. These cases allow for the neural networks,
upon which the objective of present work is primarily based on, to be trained on a
wide variety of physiologically possible cases for achieving higher accuracies.

Table 6.4 shows the average values (with 95% Confidence Interval) of key parameters
in AAA virtual patients. The maximum and minimum input values for the AAA
patients are similar to that of non-AAA patients (See Table 6.3). Values in Tables 6.3
& 6.4 are chosen for close physiological representation of general human population.
However, since several approximations and assumptions are made in the 1D model, a
lot of features may be lost with respect to real human patient data. Thus, any system
trained on these databases must be bolstered with real human data, using transfer
learning or other methods before being tested in clinical settings.

6.4.2 Inverse analysis using Neural Networks

As mentioned previously, inverse analysis is performed to predict blood pressure
wave forms at various locations in the arterial network using virtual measurement at
peripheral arteries. The inverse analysis model developed using LSTM based neural
network, during training, calculated blood pressure waveforms at arteries located
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Table 6.4 Baseline characteristics (average, 95% CI in brackets) of virtual patients
(with AAA) used in the virtual database.

Small AAA Medium AAA Large AAA
[n=1958] [n=1164] [n=1400]

(Females=915) (Females=455) (Females=436)

Age (years) 67.29 [66.70-67.87] 74.40 [73.81-74.98] 77.80 [77.47-78.13]
Weight (Kg) 95.47 [94.74-96.19] 97.25 [96.3-98.21] 87.71 [87.13-88.29]
Height (cm) 174.18 [173.49-174.87] 176.11 [175.20-177.02] 177.95 [177.20-178.70]

Ejection Fraction (%) 61.85 [61.50-62.21] 62.45 [62.00-62.89] 60.44 [60.22-60.66]
Cardiac Output (L/min) 4.72 [4.67-4.77] 4.68 [4.62-4.74] 6.77 [6.70-6.83]
Pulse Pressure (mmHg) 42.04 [41.45-42.63] 42.73 [42.02-43.44] 70.53 [69.76-71.29]

Pulse Wave Velocity (m/s) 8.97 [8.92-9.02] 9.45 [9.39-9.50] 10.54 [10.51-10.57]
AAA Diameter (cm) 3.97 [3.96-3.98] 4.98 [4.96-4.99] 5.97 [5.95-5.98]
AAA Length (cm) 5.31 [5.27-5.35] 5.79 [5.74-5.83] 7.75 [7.71-7.80]

upstream to the points of input measurement, such as aortic root and abdominal aorta,
with an acceptable levels of accuracy. The results from this model is analysed primarily
for two aspects. Firstly, its capacity to predict important features of the waveform such
as dichrotic notch in aortic root. Secondly, the accuracy with which the blood pressure
values at each time step is calculated. In order to explain different aspects of this
analysis, results from one healthy virtual subject (from the virtual patient database) is
described in this section.

The input blood pressure waveforms are measured in carotid, femoral and brachial
arteries as shown in Figure 6.11. These waveforms are obtained from the haemodynamic
model of a virtual subject. The measurements are taken from nodes located midway
along the length of the arteries.

Figure 6.12 shows the waveforms at abdominal aorta, left cerebral artery, and aortic
root. Both calculated (solid line) and expected (dotted line) are shown. The dichrotic
notch (occurring at approximately 0.36s), peak pressure (occurring at approximately
0.25s), minimum pressure (at the start of the cardiac cycle), and shape of waveform
for different arteries are calculated. As seen, both calculated and expected pressure
wave forms agree excellently apart from minor differences observed in the aortic root.
This accuracy extends also to the case of a virtual patient suffering from AAA (see
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Fig. 6.11 Input blood pressure waveforms measured at three different locations.

Figure 6.13). The only significant deviation found in these output waveforms, which is
also observed in other virtual patients, occur slightly before the dichrotic notch.

When observed on the entire virtual patient database, proposed procedure performs
with promising results. Blood pressure waveforms in arteries upstream to the input
vessels (carotid, brachial and femoral) such as aortic root, abdominal aorta and iliac
arteries (see Figure 6.12) are calculated with an acceptable lowest accuracy of 98.81%,
amongst the arteries. As mentioned in 6.3.3, the data is split into 80% for training
dataset and 20% testing dataset. The lowest accuracy observed amongst the waveforms
predicted for testing dataset, which is not used during training, is 94.16%. An acceptable
accuracy, is assumed when averaged error between expected and calculated pressure
wave forms over a cardiac cycle is less than 0.5 mmHg.
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Fig. 6.14 Confusion matrix to understand the performance of the model for virtual
patients in the entire database.

6.5 Conclusions

The proposed approach of inverse analysis makes development of an active digital twin,
capable of continuously monitoring, and preventing medical conditions from developing
or further aggravating feasible. This approach for biomedical applications with the
help of non-invasive or minimally invasive measuring tools has the potential to reduce
dependencies on sophisticated and invasive diagnostic tools.

In the case of a cardiovascular system, this approach is potentially implementable
in clinical environments and aids in monitoring critical vessels and cardiovascular
parameters. The method presented in this work can perform inverse analysis with high
accuracy. It detected problems such as AAA with an accuracy as high as 99.91% and
classified its severity with acceptable accuracy of 97.79%. With these results obtained
in this work, it can be concluded that this approach may be used to monitor parameters
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with on-par accuracy to that of conventional diagnostic tools if the real system behaves
according to the physics employed in this chapter.

However, two key issues still need to be resolved before deployment in clinical envi-
ronments. Firstly, since only one cardiovascular condition is modelled, the possibility
of multiple other conditions or diseases generating the same output waveforms still
exist. This is a common problem faced in inverse analysis, where multiple solutions
for a given problem are possible. This work proposes the idea of using deep learning
technique for inverse analysis in biomedical applications. However, a solution of using
probability distribution for identifying the cause, when multiple clinical conditions
gives rise to the same output, needs to be developed to avoid false diagnosis.

Secondly, since the deep learning model is trained on a virtual patient database,
possibility of decrease in accuracy of the system is possible when exposed to clinical
environments. To avoid this, the system must be additionally trained using transfer
learning on real human patient data.



Part II

Truly active model
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6.6 Data driven forecasting

The continuous monitoring of cardiovascular state using digital twins incorporates
a replication of cardiovascular parameters, such as systemic vascular resistance and
cardiac output, and the cardiovascular geometry. The idea of inverse analysis presented
in Part I provides a way to assess cardiovascular parameters. However, idea of active
digital twin extends beyond simple prediction of parameters, but continuous online
estimation of current and future states of the system it replicates to make a decision.
In this section, a deep-learning powered method is proposed to perform such a forecast
for blood pressure waveforms using publicly available waveform datasets.

It is important to note that the concept of inverse analysis presented in the previous
part, though ideal for active digital twins, is not feasible for in vivo application within
the scope of this thesis. The lack of availability of data or datasets containing in vivo
measurements of all the three required input blood waveforms, measured simultaneously,
makes it difficult to use it within this thesis for further concept building. Gathering
such data will require a large amount of time and funds to conduct clinical trials, which
is out of the scope for this thesis. However, since the objective of this thesis is not
just to propose different forms of human digital twins but also provide a proof of their
functionality in real life (in vivo), further concepts required for an active digital twin
is explored in this part of the chapter using a publicly available large clinical database.

6.6.1 Data selection and processing

The Massachusetts General Hospital (MGH)/ Marquette Foundation (MF) waveform
database [202, 91] is chosen for the development of active digital twin concepts here.
The MGH/MF wave form database consists of electronic recordings of haemodynamic
and electrocardiographic waveforms of stable and unstable patients in critical care units,
operating rooms and cardiac catheterisation laboratories. This database is publicly
available and it consists of recordings from 250 patients.

Here, the arterial blood pressure wave forms from 203 of the 250 patients, with
arterial line readings are used to train simple forecasting models to predict or forecast
short term systolic, diastolic, and mean arterial blood pressure. In the recordings
for each patient, 15% of the BP waveform data at the beginning and the end of the
recordings are removed (as shown in Figure 6.15). Then, the waveform is split into
smaller samples, with each sample having a length of 10 minutes. The systolic BP
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Fig. 6.15 Preprocessing of blood pressure waveform data to split it into samples of 10
minutes.

value, at peaks of each cardiac cycle, (identified using find peaks function from SciPy
library [203]); diastolic blood pressure, at the trough of each cardiac cycle; and mean
arterial pressure (MAP), calculated over each cardiac cycle, are extracted and recorded.

Each of these parameters recorded over a 10 minute sample is used to predict or
forecast their values for 3-10 cardiac cycles that will occur 10 minutes after the end of
the last cardiac cycle in the sample.

6.6.2 Neural network architecture and training

‘Shallow’ neural networks with one LSTM layer and two dense layers are used to predict
each of these three parameters. Since the number of input points are small and simple,
shallow networks are preferred over deep neural networks in this case. In Table 6.5, all
training parameters used to train these neural networks are described.

Table 6.5 Parameters used to train neural networks for forecasting of BP values.

Number of inputs 1 waveform
Number of layers 3 (1 LSTM and 2 dense layers(MLP))

Number of output neurons 10 (for max. 10 cardiac cycles)
Activation function(dense layers) ‘Relu’ (hidden layer) & sigmoid (output)

Optimiser Adam [64]
Number of epochs 500

Batch size 5
Total number of samples 529
Training-validation split 80%-20%
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After training, following accuracy levels (considering a case as accurate overall error
is less than 5 mmHg) were observed, for each of the desired parameters:

• Neural network for systolic blood forecasting- Training accuracy of 62.2% and
Testing accuracy of 61.3%

• Neural network for diastolic blood pressure forecasting- Training accuracy of
73.9% and Testing accuracy of 70.8%

• Neural network for mean arterial blood pressure forecasting- Training accuracy
of 69.3% and Testing accuracy of 67.5%

The final concept of combining the system proposed in this section along with
continuous monitoring of haemodynamic system though 1D haemodynamic model is
described in the following section.

6.7 Continuously adapting 1D haemodynamic mod-
elling system

In this section, a system for continuously adapting parameters of a 1D haemodynamic
model to replicate the haemodynamic state of a patient, using measured blood pressure
waveform forms, is proposed. This section begins by describing the system and
principles behind each step. Then, an example of diagnosing and monitoring sepsis
is described to demonstrate the functioning of the proposed system in cardiovascular
monitoring. Further, this section also describes the coupling of the forecasting system
proposed in the previous section with the continuous monitoring proposed in this
section before concluding the chapter with discussions of the results obtained for the
sepsis example.

6.7.1 Closed loop system

The continuous modification of a 1D haemodynamic model, so as to replicate the
haemodynamic state of a patient, requires modification of boundary conditions for
fluid parameters. The boundary conditions can widely be divided into the inlet flow,
characterised by cardiac functioning and outflow, vascular capillary bed resistance and
external pressures, applied on vessels. Since only the cardiac vessels are subjected to
significant amounts of pressure from surrounding tissue, external pressures in all other



6.7 Continuously adapting 1D haemodynamic modelling system 128

elastic vessels are ignored in this work. In this subsection, a method to continuously
alter the inlet boundary conditions and capillary bed resistance is proposed and
discussed.

Vascular geometry may alter over a long period of time but small changes over a
short period of time can be ignored. However, as in any other object in nature, there
are exceptions to this assumption, for example during vascular repair surgery. In this
work, scenarios with changes in vascular geometry over a short period of time are
avoided and the mesh is assumed to be constant for the complete period of monitoring.

Ideally, inlet boundary conditions are best suited to be estimated using inverse
analysis, using measured way forms from peripheral vessels as explained in Part I.
However, to build and test a system with such an estimation using available in vivo
measurements from public databases is difficult. Such a system is not reliable with just
one blood pressure waveform, since only one arterial line BP measurement is captured
and recorded in publicly available databases. Hence, an alternative way is explored
using just one BP waveform to estimate the inlet boundary conditions here.

In this work, for demonstrating active digital twins, continuous modifications of 1D
haemodynamic model (LCG model described in Chapter 2) is carried out by altering
the following control parameters within the 1D model -

• Left ventricular peak pressure

• Relaxation time (in ventricular pressure)

• Vascular compliance (altered using β, representing the material properties of the
vessel wall)

• Systemic vascular resistance (capillary bed resistance, altered by varying area
gradient(taper) in terminal vessels)

• Heart rate

These parameters are chosen as they are crucial to model the haemodynamic state
during sepsis, an example described in the next section. In the case of sepsis, the
systemic vascular resistance decreases with the severity of sepsis, causing the heart
to adjust for maintained circulation. Heart rate, left ventricular peak pressure, and
relaxation time are necessary to replicate cardiac activity. Vascular compliance and
systemic vascular resistance are necessary to replicate vascular characteristics and
downstream resistance respectively during sepsis.
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Table 6.6 Range of physiological values used to generate the reference waveform
database .* A0i is the initial area at the start of the terminal vessels.

Parameters Value range
Left ventricular peak pressure 55-125(mmHg)

Relaxation time 0.20-0.32 s
Vascular compliance adjusted according to age (25-85 years)

Systemic vascular resistance 0.4A0i-0.9A0i*
Heart rate 50-185 BPM

In addition, the system is also designed to alter the mesh for personalised digital
twin representation of the patient. However, since some of the required data, height and
weight of the patients, is not available in the MGH/MF database, data used to test the
system, this feature is not used for the problem presented in the following subsection.
The estimation of above control parameters over time in two phases, warm-up phase
and active phase.

Warm-up phase : In this phase, the system is exposed to the patient’s arterial
blood pressure waveform for the first time. An initial approximation of the above
control parameters are made in this phase. In this work, to perform such an estimation,
a large reference database with waveforms calculated using the 1D model, for various
combinations of control parameters using values chosen over a range shown in Table
6.6, is generated. The second cardiac cycle, from the beginning of the patient’s BP
waveform data, is extracted and compared with waveforms from the reference waveform
database, to find the closest resembling pre-calculated waveform. The parameter used
in the generation of the best-matched waveform is used as the initial estimate for
the control parameters. To match similarities between two waveforms, the Dynamic
Time Warping (DTW) method is used to measure the cost or error between any two
waveforms. It is an algorithm capable of measuring similarity between two temporal
sequences, that may or may not be of same speed. The initial estimate for control
parameters are then fine tuned to generate a ‘mature digital twin’ (1D model) capable
of generating the closest resembling BP waveform to that of measured input. In this
work, fine tuning or calibration of 1D model is carried out by running simulations with
small variations of the control parameters and choosing the combination of parameters
that generates waveform with highest similarity to the input.



6.7 Continuously adapting 1D haemodynamic modelling system 130

Fig. 6.16 Flowchart for the warm-up phase.

Active phase: Further on, continuous blood pressure waveform data from the pa-
tient, starting approximately one minute after the beginning of reading is intermittently
utilised for further updating of the model, obtained from the warm-up phase. Ap-
proximately 12 continuous cardiac cycles are extracted every 10 minutes from the
continuously arriving BP waveform data. Out of the 12 cardiac cycles extracted, n
individual cardiac cycles (consequent or non-consequent) are selected and the control
parameters are modified individually adapted for replication of each of the n waveforms.
The parameters estimated over n cardiac cycles are averaged to represent the cardio-
vascular state of the patient in that particular 10-minute time period. Higher values of
n allow for better averaging of the cardiovascular state as more pulse pressure variation
can be captured. The computational capacity to simulate n cycles within 10 minutes
dictates the value of n. Thus based on computational speed available, n is chosen as 3
for this work. Further, the waveform data in that particular 10-minute time period
is also used to forecast or predict the patient’s cardiac state after 10 minutes. This
process is continuously repeated every 10 minutes until either manually stopped or no
input waveform data is provided.

Figure 6.17 shows the complete workflow followed in the active phase. This phase
can be subdivided into two parts, updating of the digital twin model (1D model) using
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Fig. 6.17 Flowchart for the active phase.

measured data (with recently measured 10 minute time period) and forecasting of
blood pressure, to be observed after 10 minutes, and calibrating the model to match
forecasted BP values. In the figure, the first loop shown at the top shows the updating
of the digital twin model using recently measured data. The second loop at the bottom
shows forecasting of BP values in near future (after 10 minutes) and calibration of the
digital twin model to match those values.

6.7.2 An example of sepsis

To demonstrate the proposed system, arterial BP wavforms from nine patients with
sepsis, from the MGH/MF database, are used to replicate active monitoring of haemo-
dynamic state. Since number of parameters being controlled in the above proposed
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Fig. 6.18 An example of best matched waveform generated by digital twin model(1D
model), after fine tuning the control parameters, with the input (MGH/MF waveform).

active digital twin is minimal, the case of sepsis is well-suited for replicating such a
system.

In the MGH/MF wavefrom database, 14 patients have been diagnosed to have
sepsis, out of which 5 patients undergoing treatment are used as samples for active
monitoring. The exclusion of patients is carried out if the patient diagnosis is shown
to have either other cardiovascular complications with sepsis, such as cardiac diseases
or vascular surgery, or have readings that are beyond the capacity of replication by the
1D model. Compounded cardiovascular cases are avoided in this work for the following
reasons:

• The control parameters used in this example are not sufficient enough to model
cardiac diseases, such as endocarditis.

• Lack of data on exact geometry changes made during vascular procedures and
lack of patient details make it difficult to generate personalised mesh, required
for admissible replication of the patient’s cardiovascular state.

• With a single input waveform and compounded cardiovascular problems, various
combinations of cardiovascular conditions can generate approximately similar
looking waveforms. To handle such combinations, a multimodal system is re-
quired. Since the objective of the proposed system is to demonstrate the active
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modification of 1D model for continuous monitoring, only 1D model configurations
(built with assumptions and approximations) with parameters that generate the
waveform with highest similarity to that of the input is used. The selected model
may or may not be the correct representation if more than one cardiovascular
disease is present. Therefore, we mitigate the issue by selecting cases with only
sepsis and no cardiovascular disease for this demonstration. However, two cases
with past history of coronary disease were included to allow for analysis of how
well the proposed system can adapt to the best of its capacity.

The patients chosen for this demonstration from the MGH/MF waveform database
are, ‘mgh76’, ‘mgh86’, ‘mgh136’, ‘mgh152’, ‘mgh166’.

For each patient, initially the warm-up phase is conducted using the second cardiac
cycle after start of recording (approximately 15% of recording at the beginning is
removed from starting point of the recording). Then, three consecutive samples of 10
minutes period is extracted. The three samples are used to test the active calibration
phase of the proposed system. The first sample is used as an input to the active
forecasting phase to predict the cardiac state in the third sample, and the results are
compared with the actual values.

6.7.3 Results and discussions

In this subsection, results obtained by applying on 5 patient waveforms from the
MGH/MF database is presented. Tables 6.7, 6.8 and 6.9 show the BP values generated
by fine tuned digital twin model (1D model) for three consecutive 10 minute long time
periods. The columns show the results obtained after updating the digital twin in
every time period (Period 1, Period 2 and Period 3). The values obtained are within
acceptable range of actual values, showing that the active human digital twins for the
cardiovascular system can be built on the same lines as that of the proposed system
for continuous replication of a patient’s cardiac state.

The fine tuned models in each time period is used to calculate cardiac output (CO)
for that period, shown in Table 6.10. This parameter allows for understanding on how
well sepsis characteristics are replicated by the proposed system. In sepsis, patients
usually have normal or elevated cardiac output, low systemic vascular resistance, and
also low diastolic BP (for non-severe sepsis with normal MAP) [204]. In this work, a
patient is considered to be suffering from or under treatment for sepsis if the diastolic
blood pressure is approximately 60 or lower, pulse pressure is higher than 70 and
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Table 6.7 Systolic blood pressure obtained after fine tuning digital twin models for
three 10-minute periods, with values averaged over 3 cardiac cycles chosen within a 10
minute time period.

Systolic Blood pressure (mmHg)
Patient Period 1 Period 2 Period 3

DT Actual Error DT Actual Error DT Actual Error
mgh076 173 175 2 168 175 7 165 179 13
mgh086 94 92 2 98 100 2 100 100 0
mgh136 100 101 1 99 103 4 99 104 5
mgh152 136 142 6 139 138 1 136 142 6
mgh166 161 160 1 184 186 2 189 188 1

Table 6.8 Diastolic blood pressure obtained after fine tuning digital twin models for
three 10-minute periods, with values averaged over 3 cardiac cyles chosen within a 10
minute time period.

Diastolic Blood pressure (mmHg)
Patient Period 1 Period 2 Period 3

DT Actual Error DT Actual Error DT Actual Error
mgh076 78 73 5 74 73 1 73 67 6
mgh086 55 61 6 60 59 1 56 61 5
mgh136 68 70 2 69 70 1 69 72 3
mgh152 59 67 8 58 62 4 67 60 7
mgh166 91 93 2 96 93 3 103 93 10

cardiac output is above 4 L/min. By analysing the cardiac output, systemic vascular
resistance (measured as MAP/ CO), MAP and diastolic blood pressure, it can be seen
that digital twins for ‘mgh152’ and ‘mgh166’ clearly show signs of sepsis or sepsis
related care using vasopressors. In ‘mgh076’, neither BP and CO from digital twin
nor BP from recorded waveforms show signs of sepsis, however, the digital twin has
approximately 10% decrease reduced area taper gradient in terminal vessels (within
the 1D model), which could signify a mild or early sepsis. ‘mgh136’ has a very low
cardiac output, and since no data is available to validate it as well as lack of patient
data, capturing of sepsis characteristics can only be assumed by the fact that this
model has 40% reduced area taper gradient in terminal vessels(within the 1D model).
Measured cardiac output values is not available for the selected patients except for a
static measurement for ‘mgh086’, time of recording for which is also not available. In
the case of ‘mgh086’, the observed cardiac output values is less than the recorded value
from the patient record (5.4 L/min), this may be attributed to history of coronary
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Table 6.9 Mean arterial blood pressure (MAP) obtained after fine tuning digital twin
models for three 10-minute periods, with values averaged over 3 cardiac cycles chosen
within each 10 minute time period.

Mean Arterial Blood pressure (mmHg)
Patient Period 1 Period 2 Period 3

DT Actual Error DT Actual Error DT Actual Error
mgh076 101 107 6 102 101 1 94 96 2
mgh086 70 69 1 76 71 5 74 73 1
mgh136 77 83 6 78 83 5 72 85 13
mgh152 96 90 6 87 90 3 96 88 8
mgh166 115 109 6 122 125 3 124 130 6

disease, replication of which is difficult with the current control parameters. Both
‘mgh136’ and ‘mgh086’ have a history of coronary disease.

Table 6.10 Estimated cardiac outputs calculated from tuned digital twin models for
three 10-minute periods.

Cardiac output (L/min)
Patient Period 1 Period 2 Period 3
mgh076 4.83 4.28 3.18
mgh086 3.24 3.57 3.68
mgh136 1.62 1.64 1.63
mgh152 7.37 11.2 11.17
mgh166 6.17 6.60 6.60

The forecasting capacity of the active phase is tested by using Period 1 data to
predict BP values (systolic BP, diastolic BP and MAP) in Period 3 for 3 cardiac cycles
using neural networks trained in the previous section. Further, the mature twin model
from warm-up phase is calibrated to closely match the values thus obtained. The
results obtained are shown in Table 6.11. The values obtained show that the proposed
system has the capacity to forecast cardiac state of a patient in the near future.

6.8 Conclusions

The truly active model presented in this part demonstrates the fact that continuous
monitoring of patients through active digital twins is possible. Systems can be built
to continuously update any numerical models for patient monitoring using a similar
workflow like that of the proposed one. Capturing of haemodynamic parameters
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Table 6.11 BP values forecasted and that obtained by calibrating digital twin using
the forecasted values, compared against actual measured BP values from Period 3.

Patient Systolic Diastolic MAP
Forecasted Actual DT Forecasted Actual DT Forecasted Actual DT

mgh076 172 179 175 75 73 76 105 96 101
mgh086 90 100 93 56 56 62 71 74 73
mgh136 102 103 98 72 72 69 81 85 77
mgh152 145 135 144 59 60 67 90 88 95
mgh166 180 188 187 101 103 92 136 130 124

through replication of blood pressure waveforms using digital twins can allow for a
more detailed analysis of the patient’s cardiovascular state and personalised care can be
planned for faster recovery and prevention of damages to vital organs. The forecasting
capacity of digital twins also demonstrates the potential to allow early intervention
and medical preparedness in case the patient’s cardiovascular state is predicted to
deteriorate rapidly.

With further advancements to the proposed system, such as the introduction of
multimodal analysis, active digital twins can successfully monitor, adapt and forecast to
prevent deterioration of any cardiovascular state and promote faster recovery through
personalised care.

6.9 Summary

In this chapter, the concept of active digital twin is explored in two parts, first an
enabler model using inverse analysis and second a truly active model for continuous
monitoring. In Part I :

• The enabler model uses inverse analysis carried out using deep learning algorithms
trained on a virtual patient database. The virtual patient database used in
this chapter is developed using realistic arterial networks developed based on
anthropometric and haemodynamic parameters observed or derived by various
population studies to represent a reliable human cohort. The database totally
consists of 8659 virtual patients, with 4137 healthy (non-AAA) cases and 4522
AAA cases.
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• The enabler model utilises blood pressure waveform measurements from three
peripheral arteries to calculate upstream blood pressure waveforms inversely,
such as those observed in the aorta, using deep learning.

• This model is applied in the detection of Abdominal Aortic Aneurysm (AAA)
and classification of its severity, using an additional convolutional neural network.
During testing, it detected problems such as AAA with an accuracy as high as
99.91% and classified its severity with acceptable accuracy of 97.79%.

In part II:

• The truly active model utilises a deep learning powered method to replicate and
forecast the cardiovascular state of a patient.

• This model comprises of a warm-up phase and an active phase, the former phase is
required at the beginning of monitoring to obtain an initial estimate of the control
parameters of the haemodynamic model that help replicate the cardiovascular
state of the patient. The latter phase is used to continuously update the control
parameters at the end of every 10-minute period as well as to match the patient’s
cardiovascular state forecasted after 10 minutes. The forecasting is carried out
using a neural network.

• The model is tested on waveform data of five sepsis patients from the MGH/MF
database for three 10-minute periods. The cardiovascular state was successfully
continuously replicated and forecasted with parameters such as blood pressures
and cardiac output within an acceptable difference from the measured values.



Chapter 7

Conclusions and future research

In this chapter, conclusions for different forms of digital twins proposed in this thesis
are described along with potential future research for each of the applications. An
effective route to establish each of these digital twin forms in the healthcare system
and also a description of a possible future where these twins are already a part of
regular medical care is provided to highlight the importance of digital twins.

7.1 Passive digital twins

In the passive digital twin chapter (Chapter 4), by proposing and testing the workflow
for automatic calculation of fractional flow reserve, it is shown that using passive data,
such as scans and other medical images along with static patient details, vascular
haemodynamics in the coronary system can be modelled and assessed automatically.
With acceptable results from retrospective data, this system now needs to be tested in
clinical environments in the form of clinical trials. There also exists an opportunity
to enhance diagnosis capabilities using a data-driven deep learning approach for flow
calculations, just as the work shown in [83]. A similar supervised deep learning based
approach is also possible with image segmentation of vessels. Such ML based systems
will reduce computational time to seconds.

Similar to the FFR application, vascular imaging and modelling of cerebral or
peripheral arteries can allow for offline diagnosis and prognosis of vascular diseases
such as aneurysms and stenoses, in different parts of the body. Furthermore, recent
studies have shown that vascular geometry can be used as a biomarker for identifying
not only diseases pertaining to the cardiovascular system but also to others such as
cancer [205]. Upon the development of various other automatic systems to analyse the
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functioning of other cardiovascular segments (such as the ventricles and atria), using
scans, a comprehensive passive digital twin system can be developed in the future that
uses a single scan of any given patient to automatically analyse all possible problems
all at once. This would lead to a simplified diagnostic system and allow for an early
medical intervention especially for cases where compounded problems can be observed.

Currently, the proposed FFR system requires CT scans that in turn require imaging
hardware that cost in the range of hundreds of thousands of pounds. With advancements
in imaging systems, cheap and reliable handheld imaging tools, such as mobile-app
based ultrasound, are emerging. By adapting passive digital twins to work with data
from these kinds of imaging tools could allow for a wider reach of care, especially in
poorer countries. If a futuristic scenario is to be imagined, where passive digital twins
are being used widely within healthcare then the following example would describe
how these twins would help save more lives. A patient in their late 30 arrives at a
healthcare facility with light-headedness, fatigue and arrhythmia. These symptoms did
not occur suddenly, in fact, they were negligible in the beginning but deteriorated over
a long period of time. A clinician suspects that the patient might be suffering from
cardiomyopathy. Based on suspicion, the clinician uses a handheld imaging device and
detects cardiomyopathy. Then the images are uploaded to the passive digital twin
system where the system not only confirms that the patient has cardiomyopathy but
also detects a lesion in the coronary arteries where the FFR is less than 0.8. With such
information, clinician’s can plan for better care by taking precautionary measures to
avoid cardiac arrest. The further development of passive digital twins is expected to
handle situations like these.

7.2 Semi-active digital twins

The semi-active digital twin system proposed in Chapter 5 to detect carotid stenosis
and its severity from a face video demonstrates the capacity of non-invasive simple tools
to detect life-threatening conditions. Basic mobile phone cameras can be used to detect
carotid stenosis and prevent strokes. Further, the semi-active digital twin proposed in
this system sets a basic methodology to be followed for generating semi-active digital
twins that could process active data, such as videos, in an offline manner and compare
it with results from numerical systems to diagnose medical conditions in a patient.

The proposed system relies on previous generation cameras and traditional machine
learning for analysing videos for head vibration. However, with recent advancements
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in mobile phone camera technology such as multi-camera and LiDAR models, facial
vibrations can be detected with a higher accuracy. Further, by incorporating deep
learning methods, this system could detect carotid stenosis in seconds and can be
deployed on mobile platforms as applications. This kind of system is also possible
for handling 4D flow MRI scans where a time-based representation of 3D volumes is
recorded. In future, with advancements in the proposed system, when a face recording
of a patient is analysed using semi-active digital twins it would not only check for
carotid stenosis but also for cardiac conditions such as arrhythmia and hypertension.

7.3 Active digital twins

The proposed system for active digital twins in Chapter 6 provides proof that continuous
monitoring of patients’ cardiovascular state is possible. It also provides confidence
in the forecasting of patients’ cardiovascular state, which could help warn clinicians
of an impending deterioration of patients’ condition. However, there are limitations
in the presented work. Ideally, the proposed system should use inverse analysis to
calculate inlet flow conditions. For this to happen, the neural networks used in the
inverse model must first be bolstered with clinical data, where all three input waveforms
(brachial, femoral and carotid) and cardiac outflow are available. Only then the inverse
model can be integrated with the active digital twin system. Further, the system
proposed is unimodal in nature, in other words only the best-matched waveform is
used to determine the cardiovascular state of a patient, which may not be correct
in every situation as a similar waveform can be generated by other combinations of
cardiovascular parameters. Thus this system must be enhanced to become a multimodal
system for better cardiovascular monitoring.

In the future, when this kind of a system in combination with a non-invasive
BP monitoring system is used in general settings, such as in a GP surgery, these
systems could not only provide the overall cardiovascular condition of the patient
but also pick up signs of sepsis as well as other cardiovascular conditions such as
aneurysms. Additionally, if used on the patient for a long period (several hours), the
rate of deterioration of a condition can be predicted early to help clinicians prioritise
treatment.
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7.4 Final remarks

Each of the three forms of digital twin proposed in this thesis, passive, active and semi-
active digital twins, can replicate the functioning of the cardiovascular system using
different forms of medical data. The three different applications proposed, one each
for the three forms of digital twins, are all tested with in vivo data, thereby providing
proof that these systems can be applied in clinical environments after further clinical
trials. With further research, these platforms can be expanded to detect multiple
cardiovascular conditions and diseases, and could potentially become one-stop solution
for advanced and automatic diagnosis, prognosis and monitoring of the cardiovascular
system.



Appendix A

Neural network architectures used
for prioritising pneumonia patients

A1: MLP models

The neural network architecture of the MLP models used in Tier 1 and the parameters
employed during training are presented in this section. Table A1.1 describes the
training parameters used along with the activation functions employed. Figure A1.1
are graphical representations of the two models used in the first tier.

Table A1.1 Neural network parameters used in architecture and training of MLP models

Activation Functions:
Hidden layers: ReLU
Output layer: Sigmoid
Number of epochs: 100
Batch size: 150
Cost function: Binary cross-entropy
Optimizer: Adam
Regularisers used:
L1 & L2

In Figure A1.1, L1 (λ = 0.0003) is an activity regulariser in the first hidden layer
of MLP model used for predicting probability of death. L2 with λ = 0.0038 and
λ = 0.0018 respectively are weight regularisation and activity regularisation, in the first
hidden layer of MLP model to predict probability of requiring mechanical ventilation
(See supplementary material). First and second dropout layers of MLP model for
predicting probability of death has 50% and 40% dropouts respectively. Similarly, both
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Table A2.2 Neural network parameters used in architecture and training of RNN based
models.

Activation functions:
Dense hidden layers: ReLU
Output layer: Sigmoid
LSTM: Tanh & Sigmoid (Recurrent activation)
(Default for CuDNNLSTM)
Number of epochs: 100
Batch size: 10
Cost function: Binary cross-entropy
Optimizer: Adam
Regularizers: L1 (λ = 0.02)(All LSTM layers)









Appendix B

Workflow proposed and vascular
dimensions observed for Fractional
Flow Reserve application in
Chapter 4

B1 : Workflow summary

The workflow proposed in the present work to automate cFFR calculation from CT
scans is summarised in Table B1.

B2 Vessel geometry of coronary arteries with steno-
sis
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Table B1 Workflow proposed in the present work to automate cFFR calculation from
CT scans.

• Segmentation
▲ Pre-processing (to identify regions having area similar to the coronary

arteries)
→ Denoising (using Non-local means algorithm)
→ Frangi filtering
→ Binary thresholding
→ Contour detection and removal

▲ Clustering
→Aorta detection (using Hough circle transform)
→Density based clustering of white voxels (using DBSCAN algorithm)

▲ Identification of cluster.

• Estimation of lumen size
→ Skeletonisation (to obtain the centerline)
→ Surface mesh generation (using marching cube algorithm)
→ Splitting of centreline into individual vessels
→ Radii calculation along the centreline
→ 1D mesh generation (using centreline and radii along it)

• Computational Fluid Dynamics (to calculate cFFR using a 1D-0D blood
flow model)

→ Import 1D mesh
→Set boundary and initial conditions:

⋄ Input inlet boundary conditions ( as shown in Figure 4.8, calculated using
closed-loop model)

⋄ Calculate total resistance
⋄ As per Murray’s power law-

→Distribute resistance throughout each branch
→Distribute coronary vascular bed compliance

⋄ Calculate parameters for lumped-parameter models at each terminal
vessel

⋄ Set initial boundary conditions
→Solve full 1D-0D system using enhanced trapezoidal rule method
→Calculate cFFR using blood pressure values obtained.
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Table B2 Values obtained from the proposed workflow for left coronary geometry
is compared against values obtained from manual segmentation carried out using
VMTK(Vascular Modelling toolkit).

Length (cm)
LCA LAD LCX

Automatic Manual Error Automatic Manual Error Automatic Manual Error
Patient 1 1.46 0.91 0.55 11.12 5.10 6.02 3.88 2.06 1.82
Patient 2 0.89 0.90 0.01 7.23 9.53 2.30 4.03 1.31 2.72
Patient 3 1.51 0.63 0.88 9.34 9.05 0.29 7.08 6.96 0.12
Patient 4 1.12 1.04 0.08 4.93 13.30 8.37 7.15 4.70 2.45
Patient 5 1.01 0.34 0.67 4.00 4.28 0.28 6.50 4.67 1.83
Patient 7 0.21 0.63 0.42 8.58 6.11 2.47 10.69 3.42 7.27
Patient 8 0.88 2.12 1.24 5.33 7.56 2.23 2.57 4.89 2.32
Patient 9 0.51 0.58 0.07 11.17 9.39 1.78 12.11 3.43 8.68
Patient 10 1.35 1.98 0.63 10.42 8.47 1.95 10.22 3.76 6.46
Patient 11 0.81 0.96 0.15 10.70 7.608 3.09 12.17 9.61 2.56
Patient 12 1.41 0.67 0.74 9.78 1.01 8.77 6.71 6.24 0.47
Patient 13 0.75 0.41 0.34 5.56 5.61 0.05 7.16 2.07 5.09
Patient 15 1.20 0.20 1.00 8.96 4.18 4.78 5.60 4.27 1.33
Patient 16 0.97 0.40 0.57 13.21 6.58 6.63 11.63 6.23 5.4
Patient 17 0.67 0.46 0.21 3.60 8.58 4.98 6.37 2.21 4.16
Patient 18 0.51 1.01 0.5 11.61 7.53 4.08 9.74 6.34 3.40
Patient 19 2.42 1.49 0.93 8.31 6.07 2.24 2.35 1.34 1.01
Patient 20 0.54 0.33 0.21 8.76 4.28 4.48 8.98 4.03 4.95
Patient 21 0.37 0.32 0.05 10.16 5.09 5.07 6.24 5.77 0.47
Patient 22 1.53 0.43 1.10 12.28 8.97 3.31 5.94 6.83 0.89
Patient 25 0.91 0.26 0.65 7.94 7.70 0.24 10.67 5.62 5.05
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Table B3 Initial vessel radius obtained from the proposed workflow for left coronary
geometry is compared against values obtained from manual segmentation carried out
using VMTK(Vascular Modelling toolkit).

R0 (mm)
LCA LAD LCX

Automatic Manual Error Automatic Manual Error Automatic Manual Error
Patient 1 1.51 1.46 0.05 1.21 1.01 0.2 1.03 1.19 0.16
Patient 2 1.80 1.73 0.07 1.31 1.20 0.11 1.07 1.41 0.34
Patient 3 1.24 1.38 0.14 1.10 1.41 0.31 1.30 1.42 0.12
Patient 4 2.31 1.97 0.34 1.79 2.30 0.51 1.89 2.13 0.24
Patient 5 1.23 1.04 0.19 0.77 1.08 0.31 0.75 1.22 0.47
Patient 7 1.40 1.34 0.06 1.30 1.39 0.09 1.44 1.34 0.10
Patient 8 1.96 1.59 0.37 1.46 1.83 0.37 1.63 1.57 0.06
Patient 9 1.96 2.01 0.05 1.60 1.45 0.15 1.65 1.36 0.29
Patient 10 1.60 3.22 1.62 1.14 1.69 0.55 0.82 1.98 1.16
Patient 11 1.88 2.17 0.29 1.61 1.50 0.11 1.38 1.43 0.05
Patient 12 1.87 1.51 0.36 1.69 1.32 0.37 1.71 1.26 0.45
Patient 13 1.64 1.61 0.03 1.65 0.94 0.71 1.64 0.93 0.71
Patient 15 1.71 1.99 0.28 1.42 1.53 0.11 1.13 1.38 0.25
Patient 16 1.39 1.09 0.30 1.20 1.43 0.23 1.18 0.91 0.27
Patient 17 1.49 1.38 0.11 1.70 1.47 0.23 1.88 1.40 0.48
Patient 18 1.00 1.18 0.18 1.80 1.24 0.56 1.71 1.36 0.35
Patient 19 1.71 1.68 0.03 1.67 1.32 0.35 1.12 1.02 0.10
Patient 20 1.09 1.33 0.24 0.79 1.02 0.23 1.06 1.22 0.16
Patient 21 1.20 1.59 0.39 0.95 1.26 0.31 1.29 1.28 0.01
Patient 22 2.10 1.55 0.55 1.44 1.88 0.44 1.60 1.56 0.04
Patient 25 1.51 1.46 0.05 1.46 1.03 0.43 1.13 0.95 0.18
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Table B4 Final vessel radius obtained from the proposed workflow for left coronary
geometry is compared against values obtained from manual segmentation carried out
using VMTK(Vascular Modelling toolkit).

Rf (mm)
LCA LAD LCX

Automatic Manual Error Automatic Manual Error Automatic Manual Error
Patient 1 1.61 1.21 0.40 0.54 0.99 0.45 0.96 1.02 0.06
Patient 2 1.60 1.37 0.23 0.63 1.00 0.37 0.60 0.98 0.38
Patient 3 1.33 1.42 0.09 0.83 0.76 0.07 0.85 1.15 0.30
Patient 4 2.68 2.25 0.43 1.36 0.98 0.38 1.15 1.03 0.12
Patient 5 0.94 1.64 0.70 0.53 0.96 0.43 0.34 0.77 0.43
Patient 7 1.33 1.53 0.20 0.62 0.99 0.37 0.53 1.24 0.71
Patient 8 1.63 1.80 0.17 0.83 0.96 0.13 0.62 1.32 0.70
Patient 9 2.07 2.01 0.06 0.51 0.55 0.04 0.97 1.10 0.13
Patient 10 1.33 1.69 0.36 0.34 0.67 0.33 0.26 0.87 0.61
Patient 11 1.88 1.26 0.62 0.27 0.71 0.44 0.46 0.85 0.39
Patient 12 0.90 1.46 0.56 0.60 1.24 0.64 0.84 0.70 0.14
Patient 13 1.51 1.49 0.02 1.25 0.95 0.3 0.36 0.67 0.31
Patient 15 1.72 1.70 0.02 0.85 0.83 0.02 0.72 0.98 0.26
Patient 16 1.41 1.11 0.30 0.50 0.85 0.35 0.88 0.91 0.03
Patient 17 1.61 1.59 0.02 0.48 0.90 0.42 0.67 1.20 0.53
Patient 18 1.17 1.45 0.28 0.44 0.78 0.34 0.84 0.88 0.04
Patient 19 1.80 1.59 0.21 0.46 0.97 0.51 1.02 0.89 0.13
Patient 20 1.04 1.30 0.26 0.45 0.69 0.24 0.24 0.61 0.37
Patient 21 1.38 1.05 0.33 0.47 0.83 0.36 0.92 0.85 0.07
Patient 22 2.46 1.72 0.74 1.10 1.07 0.03 0.78 2.59 1.81
Patient 25 1.20 1.40 0.20 0.87 0.83 0.04 0.41 1.00 0.59
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Table B5 Minimum vessel radius at stenosis location obtained from the proposed
workflow for left coronary geometry is compared against values obtained from manual
segmentation carried out using VMTK(Vascular Modelling toolkit).

Rs (mm)
LCA

Automatic Manual Error
Patient1 0.42 0.91 0.49
Patient2 0.72 0.69 0.03
Patient3 0.63 0.56 0.07
Patient4 0.91 0.63 0.28
Patient5 0.52 0.64 0.12
Patient 7 0.64 0.61 0.03
Patient 8 1.57 0.64 0.93
Patient9 0.43 0.65 0.22
Patient10 0.62 0.69 0.07
Patient 11 0.36 0.69 0.33
Patient 12 0.57 0.53 0.04
Patient 13 0.76 0.55 0.21
Patient 15 1.00 1.15 0.15
Patient 16 0.32 0.61 0.29
Patient 17 0.48 0.61 0.13
Patient 18 1.15 0.61 0.54
Patient 19 0.96 0.87 0.09
Patient 20 0.31 0.58 0.27
Patient 21 0.71 0.56 0.15
Patient 22 0.59 0.94 0.35
Patient 25 0.65 0.41 0.24

Table B6 Values obtained from the proposed workflow for left coronary geometry
is compared against values obtained from manual segmentation carried out using
VMTK(Vascular Modelling toolkit).

Length (cm)
RCA

Automatic Manual Diff
Patient6 6.11 9.97 3.86

Patient 14 11.44 10.30 1.14
Patient 23 11.28 14.09 2.81
Patient 24 11.09 13.99 2.90
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Table B7 Initial vessel radius obtained from the proposed workflow for right coronary
geometry is compared against values obtained from manual segmentation carried out
using VMTK(Vascular Modelling toolkit).

R0 (mm)
RCA

Automatic Manual Error
Patient 6 0.92 1.72 0.80
Patient 14 1.63 1.89 0.26
Patient 23 1.75 1.26 0.49
Patient 24 1.78 1.39 0.39

Table B8 Final vessel radius obtained from the proposed workflow for right coronary
geometry is compared against values obtained from manual segmentation carried out
using VMTK(Vascular Modelling toolkit).

Rf (mm)
RCA

Automatic Manual Error
Patient 6 0.54 0.96 0.42
Patient 14 0.43 0.86 0.43
Patient 23 1.57 1.18 0.39
Patient 24 1.31 0.69 0.62

Table B9 Minimum vessel radius at stenosis location obtained from the proposed
workflow for right coronary geometry is compared against values obtained from manual
segmentation carried out using VMTK(Vascular Modelling toolkit).

Rs (mm)
RCA

Automatic Manual Error
Patient 6 0.41 0.53 0.12
Patient 14 0.47 0.51 0.04
Patient 23 1.06 0.92 0.14
Patient 24 1.45 0.84 0.61
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