11 research outputs found

    Unconditional decentralized structure for the fault diagnosis of discrete event systems

    Get PDF
    International audienceThis paper proposes an unconditional decentralized structure to realize the fault diagnosis of Discrete Event Systems (DES), specially manufacturing systems with discrete sensors and actuators. This structure is composed on the use of a set of local diagnosers, each one of them is responsible of a specific part of the plant. These local diagnosers are based on a modular modelling of the plant in order to reduce the state explosion. Each local diagnoser uses event-based, state based and timed models to take a decision about fault's occurrences. These models are obtained using the information provided by the plant, the controller and the actuators reactivity. All local diagnosis decisions are then merged by a Boolean operator in order to obtain one global diagnosis decision. Finally, the diagnosers are polynomial-time in the cardinality of the state space of the system. This approach is illustrated using an example of manufacturing system

    An FDI Method for Manufacturing Systems Based on an Identified Model

    Full text link

    An FDI Method for Manufacturing Systems Based on an Identified Model

    Full text link

    Fault-tolerant supervisory control of discrete-event systems

    Get PDF
    In this dissertation, I introduce my study on fault-tolerant supervisory control of discrete event systems. Given a plant, possessing both faulty and nonfaulty behavior, and a submodel for just the nonfaulty part, the goal of fault-tolerant supervisory control is to enforce a certain specifcation for the nonfaulty plant and another (perhaps more liberal) specifcation for the overall plant, and further to ensure that the plant recovers from any fault within a bounded delay so that following the recovery the system state is equivalent to a nonfaulty state (as if no fault ever happened). My research includes the formulation of the notations and the problem, existence conditions, synthesizing algorithms, and applications

    RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS AND THEIR DIAGNOSIS

    Get PDF
    Failure diagnosis in large and complex systems is a critical task. In the realm of discrete event systems, Sampath et al. proposed a language based failure diagnosis approach. They introduced the diagnosability for discrete event systems and gave a method for testing the diagnosability by first constructing a diagnoser for the system. The complexity of this method of testing diagnosability is exponential in the number of states of the system and doubly exponential in the number of failure types. In this thesis, we give an algorithm for testing diagnosability that does not construct a diagnoser for the system, and its complexity is of 4th order in the number of states of the system and linear in the number of the failure types. In this dissertation we also study diagnosis of discrete event systems (DESs) modeled in the rule-based modeling formalism introduced in [12] to model failure-prone systems. The results have been represented in [43]. An attractive feature of rule-based model is it\u27s compactness (size is polynomial in number of signals). A motivation for the work presented is to develop failure diagnosis techniques that are able to exploit this compactness. In this regard, we develop symbolic techniques for testing diagnosability and computing a diagnoser. Diagnosability test is shown to be an instance of 1st order temporal logic model-checking. An on-line algorithm for diagnosersynthesis is obtained by using predicates and predicate transformers. We demonstrate our approach by applying it to modeling and diagnosis of a part of the assembly-line. When the system is found to be not diagnosable, we use sensor refinement and sensor augmentation to make the system diagnosable. In this dissertation, a controller is also extracted from the maximally permissive supervisor for the purpose of implementing the control by selecting, when possible, only one controllable event from among the ones allowed by the supervisor for the assembly line in automaton models

    SUPERVISORY CONTROL AND FAILURE DIAGNOSIS OF DISCRETE EVENT SYSTEMS: A TEMPORAL LOGIC APPROACH

    Get PDF
    Discrete event systems (DESs) are systems which involve quantities that take a discrete set of values, called states, and which evolve according to the occurrence of certain discrete qualitative changes, called events. Examples of DESs include many man-made systems such as computer and communication networks, robotics and manufacturing systems, computer programs, and automated trac systems. Supervisory control and failure diagnosis are two important problems in the study of DESs. This dissertation presents a temporal logic approach to the control and failure diagnosis of DESs. For the control of DESs, full branching time temporal logic-CTL* is used to express control specifications. Control problem of DES in the temporal logic setting is formulated; and the controllability of DES is defined. By encoding the system with a CTL formula, the control problem of CTL* is reduced to the decision problem of CTL*. It is further shown that the control problem of CTL* (resp., CTL{computation tree logic) is complete for deterministic double (resp., single) exponential time. A sound and complete supervisor synthesis algorithm for the control of CTL* is provided. Special cases of the control of computation tree logic (CTL) and linear-time temporal logic (LTL) are also studied; and for which algorithms of better complexity are provided. For the failure diagnosis of DESs, LTL is used to express fault specifications. Failure diagnosis problem of DES in the temporal logic setting is formulated; and the diagnosability of DES is defined. The problem of testing the diagnosability is reduced to that of model checking. An algorithm for the test of diagnosability and the synthesis of a diagnoser is obtained. The algorithm has a polynomial complexity in the number of system states and the number of fault specifications. For the diagnosis of repeated failures in DESs, different notions of repeated failure diagnosability, K-diagnosability, [1,K]-diagnosability, and [1,1]-diagnosability, are introduced. Polynomial algorithms for checking these various notions of repeated failure diagnosability are given, and a procedure of polynomial complexity for the on-line diagnosis of repeated failures is also presented

    Multi-resolution fault diagnosis in discrete-event systems

    Get PDF
    In this thesis, a framework for multi-resolution fault diagnosis in discrete-event systems (DES) is introduced. Here a sequence of plant models, with increasing resolution, are used in fault diagnosis and the range of possible diagnosis is narrowed down step by step, until the failure node is isolated. In this way, the original problem of fault diagnosis is replaced by a sequence of smaller problems. The plant models used at each step of diagnosis are abstractions of the original plant model. We propose to use model reduction through the solutions of the Relational Coarsest Partition problem to obtain these abstractions. For each diagnosis step, minimal sensor sets are chosen to have a coarser output map, and hence, to improve the efficiency of model reduction. In this thesis, a polynomial algorithm is proposed that verifies failure diagnosability by examining the distinguishability of two plant (normal/faulty) conditions at a time. A procedure is presented that finds minimal sensor sets, referred to as minimal distinguishes for distinguishability of one condition from another. A polynomial procedure is introduced that combines minimal distinguishers to obtain a minimal sensor set for fault diagnosis. The proposed method reduces the computational complexity of sensor selection. A benefit of using minimal distinguishers is that their computation maybe speeded up using expert knowledge. The proposed method for sensor selection is particularly suitable for multi-resolution diagnosis since it permits some of the results of computations, performed for sensor selection at the lowest (finest) level of multi-resolution diagnosis to be reduced at higher levels. This feature is particularly useful in reducing the computations necessary for online reconfiguration of the multi-resolution diagnosis system. An important procedure used in sensor selection is testing diagnosability. In this thesis, a new procedure for testing diagnosability in timed DES is introduced based on the relatively timing of plant output sequence. It is shown through example that the proposed test maybe executed with significantly fewer computations compared to tests developed for untimed models and adapted for timed systems. Furthermore, two new sets of sufficient conditions are provided under which diagnoser design and diagnosability tests based on relative timing of output sequence can be performed efficientl

    Verification and Anomaly Detection for Event-Based Control of Manufacturing Systems.

    Full text link
    Many important systems can be described as discrete event systems, including a manufacturing cell and patient flow in a clinic. Faults often occur in these systems and addressing these faults is important to ensure proper functioning. There are two main ways to address faults. Faults can be prevented from ever occurring, or they can be detected at the time at which they occur. This work develops methods to address faults in event-based systems for which there is no formal, pre-existing model. A primary application is manufacturing systems, where reducing downtime is especially important and pre-existing formal models are not commonly available. There are three main contributions. The first contribution is formalizing input order robustness - inputs occurring in different orders and yielding the same final state and set of outputs - and creating a method for its verification for logic controllers and networks of controllers. Theory is developed for a class of networks of controllers to be verified modularly, reducing the computational complexity. Input order robustness guarantees determinism of the closed-loop system. The second contribution is an anomaly detection solution for event-based systems without a pre-existing formal model. This solution involves model generation, performance assessment, and anomaly detection itself. A new variation of Petri nets was created to model the systems in this solution that incorporates resources in a less restrictive way. The solution detects anomalies and provides information about when the anomaly was first observed to help with debugging. The third contribution is the identification and resolution of five inconsistencies found between typical academic assumptions and industry practice when applying the anomaly detection solution to an industrial system. Resolutions to the inconsistencies included working with industry collaborators to change logic, and developing new algorithms to incorporate into the anomaly detection solution. Through these resolutions, the anomaly detection solution was improved to make it easier to apply to industrial systems. These three contributions for handling faults will help reduce down-time in manufacturing systems, and hence increase productivity and decrease costs.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78897/1/lzallen_1.pd

    Diagnostic de systèmes complexes par comparaison de listes d’alarmes : application aux systèmes de contrôle du LHC

    Get PDF
    In the context of the CERN Large Hadron Collider (LHC), a large number of control systems have been built based on industrial control and SCADA solutions. Beyond the complexity of these systems, a large number of sensors and actuators are controlled which make the monitoring and diagnostic of these equipment a continuous and real challenge for human operators. Even with the existing SCADA monitoring tools, critical situations prompt alarms avalanches in the supervision that makes diagnostic more difficult. This thesis proposes a decision support methodology based on the use of historical data. Past faults signatures represented by alarm lists are compared with the alarm list of the fault to diagnose using pattern matching methods. Two approaches are considered. In the first one, the order of appearance is not taken into account, the alarm lists are then represented by a binary vector and compared to each other thanks to an original weighted distance. Every alarm is weighted according to its ability to represent correctly every past faults. The second approach takes into account the alarms order and uses a symbolic sequence to represent the faults. The comparison between the sequences is then made by an adapted version of the Needleman and Wunsch algorithm widely used in Bio-Informatic. The two methods are tested on artificial data and on simulated data extracted from a very realistic simulator of one of the CERN system. Both methods show good results.Au CERN (Organisation européenne pour la recherche nucléaire), le contrôle et la supervision du plus grand accélérateur du monde, le LHC (Large Hadron Collider), sont basés sur des solutions industrielles (SCADA). Le LHC est composé de sous-systèmes disposant d’un grand nombre de capteurs et d’actionneurs qui rendent la surveillance de ces équipements un véritable défi pour les opérateurs. Même avec les solutions SCADA actuelles, l’occurrence d’un défaut déclenche de véritables avalanches d’alarmes, rendant le diagnostic de ces systèmes très difficile. Cette thèse propose une méthodologie d’aide au diagnostic à partir de données historiques du système. Les signatures des défauts déjà rencontrés et représentés par les listes d’alarmes qu’ils ont déclenchés sont comparées à la liste d’alarmes du défaut à diagnostiquer. Deux approches sont considérées. Dans la première, l’ordre d’apparition des alarmes n’est pas pris en compte et les listes d’alarmes sont représentées par un vecteur binaire. La comparaison se fait à l’aide d’une distance pondérée. Le poids de chaque alarme est évalué en fonction de son aptitude à caractériser chaque défaut. La seconde approche prend en compte l’ordre d’apparition des alarmes, les listes d’alarmes sont alors représentées sous forme de séquences symboliques. La comparaison entre ces deux séquences se fait à l’aide d’un algorithme dérivé de l’algorithme de Needleman et Wunsch utilisé dans le domaine de la Bio-Informatique. Les deux approches sont testées sur des données artificielles ainsi que sur des données extraites d’un simulateur très réaliste d’un des systèmes du LHC et montrent de bons résultats
    corecore