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1. Introduction 

Event-driven controlled systems based on the Programmable Logic Controller (PLC) are 
widely used in many industrial processes. The number of such a control system is said to 
occupy more than eighty percent of the entire existing control systems. Nowadays, the 
demands for production facilities are shifting from the high speed and highly efficiency to 
the safety and high reliability. In order to meet these requirements, several strategies for 
fault diagnosis of systems and the design of recovery procedure have been proposed. 
In the case of considering the PLC-based control systems, since they have discrete and 
event-driven characteristics inherently, system models based on discrete-event-system 
description give more efficient diagnostic algorithm than those based on continuous-time 
systems (for surveys cf. (A. Darwiche & G. Provan (1996); D. N. Pandalai& L. E. Holloway 
(2000); M. Sampath et al. (1995); S.H.Zad et al. (1999))). This aspect will be more emphasized 
when the number of components would be large. Based on these considerations, Lunze 
proposed a centralized fault diagnosis framework based on the system model with Timed 
Markov Model (TMM) (J.Lunze (2000)). This method especially becomes useful when 
numerous number of input and output data are collected through daily operation since the 
TMM is based on a stochastic expression of time interval between successive events. This 
approach also has some robustness against unevenness underlying in the ordinary 
production facilities. However, this kind of centralized diagnosis strategies will cause an 
explosion of the computational burden when they are applied to the large scale systems. In 
this case, the decentralized approach is highly recommended wherein the diagnosis is 
performed by each diagnose together with the communication with other diagnosers 
(O.Contant (2006); S.Debouk (2000); R.Su et al. (2002)). These approaches, however, were 
based on the deterministic model. 
Based on these backgrounds, the authors (S.Inagaki et al. (2007)) proposed a decentralized 

stochastic fault diagnosis strategy based on a combination of TMM and Bayesian Network 

(BN). The BN represents the causal relationship between the fault and observation in 

subsystems. Since the decentralized diagnosis architecture distributes the computational 

burden for the diagnosis to the subsystems, a large scale diagnosis problems in real-world 

application can be solved. In the decentralized approach, the computational burden and the 

diagnosis performance strongly depend on the complexity of the graph structure of BN. 

Source: Programmable Logic Controller, Book edited by: Luiz Affonso Guedes,  
 ISBN 978-953-7619-63-3, pp. 170, January 2010, INTECH, Croatia, downloaded from SCIYO.COM
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This chapter also addresses a design method of the graph structure of the BN in 

decentralized stochastic fault diagnosis of (S.Inagaki et al. (2007)) based on the control logic 

implemented on the system. For example, an actuator speed reduction affects on the (timed) 

event sequences observed by the sensors allocated in the subsystems. The effects of this type 

of fault on other subsystems depend on the control logic wherein the observed event signal 

is used as an firing condition of the actuators in other subsystems. Thus, the coupling in the 

control logic over subsystems must be considered in the design of the graph structure of BN. 

In order to formally realize this idea, the Sensor Actuator Dependency (SAD) graph and the 

Dependency Tree (DT) are constructed from the control logic in our strategy. The resulting 

DT represents the hierarchy of the causal relationship between the components in the 

system. Therefore, by specifying the level of hierarchy appropriately, the graph structure of 

BN with different level of complexities can be designed. 

The remaining part of this chapter is organized as follows: In section 2, we define the 

problem statement of decentralized fault diagnosis. In section 3, we overview the entire 

strategy of the fault diagnosis based on BN with a simple example. In section 4, local 

diagnosis based on TMM is introduced and, in addition, the calculation results of the local 

diagnosers are combined based on BN. Section 5 shows the procedure of the proposed 

decentralized diagnosis. In section 6, estimation strategy of probability distribution 

functions (PDF) which is used in the local diagnosis is introduced based on maximum 

entropy principle (M.Saito et al (2006)). In section 7, the usefulness of the stochastic 

decentralized fault diagnosis is verified through some experimental results of an automatic 

transfer line which is widely used in the industrial world. Section 8 proposes a design 

method of the graph structure of BN, and, in section 9, the decentralized fault diagnosis is 

applied to the automatic transfer line, while the system scale is larger than that in section 7, 

with trying some BN structures which are constructed based on the proposed design 

method. Section 10 concludes this chapter. 

2. Problem statement 

First, we assume that the controlled system can be divided into n subsystems in 
consideration of the architecture of the hardware and/or software. Furthermore, the output 
(event) sequence, which corresponds to the series of the ON/OFF of sensors and actuators, 

can be observed in each subsystem. Then, the event sequence for the k-th subsystem  (th) 

is defined as follows: 

 (1) 

where  is the H-th event and  is the occurrence time of the H-th event in the k-th 

subsystem. In addition, the κ-th fault in the k-th subsystem is represented by , and a 

combination of faults for all subsystems is defined as “r–combination of faults for the entire 

system.” The set of r–combination of faults for the entire system R is defined bellow: 

 
(2) 

This paper deals with the following diagnosis problem: 
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3. Global diagnosis based on Bayesian network 

Bayesian Network (BN) is a probabilistic inference network which expresses qualitative 

causal relations between some random variables by a graph structure together with the 

conditional probability assigned to each arc (E.Castillo et al. (1997)). 

In this section, the proposed global diagnosis method is explained. First, two types of 

random variables are defined. The first one is Rk which takes  (κ ∈ {0, 1, … ,K}) as a 

realization. The second one is the Ek which takes the observed event sequence as a 
realization. In the BN, the causal relationship between these random variables are defined 
using a graph structure wherein each node corresponds to each random variable. For the 
purpose of the fault diagnosis, we restrict the structure of the BN in the bipartite graph. One 
subset consists of the set of Rks, and the other subset consists of the set of Eks (Fig.1). We also 
assume that there are no causal relationship between nodes in the same subset. The 
development of an appropriate graph structure must be made by considering the physical 
and logical interactions between subsystems. The fault diagnosis can be realized by 
calculating the occurrence probability of each fault conditioned by the observed event 
sequence. 
 

 

Fig. 1. Bipartite Bayesian Network for fault diagnosis 

 

 

Fig. 2. Example of Bayesian Network 

Figure 2 shows the example of the BN for fault diagnosis. The occurrence probability of the 
fault in the subsystem 1 can be systematically calculated as follows: First, the joint 
probability distribution (JPD) is uniquely decided based on the graph structure. 

 (3) 

Then, the occurrence probability of the fault in the subsystem 1 is calculated by 

marginalizing the JPD. For example, the fault occurrence probability of the fault  in the 

subsystem 1 is calculated as follows: 

www.intechopen.com



 Programmable Logic Controller 

 

102 

 

(4) 

where Z is normalized term and is represented as (5). 

 
(5) 

In (4), the term  represents the conditional probabilities assigned 

to the corresponding arc. This conditional probability can be calculated using the local 

diagnosis results and the Bayesian estimation (see section 4.3 for detail). Also, the prior 

probabilities (for example P(R1 = ) in (4) are supposed to be given in advance. See section 

7.4 for another example. 

4. Local diagnosis based on TMM 

4.1 Timed Markov model 
For the local diagnosis, the relationship between two successive events observed in the 

corresponding subsystem are represented by means of Timed Markov Model (TMM). The 

TMM is one of the Markov model wherein the state transition probabilities depend on time. 

In other words, state transition probabilities vary according to the time interval between two 

successive events. In the following, representation of the event driven system based on the 

TMM is briefly described (J.Lunze (2000)). 

First of all, the set of fault random variables which are connected to the random variable Ek 

is defined and denoted by . Then, a combination of these realizations is 

defined as “r
k– combination of faults for the k-th subsystem.” Furthermore, the set of these is 

denoted by Rk = {rk = . Roughly speaking, r
k 

consists of the realization of the faults which affect on the measurement of the k-th 

subsystem Ek. For example, in Fig.2, , and . Based on definition of the 

r
k, the following two functions are defined to specify the stochastic characteristics in the 

TMM. 

Definition 1 A probability density function (PDF)  

 
represents a probability density function for the time interval τ k under the situation 

that the fault rk exists. Note that τk is a time interval between two successive events and  in 

the k-th subsystem. 
Definition 2 A probability distribution function  

 represents a probability distribution function that the event  dose not occur within 

τ k after event  has occurred under the situation that the fault  rk  exists.  is represented 

by integrating . 

 
(6) 

www.intechopen.com



Centralized/Decentralized Fault Diagnosis of Event-Driven Systems based on Probabilistic Inference 

 

103 

 
(7) 

where some symbols are defined as follows: 

: H-th event in the k-th subsystem 

: Occurrence time of event  

th : Sampling time index 

τ k : Waiting time from the occurrence of the latest event in the k-th subsystem (τ k = th – ) 

E k : Set of events that occur in the k-th subsystem 

Then, relationship between two successive events observed in the subsystem can be 

described by specifying the probability distribution functions. This function plays an 

essential role in the TMM based modeling and diagnosis. Section 6 shows an effective 

estimation method of the probability distribution functions. 

4.2 Local diagnosis method 
The goal of the local diagnosis is to find the following fault occurrence probability based on 
the observation only of the k-th subsystem: 

 (8) 

Equation (8) represents an occurrence probability of the rk
 conditioned by the observation in 

the k-th subsystem  (th). For the calculation of (8), the recursive algorithm has been 

developed in (J.Lunze (2000)). First, the following two cases must be distinguished: 
Case(a): There is no event at time th 

Case(b): The (H + 1)-th event occurs at time th 

 

 

Fig. 3. Time and events in the cases (a) and (b) 

Fig. 3 shows relations between time and events in the cases (a) and (b). The diagnosis begins 
with no information on the existence of the fault, i.e. the initial probabilities are given by 

 
(9) 

where  denotes the number of realizations in Rk. Next, an auxiliary function  is 

calculated as follows: 
Case(a) : No event is observed at time th 
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(10)

Case(b) : The (H + 1)-th event  occurs at time th 

 
(11)

The fault occurrence probability given by (8) is updated by 

 

(12)

4.3 Calculation of conditional probability in the BN 
In the global diagnosis, the calculation of the conditional probability was the key 
computation (see (4) as an example). The conditional probabilities assigned to each arc 
(appearing in the marginalized JPD) in the BN can be calculated using (8) and Bayes 
theorem as follows: 

 
(13)

where the prior probability  is given in advance. Note that the 

probability P(Ek
 =  (th)) is not required to be calculated in advance because it is canceled 

out in (4). This equation implies that the global diagnosis can be executed by integrating 
results of the local diagnosis. 

5. Diagnosis procedure 

The procedure of the proposed decentralized diagnosis is depicted in Fig.4. First of all, 
observe the event sequence in each subsystem. Second, perform the local diagnosis in each 
subsystem based on the observed event sequence and calculate the conditional probabilities 
in the BN using (13). Then, calculate the fault occurrence probabilities by means of the BN 
(global diagnosis). Finally, select the greatest probability among all fault candidates in each 
subsystem. The diagnosis result for the k-th subsystem is the fault  that satisfies the 

following equation in the case that the fault candidates for the k-th subsystem are 
. 

Diagnosis Result for the k-th subsystem 

 
(14)

6. Estimation of probability density function by maximum entropy principal 

As described in the preceding sections, it is required to estimate all probability distribution 
functions (PDF)  in advance for modeling the system based on TMM, where the 
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Fig. 4. Procedure of the decentralized fault diagnosis 

superscript k representing subsystem k is omitted for simplicity in this section. One of the 

most straightforward way to do it is to collect numerous number of output sequences, and 

generate the histogram of the time interval of all two successive events for various situations 

such as normal or some kind of faulty. In the real application, it is not necessary to collect 

data for all situations in advance. When some new fault occur, then the new observed data 

for the new fault can be simply added to the old database as for the PDF. Thus, the PDF can 

be updated according to the occurrence of the new fault. 

Although, the PDF can be estimated by collecting the observed output sequence, 

when we consider to use it as the system model, we often face the zero frequency problem 

which leads to incorrect result in the system diagnosis based on TMM. In order to overcome 

this problem, the maximum entropy principle (M.Saito et al (2006)) is introduced in this 

section. It enables us to find the PDF , which maximizes the entropy with 

keeping the stochastic characteristics of the collected observed data (i.e. the histogram). The 

remaining part of this section is devoted to describe the estimation procedure for PDF by 

means of the maximum entropy principle. 

First of all, a histogram is created based on observed data. Then, a range of τ,  

is quantized into n equal intervals under the assumption that all unknown data exists in 

 where μ and σ are mean value of the observed data and standard deviation, 

respectively. 

Second, let {τ1,τ2, … ,τn} be the center of each interval, and let 
 be the probabilities corresponding to the 

points {τ1,τ2, … ,τn}. The example of this quantization is illustrated in Fig.5. 
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Fig. 5. Time interval of event transition 

Finally, we solve the following entropy maximization problem: 
Find  which maximizes 

 
(15)

subject to 

 

(16)

where aj(= E[(τ ) j]) is the j-th moment obtained from the observed data. This problem can be 
solved by applying the Lagrange multiplier method, and the solution has a form given by 

 (17)

where λ0 is given by (18) and λ1, . . . ,λm are the Lagrange multipliers corresponding to the m 
constraints. 

 

(18)

The estimated PDFs are applied to the interval . For the outside of the range 

, probabilities are set to be zero and ε in normal and faulty situations, 

respectively. 
Figs.6 and 7 show PDF examples constructed by observed data in a transfer machine (see 
section 7 for details). Then, several moment constraints given by (16) were specified by 
using the histogram. In these examples, 1st and 2nd moments were considered. The 
problem of entropy maximization (15) was solved by using the Lagrange multiplier method. 
Estimated PDF are given by (19) and (20), respectively, where ε is 0.01. Thick solid line in 
Figs.6 and 7 represent the estimated PDF. 
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(19)

 
(20)

 

Fig. 6. Histogram and PDF  

 

Fig. 7. Histogram and PDF  

7. Application to automatic transfer line 

In this section, the proposed diagnosis procedure is applied to the automatic transfer line 
depicted in Fig.8. This type of machine is widely used in industrial world. 

7.1 Automatic transfer line 
Fig.9 shows the diagram of the developed prototype transfer line shown in Fig.8. This 
system transfers works to the unload station by means of two belt-conveyors (L1, L2: their 
length are 50cm) and two cranes (C1, C2). Sensors (S1-S6) are installed at the beginning, end 
and center of the conveyors and the sensor S7 is installed at the unload station. The events 
are observed when the work crosses the sensors, and are depicted also in Fig.9 
superimposing on the automatic transfer line. 
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The transfer line system is decomposed into the four subsystems (Lane1, Crane1, Lane2, 
Crane2) as shown in Fig.10. The set of events observed in each subsystem is specified in 
Table 1. 
 

 

Fig. 8. Prototype of automatic transfer line 

 

Fig. 9. Diagram of the transfer line and definition of events 

 

Fig. 10. Definition of subsystems 

7.2 Candidates of fault 
We consider the candidates of fault in each subsystem specified in Table 2. Note that it is 
unlikely that these faults are diagnosed using deterministic approach. 
For the Lane1 and Lane2, the “normal” implies the case that the speed of the belt-conveyor 
is between 7.8cm/sec and 8.6cm/sec, and the “Speed of the belt-conveyor is reduced” 
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implies the case that the speed of the belt-conveyor goes down between 7.0cm/sec and 

7.8cm/sec. Faults  and  may come from a fatigue of the actuator. The “Sensor does not 

respond with probability of 50%” may occur by means of a defective wiring and so on. This 
corresponds to the early stage of the fatal fault wherein the sensor does not respond at all. 

Thus, 3 × 1 × 3 × 2 = 18 fault cases are investigated for the entire system including cases that 
some faults occur simultaneously in some subsystems. 

7.3 Experimental conditions 
Experimental conditions are specified as follows: 

• Works are provided to the line with almost constant intervals (about 5 sec). 

• Works do not exist in the system at time th = 0. 

• The experiment is finished if ten works are transferred to the unload station. 

• A sampling time for observation of events is 0.1 sec. 
Under these experimental conditions, the event sequences are collected. The probability 
density functions (PDFs) for every combination of two successive events in each subsystem 
are estimated before fault diagnoses. The PDFs are estimated through eighty trials per each 
fault case in advance. 

7.4 Graph structure 
As mentioned in section 3, two types of random variables are defined and specified as nodes 

in the BN. The first one is Rk which takes  (κ∈ {0, 1, … ,K}) as a realization. The second one 

is the Ek which takes the observed event sequence as a realization. In this application, a 
graph structure depicted in Fig.11 is adopted under the consideration that the faults 
occurred in the k-th subsystem influence on the event sequences observed in the (k – 1)-th 
and the k-th subsystem. Generally speaking, the graph structure should be designed from 
viewpoints of the computational burden for the diagnosis and the hardware / software 
interactions between subsystems. Development of the formal procedure for the generation 
of the graph structure is now under investigation. 
 

 

Fig. 11. Graph structure of the BN for the transfer line 

The JPD is calculated based on Fig.11 as follows: 

 
(21)

Then, the probabilistic inference based on the BN becomes possible by marginalizing the 
JPD. For example, the occurrence probability of the fault  in the subsystem 1 is calculated 

as follows: 
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(22)

where Z1 is normalized term, and is represented by 

 

(23)

 

 

Table 1. Set of events in each subsystem 

 

Table 2. Candidates of fault 

 

Table 3. Comparison between decentralized method (proposed) and centralized method 
(conventional) 

7.5 Results of fault diagnosis 
7.5.1 Faultless case 
Fig.12 shows the profiles of the fault occurrence probability in each subsystem wherein no 
fault has occurred in the entire controlled system. The result in the subsystem 2 (Crane 1) is 
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eliminated because no fault has considered in the subsystem 2. In Figs.12(a) to 12(c), the 

probability of the “normal ( )” becomes almost 1 before 45 sec in all subsystems, and this 

result lasts until the experiment is completed. This implies that the result of the diagnosis for 

all subsystems are “normal ( )”, and agrees with the actual situation of the system. 

 

 

Fig. 12. Diagnosis result in the faultless case:  

7.5.2 Multiple faulty case 

Fig.13 shows the profiles of the fault occurrence probability in each subsystem wherein the 

faults ,  and  have occurred at a certain time (no fault has occurred in the subsystem 2). 

In Figs.13(a), 13(b) and 13(c), the vertical lines represent the time instants when the faults , 

, and  occurred, respectively. In the subsystem 1 (Fig.13(a)), the probability of the fault  

 goes up every time when the fault occurs, and shows the greatest probability when the 

experiment is completed. As the result, the fault  can be uniquely identified in the 

subsystem 1. Furthermore, in the subsystem 3 (Fig.13(b)) and subsystem 4 (Fig.13(c)), the 

faults  and  can be identified successfully a few seconds after each fault has occurred. 

These results show that the diagnosis results completely agree with the actual faulty 

situation. 
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Fig. 13. Diagnosis result in the faultless case:  

7.5.3 Comparison with centralized method 

We have performed the experiments seven times for each fault, i.e., the total number of the 

trials is 7×18=126. The statistics of the diagnosis results are listed in Table 3 together with the 

statistics of the centralized approach (M.Saito et al (2006)) (i.e. the system is not 

decomposed). In Table 3, the “Success Rate” means the rate that the all diagnosis results 

coincide with the actual fault situation, the “Wrong Diagnosis Rate” means the rate that at 

least one of the subsystems had wrong diagnosis result, and the “Undetection Rate” means 

the rate that the diagnosis result was “normal” in spite of existence of the fault. The success 

rate of proposed decentralized diagnosis is 81%. This is reduced by 13% compared with the 

conventional centralized method. This reason is considered that the direct relationships 

(arcs) between Rk and R` (k ≠ `), Ek and E` (k ≠ `) are ignored. However, using the proposed 

decentralized strategy can distribute the computational burden for the diagnosis to the 

subsystems with sacrificing the small degradation of the success rate. The appropriate 

selection of the graph structure in the BN will lead to the increase of the success rate. 
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8. Design of graph structure 

In this section, the graph structure of the BN is designed based on the control law applied to 

the controlled system. The design procedure is explained step by step with an example. 

The controlled system is defined by three tuples as follows: 

 (24)

where S is the set of sensors, A is the set of actuators, and C is the set of control laws. The 

system is divided into subsystems: 

 (25)

where Ak and Sk are the set of actuators and sensors included in the k-th subsystem, 

respectively. In addition, Ck is the set of control laws relevant to Ak. Figure 14 shows the 

diagram of the developed prototype transfer line. This system transfers works to the unload 

station by means of six actuators; four lanes (Lane1-Lane4; their length are 50 cm) and two 

cranes (Crane1, Crane2). Sensors (S1-S12) are installed at the beginning, end and center of 

the lanes, and the sensor S13 is installed at the unload station. The events depicted in Fig.14 

are observed when the work crosses the sensors. The transfer line system is decomposed 

into six subsystems as shown in Fig.14. The set of events observed in each subsystem is 

specified in Table 4. 
 
 

 
 

Fig. 14. Diagram of transfer line and definition of events 
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Table 4. Set of events in each subsystem 

The control lows applied to the system are summarized as follows: 

• Each lane is interlocked by its terminal sensor, i.e., stops when the terminal sensors (S3, 
S6, S9 and S12) are fired. 

• The lane continues to behave in the absence of the interlock stop. 

• Lane3/Lane4 stop when Crane1 is moving down at the position S7/S10. 

• Each crane starts to move and to transfer a work when a work reaches at the terminal 
sensor. 

• Crane1 transfers a work from Lane1 or Lane2 to Lane3 or Lane4. 

• Crane2 transfers a work from Lane3 or Lane4 to the unload station. 

• The crane transfers a work to the nearest lane which is available. 

These control lows can be described using the form of a ladder logic ?. For example, Fig.15 

shows the ladder logic of the C1 wherein the operating situation of the Lane1 (L1) is 

expressed by L1 = (X ∨ L1) ∧ . In other case, the logic of the C4 wherein the operating 

situation of the Lane3 (L3) is expressed by . This is due to the logic 

that Lane3/Lane4 stop when Crane1 is moving down at the position S7/S10. 
 

 

Fig. 15. Ladder logic of control law C1 

Based on this logical relationship between sensors and actuators, the causal relationships 

between sensors and actuators are extracted and expressed by a sensor actuator dependency 

(SAD) graph by using the following algorithm: 

 

 
 

An example of the SAD graph constructed from the control logic is shown in Fig.16. In the 

next step, a dependency tree (DT) is produced from the SAD graph by the following 

algorithm: 
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Fig. 16. Sensor actuator dependency (SAD) graph 

An example of the DT produced from Fig.16 is shown in Fig.17. In the last step, the structure 
of BN is designed from the DT by the following algorithm: 
 

 
 

In this algorithm, the parameter L is a depth of the DT and represents a threshold to take 

into consider the causal relationship between the subsystems into the graph structure of the 

BN. Figure 18 is the resultant graph structure when L = 2 for the DT in Fig.17. In Fig.18, for 

example, there exist arcs from R6 to E3, E4, E5, and E6 because S3, S4, S5, and S6 are included 

within Level 2 in Fig.17. Note that although the DT in Fig.17 starts from the actuator, a DT 
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which starts from the sensor is simply constructed by straightforward modification of 

Algorithm 2. 
 

 

Fig. 17. Dependency tree for Crane2 (Subsystem 6) 

9. Experimental verification 

In this section, the decentralized diagnosis procedure is applied to the automatic transfer 

line depicted in Fig.14. The diagnosis procedure is executed by means of three graph 

structures. Graph structure 1 depicted in Fig.18 is derived in Section 8. Graph structure 2 

depicted in Fig.19 considers all causal relationships, i.e., L = ∞ in the DT. Graph structure 3 

depicted in Fig.20 represents the completely independent diagnosis. 
 

 

Fig. 18. Graph structure 1 

9.1 Candidates of fault 
We consider the candidates of fault in each subsystem specified in Table 5. For the lane, the 
“normal” implies the case that the speed is between 7.8 cm/sec and 8.6 cm/sec, and the 
“Speed of the lane is reduced” implies the case that the speed goes down between 7.0 
cm/sec and 7.8 cm/sec. Faults  and  may come from a fatigue of the actuator. For the 

crane, the “Speed of the crane is reduced” implies the case that it takes 0.2 more seconds 
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Fig. 19. Graph structure 2 

 

Fig. 20. Graph structure 3 

 

Table 5. Candidates of faulty situation 

than the “normal” situation to transfer a work to the destination lane. Thus, 1 × 2 × 2 × 1 × 2 

× 2 = 16 faulty cases are investigated for the entire system including cases that some faults 

occur simultaneously among some subsystems. 

9.2 Experimental conditions 
Experimental conditions are specified as follows: 

• Works are provided to the Lane1 and Lane2 alternately with almost constant intervals 
(about 5 sec). 

• Works do not exist in the system at time th = 0. 

• The experiment is finished when twenty works are transferred to the unload station. 

• A sampling time for observation of events is 0.1 sec. 

All the prior probabilities  (i = 1, 2, …, m) in (13) are set to be 
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(26)

This means that no statistical information about the faults has not been used for the 
diagnosis. Under these experimental conditions, the event sequences are collected. The 
probability density functions (PDFs) for every combination of two successive events in each 
subsystem are estimated before the fault diagnosis. The PDFs are estimated through fifty 
trials per each faulty case in advance. The calculation of the diagnosis was performed by 
personal computers (Pentium 4 2.39 GHz). 

9.3 Results of fault diagnosis 
We have performed the experiments ten times for each faulty case, i.e., the total number of 

the trials is 10 × 16 = 160. The statistics of the diagnosis results are listed in Table 6. In Table 
6, the “Success Rate” means the rate that the all diagnosis results coincide with the actual 
faulty situation, the “Wrong Diagnosis Rate” means the rate that at least one of the 
subsystems had wrong diagnosis result, and the “Undetection Rate” means the rate that the 
diagnosis result was “normal” in spite of existence of the fault. 
The success rate of the graph structure 1 and 2 are both increased compared with the 
structure 3. This is due to the consideration of the causal relationships between subsystems. 
The structure 2 is better than the structure 1 from viewpoint of the success rate, however, 
the number of PDFs of the structure 1 is almost half of that of the structure 2. Since the 
number of the PDFs is related with the computational burden for the real-time inference, the 
structure 1 can be realized with less computational burden than the structure 2. The 
computing time shown in Table 6 is the total required time to diagnose the 150.5 [sec] data. 
These times were obtained from the maximum computing time of each local diagnoser and 
the computing time of the global diagnoser as shown in Fig.21 (in the case of the structure 
1). The computation of the local diagnosers is dominate in the computation of entire  
 

 

Fig. 21. Computingtimefordiagnosing150.5sec data in graph structure 1 

 

 

Table 6. Comparison of diagnosis results for three graph structures: Computing time for 
diagnosing 150.5 [sec] data 
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diagnosis. In addition, the computational burden of the local diagnosers increases by 

 where N(Ek) is the number of events in the subsystem k. The level 

threshold L of Algorithm 3 should be selected from the both viewpoint of the success rate 
and the computational burden. 

10. Conclusions 

This paper presented a design method of the graph structure of the Bayesian Network (BN) 
in the decentralized stochastic fault diagnosis of large-scale event-driven controlled systems. 
First, in order to estimate the probability density functions of the randomized time intervals, 
the maximum entropy principle was introduced, which can estimate probability density 
functions so as to maximize the uniformity with satisfying the constraints caused by 
observed data. 
Second, the controlled plant was decomposed into some subsystems, and the global 
diagnosis was formulated using the Bayesian Network (BN), which represents the causal 
relationship between the fault and observation between subsystems. 
Third, the local diagnoser was developed using the conventional Timed Markov Model 
(TMM), and the local diagnosis results were used to specify the conditional probability 
assigned to each arc in the BN. By exploiting the decentralized diagnosis architecture, the 
computational burden for the diagnosis can be distributed to the subsystems. As the result, 
large scale diagnosis problems in the practical situation can be solved. 
Forth, the graph structure of the BN is designed based on the control logic applied to the 
system. In order to realize this, the Sensor Actuator Dependency (SAD) graph and the 
Dependency Tree (DT) are constructed from the control logic. Since the computational 
burden and the diagnosis performance mainly depend on the complexity of the graph 
structure of BN, they are adjusted adequately by specifying the depth of the DT which 
represents the strength of the causal relationship between components in subsystems. 
Finally, the usefulness of the proposed strategy has been verified through some 
experimental results of an automatic transfer line. Our future work is to verify the 
decentralized stochastic fault diagnosis strategy in larger scale event-driven controlled 
systems. 
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