76 research outputs found

    Assessment and Improvement of the Pattern Recognition Performance of Memdiode-Based Cross-Point Arrays with Randomly Distributed Stuck-at-Faults

    Get PDF
    In this work, the effect of randomly distributed stuck-at faults (SAFs) in memristive crosspoint array (CPA)-based single and multi-layer perceptrons (SLPs and MLPs, respectively) intended for pattern recognition tasks is investigated by means of realistic SPICE simulations. The quasi-static memdiode model (QMM) is considered here for the modelling of the synaptic weights implemented with memristors. Following the standard memristive approach, the QMM comprises two coupled equations, one for the electron transport based on the double-diode equation with a single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron. By modifying the state parameter in the current-voltage characteristic, SAFs of different severeness are simulated and the final outcome is analysed. Supervised ex-situ training and two well-known image datasets involving hand-written digits and human faces are employed to assess the inference accuracy of the SLP as a function of the faulty device ratio. The roles played by the memristor’s electrical parameters, line resistance, mapping strategy, image pixelation, and fault type (stuck-at-ON or stuck-at-OFF) on the CPA performance are statistically analysed following a Monte-Carlo approach. Three different re-mapping schemes to help mitigate the effect of the SAFs in the SLP inference phase are thoroughly investigated.In this work, the effect of randomly distributed stuck-at faults (SAFs) in memristive cross-point array (CPA)-based single and multi-layer perceptrons (SLPs and MLPs, respectively) intended for pattern recognition tasks is investigated by means of realistic SPICE simulations. The quasi-static memdiode model (QMM) is considered here for the modelling of the synaptic weights implemented with memristors. Following the standard memristive approach, the QMM comprises two coupled equations, one for the electron transport based on the double-diode equation with a single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron. By modifying the state parameter in the current-voltage characteristic, SAFs of different severeness are simulated and the final outcome is analysed. Supervised ex-situ training and two well-known image datasets involving hand-written digits and human faces are employed to assess the inference accuracy of the SLP as a function of the faulty device ratio. The roles played by the memristor?s electrical parameters, line resistance, mapping strategy, image pixelation, and fault type (stuck-at-ON or stuck-at-OFF) on the CPA performance are statistically analysed following a Monte-Carlo approach. Three different re-mapping schemes to help mitigate the effect of the SAFs in the SLP inference phase are thoroughly investigated.Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Universitat Autònoma de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pazos, Sebastián Matías. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Palumbo, Félix Roberto Mario. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morell, Antoni. Universitat Autònoma de Barcelona; EspañaFil: Suñé, Jordi. Universitat Autònoma de Barcelona; EspañaFil: Miranda, Enrique. Universitat Autònoma de Barcelona; Españ

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Memristive crossbars as hardware accelerators: modelling, design and new uses

    Get PDF
    Digital electronics has given rise to reliable, affordable, and scalable computing devices. However, new computing paradigms present challenges. For example, machine learning requires repeatedly processing large amounts of data; this creates a bottleneck in conventional computers, where computing and memory are separated. To add to that, Moore’s “law” is plateauing and is thus unlikely to address the increasing demand for computational power. In-memory computing, and specifically hardware accelerators for linear algebra, may address both of these issues. Memristive crossbar arrays are a promising candidate for such hardware accelerators. Memristive devices are fast, energy-efficient, and—when arranged in a crossbar structure—can compute vector-matrix products. Unfortunately, they come with their own set of limitations. The analogue nature of these devices makes them stochastic and thus less reliable compared to digital devices. It does not, however, necessarily make them unsuitable for computing. Nevertheless, successful deployment of analogue hardware accelerators requires a proper understanding of their drawbacks, ways of mitigating the effects of undesired physical behaviour, and applications where some degree of stochasticity is tolerable. In this thesis, I investigate the effects of nonidealities in memristive crossbar arrays, introduce techniques of minimising those negative effects, and present novel crossbar circuit designs for new applications. I mostly focus on physical implementations of neural networks and investigate the influence of device nonidealities on classification accuracy. To make memristive neural networks more reliable, I explore committee machines, rearrangement of crossbar lines, nonideality-aware training, and other techniques. I find that they all may contribute to the higher accuracy of physically implemented neural networks, often comparable to the accuracy of their digital counterparts. Finally, I introduce circuits that extend dot product computations to higher-rank arrays, different linear algebra operations, and quaternion vectors and matrices. These present opportunities for using crossbar arrays in new ways, including the processing of coloured images
    • …
    corecore