3,086 research outputs found

    Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    Get PDF
    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied

    Pre-validation of SoC via hardware and software co-simulation

    Get PDF
    Abstract. System-on-chips (SoCs) are complex entities consisting of multiple hardware and software components. This complexity presents challenges in their design, verification, and validation. Traditional verification processes often test hardware models in isolation until late in the development cycle. As a result, cooperation between hardware and software development is also limited, slowing down bug detection and fixing. This thesis aims to develop, implement, and evaluate a co-simulation-based pre-validation methodology to address these challenges. The approach allows for the early integration of hardware and software, serving as a natural intermediate step between traditional hardware model verification and full system validation. The co-simulation employs a QEMU CPU emulator linked to a register-transfer level (RTL) hardware model. This setup enables the execution of software components, such as device drivers, on the target instruction set architecture (ISA) alongside cycle-accurate RTL hardware models. The thesis focuses on two primary applications of co-simulation. Firstly, it allows software unit tests to be run in conjunction with hardware models, facilitating early communication between device drivers, low-level software, and hardware components. Secondly, it offers an environment for using software in functional hardware verification. A significant advantage of this approach is the early detection of integration errors. Software unit tests can be executed at the IP block level with actual hardware models, a task previously only possible with costly system-level prototypes. This enables earlier collaboration between software and hardware development teams and smoothens the transition to traditional system-level validation techniques.JÀrjestelmÀpiirin esivalidointi laitteiston ja ohjelmiston yhteissimulaatiolla. TiivistelmÀ. JÀrjestelmÀpiirit (SoC) ovat monimutkaisia kokonaisuuksia, jotka koostuvat useista laitteisto- ja ohjelmistokomponenteista. TÀmÀ monimutkaisuus asettaa haasteita niiden suunnittelulle, varmennukselle ja validoinnille. Perinteiset varmennusprosessit testaavat usein laitteistomalleja eristyksissÀ kehityssyklin loppuvaiheeseen saakka. TÀmÀn myötÀ myös yhteistyö laitteisto- ja ohjelmistokehityksen vÀlillÀ on vÀhÀistÀ, mikÀ hidastaa virheiden tunnistamista ja korjausta. TÀmÀn diplomityön tavoitteena on kehittÀÀ, toteuttaa ja arvioida laitteisto-ohjelmisto-yhteissimulointiin perustuva esivalidointimenetelmÀ nÀiden haasteiden ratkaisemiseksi. MenetelmÀ mahdollistaa laitteiston ja ohjelmiston varhaisen integroinnin, toimien luonnollisena vÀlietappina perinteisen laitteistomallin varmennuksen ja koko jÀrjestelmÀn validoinnin vÀlillÀ. Yhteissimulointi kÀyttÀÀ QEMU suoritinemulaattoria, joka on yhdistetty rekisterinsiirtotason (RTL) laitteistomalliin. TÀmÀ mahdollistaa ohjelmistokomponenttien, kuten laiteajureiden, suorittamisen kohdejÀrjestelmÀn kÀskysarja-arkkitehtuurilla (ISA) yhdessÀ kellosyklitarkkojen RTL laitteistomallien kanssa. Työ keskittyy kahteen yhteissimulaation pÀÀsovellukseen. EnsinnÀkin se mahdollistaa ohjelmiston yksikkötestien suorittamisen laitteistomallien kanssa, varmistaen kommunikaation laiteajurien, matalan tason ohjelmiston ja laitteistokomponenttien vÀlillÀ. Toiseksi se tarjoaa ympÀristön ohjelmiston kÀyttÀmiseen toiminnallisessa laitteiston varmennuksessa. MerkittÀvÀ etu tÀstÀ lÀhestymistavasta on integraatiovirheiden varhainen havaitseminen. Ohjelmiston yksikkötestejÀ voidaan suorittaa jo IP-lohkon tasolla oikeilla laitteistomalleilla, mikÀ on aiemmin ollut mahdollista vain kalliilla jÀrjestelmÀtason prototyypeillÀ. TÀmÀ mahdollistaa aikaisemman ohjelmisto- ja laitteistokehitystiimien vÀlisen yhteistyön ja helpottaa siirtymistÀ perinteisiin jÀrjestelmÀtason validointimenetelmiin

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    When a Patch is Not Enough - HardFails: Software-Exploitable Hardware Bugs

    Full text link
    In this paper, we take a deep dive into microarchitectural security from a hardware designer's perspective by reviewing the existing approaches to detect hardware vulnerabilities during the design phase. We show that a protection gap currently exists in practice that leaves chip designs vulnerable to software-based attacks. In particular, existing verification approaches fail to detect specific classes of vulnerabilities, which we call HardFails: these bugs evade detection by current verification techniques while being exploitable from software. We demonstrate such vulnerabilities in real-world SoCs using RISC-V to showcase and analyze concrete instantiations of HardFails. Patching these hardware bugs may not always be possible and can potentially result in a product recall. We base our findings on two extensive case studies: the recent Hack@DAC 2018 hardware security competition, where 54 independent teams of researchers competed world-wide over a period of 12 weeks to catch inserted security bugs in SoC RTL designs, and an in-depth systematic evaluation of state-of-the-art verification approaches. Our findings indicate that even combinations of techniques will miss high-impact bugs due to the large number of modules with complex interdependencies and fundamental limitations of current detection approaches. We also craft a real-world software attack that exploits one of the RTL bugs from Hack@DAC that evaded detection and discuss novel approaches to mitigate the growing problem of cross-layer bugs at design time

    Evolution of Test Programs Exploiting a FSM Processor Model

    Get PDF
    Microprocessor testing is becoming a challenging task, due to the increasing complexity of modern architectures. Nowadays, most architectures are tackled with a combination of scan chains and Software-Based Self-Test (SBST) methodologies. Among SBST techniques, evolutionary feedback-based ones prove effective in microprocessor testing: their main disadvantage, however, is the considerable time required to generate suitable test programs. A novel evolutionary-based approach, able to appreciably reduce the generation time, is presented. The proposed method exploits a high-level representation of the architecture under test and a dynamically built Finite State Machine (FSM) model to assess fault coverage without resorting to time-expensive simulations on low-level models. Experimental results, performed on an OpenRISC processor, show that the resulting test obtains a nearly complete fault coverage against the targeted fault mode
    • 

    corecore