5 research outputs found

    Human-guided Swarms: Impedance Control-inspired Influence in Virtual Reality Environments

    Full text link
    Prior works in human-swarm interaction (HSI) have sought to guide swarm behavior towards established objectives, but may be unable to handle specific scenarios that require finer human supervision, variable autonomy, or application to large-scale swarms. In this paper, we present an approach that enables human supervisors to tune the level of swarm control, and guide a large swarm using an assistive control mechanism that does not significantly restrict emergent swarm behaviors. We develop this approach in a virtual reality (VR) environment, using the HTC Vive and Unreal Engine 4 with AirSim plugin. The novel combination of an impedance control-inspired influence mechanism and a VR test bed enables and facilitates the rapid design and test iterations to examine trade-offs between swarming behavior and macroscopic-scale human influence, while circumventing flight duration limitations associated with battery-powered small unmanned aerial system (sUAS) systems. The impedance control-inspired mechanism was tested by a human supervisor to guide a virtual swarm consisting of 16 sUAS agents. Each test involved moving the swarm's center of mass through narrow canyons, which were not feasible for a swarm to traverse autonomously. Results demonstrate that integration of the influence mechanism enabled the successful manipulation of the macro-scale behavior of the swarm towards task completion, while maintaining the innate swarming behavior.Comment: 11 pages, 5 figures, preprin

    Swarm Robotic interactions in an open and cluttered environment: a survey

    Get PDF
    Recent population migrations have led to numerous accidents and deaths. Little research has been done to help migrants in their journey. For this reason, a literature review of the latest research conducted in previous years is required to identify new research trends in human-swarm interaction. This article presents a review of techniques that can be used in a robots swarm to find, locate, protect and help migrants in hazardous environment such as militarized zone. The paper presents a swarm interaction taxonomy including a detailed study on the control of swarm with and without interaction. As the interaction mainly occurs in cluttered or crowded environment (with obstacles) the paper discussed the algorithms related to navigation that can be included with an interaction strategy. It focused on comparing algorithms and their advantages and disadvantages

    Trust-Based Control of (Semi)Autonomous Mobile Robotic Systems

    Get PDF
    Despite great achievements made in (semi)autonomous robotic systems, human participa-tion is still an essential part, especially for decision-making about the autonomy allocation of robots in complex and uncertain environments. However, human decisions may not be optimal due to limited cognitive capacities and subjective human factors. In human-robot interaction (HRI), trust is a major factor that determines humans use of autonomy. Over/under trust may lead to dispro-portionate autonomy allocation, resulting in decreased task performance and/or increased human workload. In this work, we develop automated decision-making aids utilizing computational trust models to help human operators achieve a more effective and unbiased allocation. Our proposed decision aids resemble the way that humans make an autonomy allocation decision, however, are unbiased and aim to reduce human workload, improve the overall performance, and result in higher acceptance by a human. We consider two types of autonomy control schemes for (semi)autonomous mobile robotic systems. The first type is a two-level control scheme which includes switches between either manual or autonomous control modes. For this type, we propose automated decision aids via a computational trust and self-confidence model. We provide analytical tools to investigate the steady-state effects of the proposed autonomy allocation scheme on robot performance and human workload. We also develop an autonomous decision pattern correction algorithm using a nonlinear model predictive control to help the human gradually adapt to a better allocation pattern. The second type is a mixed-initiative bilateral teleoperation control scheme which requires mixing of autonomous and manual control. For this type, we utilize computational two-way trust models. Here, mixed-initiative is enabled by scaling the manual and autonomous control inputs with a function of computational human-to-robot trust. The haptic force feedback cue sent by the robot is dynamically scaled with a function of computational robot-to-human trust to reduce humans physical workload. Using the proposed control schemes, our human-in-the-loop tests show that the trust-based automated decision aids generally improve the overall robot performance and reduce the operator workload compared to a manual allocation scheme. The proposed decision aids are also generally preferred and trusted by the participants. Finally, the trust-based control schemes are extended to the single-operator-multi-robot applications. A theoretical control framework is developed for these applications and the stability and convergence issues under the switching scheme between different robots are addressed via passivity based measures

    Specification-Based Task Orchestration for Multi-Robot Aerial Teams

    Get PDF
    As humans begin working more frequently in environments with multi-agent systems, they are presented with challenges on how to control these systems in an intuitive manner. Current approaches tend to limit either the interaction ability of the user or limit the expressive capacity of instructions given to the robots. Applications that utilize temporal logics provide a human-readable syntax for systems that ensures formal guarantees for specification completion. By providing a modality for global task specification, we seek to reduce cognitive load and allow for high-level objectives to be communicated to a multi-agent system. In addition to this, we also seek to expand the capabilities of swarms to understand desired actions via interpretable commands retrieved from a human. In this thesis, we first present a method for specification-based control of a quadrotor. We utilize quadrotors as a highly agile and maneuverable application platform that has a wide variety of uses in complex problem domains. Leveraging specification-based control allows us to formulate a specification-based planning framework that will be utilized throughout the thesis. We then present methods for creating systems which allows us to provide task decomposition, allocation and planning for a team of quadrotors defined as task orchestration of multi-robot systems. Next, the task allocation portion of the task orchestration work is extended in the online case by considering cost agnostic sampling of trajectories from an online optimization problem. Then, we will introduce learning techniques where temporal logic specifications are learned and generated from a set of user given traces. Finally, we will conclude this thesis by presenting an extension to the Robotarium through hardware and software modifications that provides remote users access to control aerial swarms.Ph.D

    Team-Level Properties for Haptic Human-Swarm Interactions

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.DOI: 10.1109/ACC.2015.7170777This paper explores how haptic interfaces should be designed to enable effective human-swarm interactions. When a single operator is interacting with a team of mobile robots, there are certain properties of the team that may help the operator complete the task at hand if these properties were fed back via haptics. However, not all team-level properties may be particularly well-suited for haptic feedback. In this paper, characteristics that make a property of a multi-agent system appropriate for haptic feedback are defined. The focus here is on leader-follower networks, in which one robot, the so-called leader, is controlled via an operator with a haptic device, whereas the remaining robots, the so-called followers, are tasked with maintaining distances between one another. Multi-agent manipulability, a property which describes how effective the leader is at controlling the movement of the followers, is proposed as one such appropriate property for haptic feedback in a human-swarm interaction scenario. Manipulability feedback is implemented using a PHANTOM Omni haptic joystick and experiments in which a team of mobile robots is controlled via a human operator with access to this feedback show that this is viable in practice
    corecore