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”No man ever steps in the same river twice, for it’s not the same river and he’s not the

same man.” - Heraclitus.
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SUMMARY

As humans begin working more frequently in environments with multi-agent systems,

they are presented with challenges on how to control these systems in an intuitive manner.

Current approaches tend to limit either the interaction ability of the user or limit the expres-

sive capacity of instructions given to the robots. Applications that utilize temporal logics

provide a human-readable syntax for systems that ensures formal guarantees for specifica-

tion completion. By providing a modality for global task specification, we seek to reduce

cognitive load and allow for high-level objectives to be communicated to a multi-agent sys-

tem. In addition to this, we also seek to expand the capabilities of swarms to understand

desired actions via interpretable commands retrieved from a human.

In this thesis, we first present a method for specification-based control of a quadrotor.

We utilize quadrotors as a highly agile and maneuverable application platform that has a

wide variety of uses in complex problem domains. Leveraging specification-based con-

trol allows us to formulate a specification-based planning framework that will be utilized

throughout the thesis. We then present methods for creating systems which allows us to

provide task decomposition, allocation and planning for a team of quadrotors defined as

task orchestration of multi-robot systems. Next, the task allocation portion of the task or-

chestration work is extended in the online case by considering cost agnostic sampling of

trajectories from an online optimization problem. Then, we will introduce learning tech-

niques where temporal logic specifications are learned and generated from a set of user

given traces. Finally, we will conclude this thesis by presenting an extension to the Robo-

tarium through hardware and software modifications that provides remote users access to

control aerial swarms.

1



CHAPTER 1

INTRODUCTION

In human swarm interaction, users assign control laws or actions to single or multiple

agents in a swarm. Ideal interactions between a human and swarm of robots reduce the

cognitive load on the user and provide a interface for commands to be sent to robots

in an efficient and scalable manner [1]. One of the most important concepts in human

swarm interaction is interaction modality type. Indeed, in [2, 3] studies are conducted on

modality types and user preferred interactions. We show in this thesis that our formulation

of specification-based planning, in the design and application of high-level specifications

to robotic systems, is amenable to multi-robot control for complex robotics systems (e.g.

quadrotors). In this thesis we explore the idea of specification-based planning and control of

quadrotors which involves generating trajectories under system [4, 5, 6] and environmental

constraints [7, 8] for high-level goals generated as task specifications, task allocation and

decomposition in the multi-agent case and leveraging alternative methods of specification

design [9, 10] such as learning techniques to make specifications informed from data.

Well defined control modalities are essential for human interaction with multi-robot

systems. In [2], the authors compare two categories of human swarm interaction: selection-

based control and beacon based control. Selection-based control allows users to select a

leader or subset of leaders from a swarm and influence the swarm behavior through a leader

follower framework [11, 12, 13]. Beacon-based control relies on influencing the global be-

havior of swarm through the introduction of forces on the swarm through indirect control.

In the literature, we can see many examples where other types of human swarm interactions

are developed such as gesture control of robotic swarms [14, 15] or parameterized learn-

ing of global swarm behaviors [16]. This thesis focuses on the use of specification-based

planning [17, 18, 19] where users provide high level global goals to a system and planning
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and allocation are demonstrated at the system level. This type of interaction modality lends

itself to a reduction in frequency of swarm interaction from the human perspective, devel-

opment of desired generalized behaviors defined by the specification designer and ease of

deployment once generated. For mobile robotic systems this helps maintain system perfor-

mance as desired behaviors can easily be encapsulated as specifications. For quadrotors,

these interactions are even more critical to desired system performance from the users per-

spective. Ideal interactions must consider the dynamical constraints of each quadrotor to

ensure safe [20, 21] and executable commands. Therefore, in the first part of this thesis

we will develop a methodology for designing trajectories defined for high-level task spec-

ifications. By informing trajectory design with a task specification and system constraints,

for certain specifications, we can guarantee system performance and task satisfaction. Our

choice of specification in this paper are linear temporal logic formulas, a logic formalism

well suited for specifying desired linear-time properties of a system [22, 23].

Temporal logic control of swarms has been approached in a variety of ways by many

researchers. In these approaches, researchers leverage the well defined safety and liveliness

properties of temporal logic systems [24, 22, 25] and apply them to robotic systems. These

approaches have been applied to motion planning both in the discrete [26] and continuous

[27] space where systems must satisfy Boolean propositions defined over the problem do-

main. For well defined environments and systems, generated as transition systems from a

set of propositions, temporal logic specifications can be used to find sequences of states that

satisfy these transition systems as well as the goal specification defined as a temporal logic

specification [28, 29]. Therefore, in Chapter 3 we will use temporal logic as a task speci-

fication language for a single quadrotor for reconfigurable waypoints in three-dimensional

space. Then, we will extend our results to the multi-agent case and consider how to utilize

task decomposition and allocation using temporal logics. Prior works that utilize task de-

composition using temporal logic focus on distributed algorithm design [30, 31], individual

agent specifications [32] or sequential satisfaction of specifications over a pre-defined time
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period [33]. In Chapter 4 we will utilize the global goal specifications defined for the entire

system and decompose tasks based on optimal agent assignments based on cost functions

assigned to each agent a-priori. Then, from optimal agent assignments we consider the case

of unknown optimal costs for each agent. These situations may arise from use by novice

users where system behavior may not be fully understood or difficult to characterize via

an optimal cost without consulting an expert [34]. We develop online cross entropy task

allocation for multi-agent systems in Chapter 5 where optimal costs are learned on-the-fly

for each agent in a multi-agent systems and we find optimal task assignments for a team of

quadrotors.

Building on the idea that users may be unfamiliar with system behavior, we also con-

sider cases when users may have desired goals for a robotic system but are unable to design

a desired specification. Temporal logic specifications can be difficult to design for the

novice user and often require expert knowledge for generating specifications that capture

desired system performance. There is a broad array of research, in the computer science

literature, on temporal logic mining [35, 36, 37]. In this context, researchers seek to find

specifications that satisfy a set of user provided trace logs. In robotics literature this prob-

lem has been explored as temporal logic learning [10, 38, 39] where models and feature

spaces are defined to learn temporal logic specifications as opposed to the brute force meth-

ods commonly seen in temporal logic mining literature. In Chapter 6 we approach the

temporal logic learning problem using support vector machines (SVMs) as a classification

method where trace features are used to map traces to temporal logic specifications. Via

this approach, we provide a method for novice users to define desired system behavior

with little knowledge of temporal logic and only provide desired trace information instead.

In Chapter 7 we consider how to provide external users access to aerial vehicles on the

Robotarium while guaranteeing safety. By developing waypoint control and providing a

minimally invasive control modality, novice users are allowed to control aerial teams on

the Robotarium.
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1.1 Thesis Statement

This dissertation presents methods for specification-based control of single and multi-robot

aerial vehicles that are cost-aware and leverage highly expressive task assignments pro-

vided by end users.

1.2 Contributions

The contributions of this thesis are the following:

• Specification-based maneuvering for single quadrotors (Chapter 3): We formally

develop a specification-based control technique that leverages the dynamical con-

straints of a quadrotor in addition to user provided constraints through cost functions

applied over desired trajectories. This technique leverages temporal logic for recon-

figurable waypoints as a method of providing highly expressive task assignment to a

quadrotor. This technique was verified through experiments on physical quadrotors

and objective locations.

• Development of a multi-agent task orchestration framework (Chapter 4): We de-

velop a task orchestration framework which is defined as task decomposition, alloca-

tion and planning for a multi-agent system. Tasks are allocated based on the stochas-

tic optimization technique, cross-entropy optimization. The framework is verified

through a case study on fire-fighting quadrotor teams.

• Efficient improvement on multi-agent task allocation (Chapter 5): The allocation

method for quadrotors is improved via an online methodology where agents are con-

sidered at each time step. The results of this method show that the online method is

faster and presents less expensive solutions to the task allocation problem than the

offline solution.

• Evaluation of a specification learning model (Chapter 6): A specification learning
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model is presented that leverages SVMs for learning specifications given user traces.

This model is evaluated against brute force techniques where it is shown to be more

consistent in performance over variable specification sizes and faster compared to

techniques implemented in the same language. In addition to this, we show that

testing accuracy for this model is 91% for traces labeled with the correct template

type. The model performance is also evaluated via a house surveillance case study.

• Development of a remotely accessible aerial swarm testbed (Chapter 7): We de-

velop an extension to the Robotarium by providing remote access to aerial swarms.

A fully autonomous system is developed that provides users safe, minimally invasive

access to multiple quadrotors. The results of this system are shown via the types of

networked robotics experiments capable of being run on the Robotarium in addition

to the access provided via the simulators.

1.3 Outline of Dissertation Document

The thesis is organized as follows. In Chapter 3, we introduce specification-based ma-

neuvering for quadrotors where we leverage high level specifications to generate plans for

quadrotors on reconfigurable waypoints. We follow this work with task orchestration, de-

fined in Chapter 4 where we consider simultaneous task decomposition, allocation and

planning for a team of quadrotors given high level specifications. We then extend this work

in Chapter 5 by introducing online task allocation via cross entropy optimization. In intro-

ducing online cross entropy optimization to this framework we consider task allocation for

optimal assignments without costs defined a-priori by end users. We introduce a form of

LTL learning in Chapter 6 where we provide a method of learning high-level temporal logic

specifications through user provided traces. Finally, in Chapter 7 we present hardware and

software modifications made on the Robotarium to provide external users remote access

to aerial swarms. Chapter 8 concludes this thesis by outlining the main contributions and

future work.
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CHAPTER 2

BACKGROUND

In this chapter we will review the relevant literature pertaining to human swarm interaction

and the use of temporal logic specification-based planning for robotic systems. We will

first introduce human swarm interaction, ending on specification-based goals provided by

the end user. Then, we will introduce path planning and control for quadrotors. We will

address other works that have utilized temporal logic for providing high level specifications

to single agents and robot teams. Finally, we will end this chapter with temporal logic

specification learning where learning models are provided with data about a system (e.g.

desired traces from successful system execution) and must learn what specifications will

satisfy this input data.

2.1 Human Swarm Interaction

As large groups of mobile robots are more frequently deployed out in the field, humans

or groups of humans need to find ideal interactions with these systems. Human swarm

interaction is a field of robotics focusing on developing interaction modalities between

humans and robotics systems [1]. Swarms can be applied to solve a myriad of real world

problems such as search and rescue [40, 41], reconnaissance [8, 42], precision agriculture

[43] and even warehouse operations [44]. By leveraging the emergent properties of swarms

– unexpected behaviors that arise due to the complex interactions between agents and their

environment – researchers in human swarm interaction avoid encoding explicit behavior in

their systems. In addition to this, swarms also provide robustness to single agent failure

or disturbances in the environment, faster execution time for many problem domains and

provide redundancies in task allocation.

There exists a wide variety of interaction modalities for human control of swarms. Sur-
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vey papers on the topic [1, 45] tend to generalize interactions to the following: behavior

selection, leader selection, environmental control and parameter setting. In behavior selec-

tion, individual agents or a subset of agents are selected and given particular algorithms or

commands separate from the group behavior. This is seen in works like [14] where a ges-

ture recognition framework is developed for multi-UAV interaction and individual agents

are selected to execute designated behaviors. In [3] various types of control modalities for

collaborative interaction with UAVs (unmanned aerial vehicles) were studied to determine

the level of information necessary to complete an obstacle course collaboratively.

Leader selection control modalities require a human to directly control a robot or subset

of robots within a swarm which then the other robots will follow or simulate its behavior.

In [46] the authors proposed a control-Lyapunov based method of controlling multi-agent

systems where a user controls a leader agent in a swarm. Other works have approached

leader selection from a connectivity perspective [47], where the authors develop connectiv-

ity constraints on leader-follower networks with limited communication capabilities. The

main benefits of this type of interaction are that the selection of the leader set of robots

allows for increased forms of control that can be seen in single agent control such as tele-

operation [48, 49], gesture control [50, 14] or other unique control techniques [51, 52].

Environmental control differs from this control paradigm in that instead of controlling in-

dividual agents or groups of agents in a swarm, users influence the environment and this

results in behavior changes of the swarm. In [53] a multi-robot system is treated as a fluid

and disturbances on this fluid generate motion on the dynamics of the robots in this system.

Other works approach environmental influence through the use of potential fields [54, 55],

artificial pheromones [56] or coverage control techniques [57, 58].

Parameter setting involves creating a set of parameters for a swarm allowing for an in-

direct influence on behaviors. Examples of this type of control modality can be seen in

[16] where the authors influence the global characteristics of a swarm through parameters

learned through evolutionary learning. Additionally, this type of control has been explored
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for UAVs [59] where UAVs are assigned ”personalities” corresponding to parametric char-

acteristics that determined how well mission plans are incorporated into its task allocation

procedure.

In this thesis we focus on specification based control of multi-robot systems. This can

be viewed as an extension of behavior selection as we generate high level goals for robotic

systems that subsets or individual agents will execute. This type of robot control has been

seen in [32, 60, 61]. Specification-based control allows users to define formal definitions

for internal system behaviors with respect to an agent as well as the behaviors expected

from agent interactions with its environment. In addition to this, specifications provide a

logical formula and language that lends itself for ease of use when generating global goals

for robotic systems.

2.2 UAV Motion Planning and Control

Before we address the multi-agent aspect of specification based planning using temporal

logic, we first give a brief overview of motion planning and control for quadrotors in this

section. Path planning for robotic systems has a wealth of literature related to the field

[62, 63, 64]. Generally, these works are concerned with developing algorithms that convert

high-level specifications of tasks from humans into low-level descriptions of robot control.

Many fields address this general problem from control theoretic approaches that use sys-

tem model information to generate feasible trajectories under system constraints [65, 66]

to artificial intelligence algorithms which leverage heuristics, search techniques and state

space information to make informed decisions on path planning [67, 68].

Using quadrotors has advantages for use in scenarios where space is limited due to their

vertical takeoff and landing capabilities, efficient fuel source commonly found as battery

technology and small and highly manueverable size amenable to locations that might be

difficult for ground vehicles to explore. Thus, aspects of quadrotor planning and control

that must be considered are the dynamical constraints and control capabilities that must be

9



addressed to generate satisfactory trajectories. Early works in quadrotor path planning used

methods like virtual force fields to improve on 2D paths generated from graph searches

[69]. Additional earlier works consider developing controllers designed to do trajectory

tracking on the linearized dynamics of quadrotors [70, 71, 72].

Through the introduction of differential flatness theory, trajectory planning for quadro-

tors considers the full dynamical model of a quadrotor and aggressive trajectory manuevers

become feasible [73, 20]. Differential flatness is a well known property of many dynamical

systems [74, 75]. This property allows the expression of the full state and the input of the

system as functions of the flat output and its time derivatives. In other words,

hhh = gh(sss,uuu,uuu(1), . . . ,uuu( j)) (2.1)

is considered a flat output for j finite derivatives of input uuu if there exist two functions

sss = gs(hhh,hhh(1), , . . . ,hhh(l)) (2.2)

and

uuu = gu(hhh,hhh(1), . . . ,hhh(m)) (2.3)

such that both the state (sss) and the input (uuu) can be uniquely expressed as functions of

the specified output and its l and m finite derivatives, respectively.

As shown in [5] and [76], for the quadrotor model described in Chapter 3, a possible

choice of the flat output is hhh = [x, y, z, ψ ]T that allows the inference of the complete state

(sss) and input (uuu) with the appropriately defined functions. This means that by creating a

path planner capable of generating trajectories rrr = [rx, ry, rz, rψ ]T and its derivatives, it

is possible to deduce the full state of the original nonlinear system relative to a particular

reference. Many works that leverage differential flatness include those that consider fault
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tolerance [77], safety constraints [78, 79] and path planning [80]. In this thesis we will

show how we develop our planning framework to take advantage of differential flatness

theory to develop trajectories capable of aggressive maneuvering by leveraging the full

nonlinear dynamics of quadrotors.

2.3 Temporal Logic Control of Multi-Robot Systems

In this section, we will briefly overview the relevant literature on the use of temporal logic

for the control of multi-robot systems. In a previous section, we introduced a variety of

ways that humans can interact with multi-robot systems and introduced specification based

control. Formal logic specifications, like LTL, provide an efficient and concise method

for specifying and verifying correct behavior in dynamical systems and are well suited

to human level interpretation and development due to its expressive syntax. LTL, linear

temporal logic, was first introduced in the computer science literature [81] for specification

of computer programs and guaranteeing safety and liveliness properties. LTL is a logic

formalism suited for specifying linear time properties of a system [82, 22]. Defined over

a finite set of atomic propositions Π = {π0, . . . ,πk} where each proposition πi maps from

system state to true (⊤) or false (⊥) and enables us to define a Boolean property of the

state spaces, LTL formulas are formed with the following logic operators:

φ :=⊤ | π | φ1∧φ2 | ¬φ | ⃝φ | φ1Uφ2 (2.4)

LTL formulas are composed of the basic Boolean operators (e.g. conjunction (∧) and

negation (¬)) and two temporal operators next (⃝) and until (U). Formula⃝φ evaluates

as true at time t if φ holds at time step t + 1. Formulas of the form φ1Uφ2 evaluates as

true at time t if φ1 is true until a time step is reached where φ2 becomes true. From these

base operators of LTL we can construct the following higher-order temporal operators:

♢(eventually), □(always), and W(weak until). The eventually formula (♢φ ) holds true at
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time t if φ holds for some time tn ≥ t. The always formula (□φ ) holds true at t if φ holds at

all times tn≥ t. The weakly until formula (φ1Wφ2) holds such that the occurrence of formula

φ2 does not need to be satisfied. Since its inception, the robotics and system engineering

communities have adapted LTL for high-level motion planning and task allocation [83, 84,

85].

In the task allocation literature [86, 87] the problem of determining which robots should

execute certain tasks in order to achieve a global system goal is addressed. These works

seek to define a taxonomy of task allocation problems and the computational complex-

ity associated with each problem. Prior works utilizing LTL for task allocation develop

product automata consisting of environmental and agent systems are composed and satis-

fying sequences of states are found for robotic systems, defined as tasks, that satisfy that

specification. These tasks are usually formulated as either motion primitives consisting of

Lyapunov-based controllers [88], potential vector fields [89] or through symbolic control

approaches like state space partitioning [18]. A work that is similar to ours, in the single

agent case, is [90] where the authors proposed a sampling-based technique utilizing modi-

fied RRT* for agents to satisfy a global linear temporal logic specification. However, this

work like many others relies on computationally expensive product automatons for large

environments which are time consuming to generate [22]. In addition, each transition be-

tween tasks in these transition systems is often associated with action costs that are defined

based on expert information about the system dynamics and environment. This approach is

seen in many multi-robot systems using temporal logic control [91, 92] for task allocation.

In this thesis, we approach the problem of multi-robot goal task allocation using the cross

entropy method of stochastic optimization [93]. In this approach, we use cost functions

and desired costs for each agent and allocate tasks based on which task best minimizes an

individual agents cost function.

The cross-entropy method [94] is a form or importance sampling for rare events. It is

used to draw samples from known probability distributions and minimize the cross-entropy
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(or Kullback-Liebler distance) between the known distribution and a target distribution.

Cross-entropy optimization has been used in many multi-agent goal satisfaction problems

such as the max-cut problem [95], vehicle routing and other problems for which dynamic

allocation of resources can be formulated as minimizing a cost according to a known de-

sired cost and resources are drawn from a known distribution to estimate an unknown dis-

tribution [96]. In robotics, we have seen applications of cross-entropy and LTL for motion

planning in the single agent case [97] and the multi-agent case [98]. Our work contributes

to the use of cross entropy optimization for multi-UAV task allocation, leveraging the dy-

namics and environment constraints to assign tasks.

2.4 Learning Temporal Logic Specifications

In many applications of generating LTL specifications for multi-robot systems and single

robot systems, the user must design a goal specification for the system. For novice users

or large complex systems this may be infeasible to do without expert consultation. The

field of LTL mining, deriving LTL specifications from user provided traces is extensive

[35, 99, 100]. These works are commonly seen in computer science applications where

researchers verify system performance through a set of trace logs provided to mining ap-

plications. Then, through a series of search and pruning techniques, Boolean propositions

are composed to satisfy the set of traces provided. These types of solutions are often time

intensive and can grow exponentially in the size of the proposition space. LTL learning

differs from this in that models are used to learn from a set of features defined from a set of

user provided traces the LTL specification that is satisfied by all the provided traces. Usu-

ally specifications are learned with respect to a set of templates (or property patterns) [101]

that describe some desired atomic abstraction that the system is capable of performing.

The final specification is then represented as a composition of these templates and aims to

satisfy the set of traces provided. We can see this in works that use Bayesian inference

for specification learning [39, 10] or through LTL learning problems modeled as Markov
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Decision Processes [9, 29]. In [38] this problem is addressed using signal temporal logic

(STL), a logic formalism that is expressive in spacial, temporal and logic relations, and

uses a classifier algorithm to map traces to STL formulas.

In this thesis, we approach LTL learning through the use of support vector machines

to classify traces as members of LTL templates and represent a desired specification as

the composition of LTL templates generated from the templates chosen from the classifier

for a given set of traces. This method improves upon prior LTL mining techniques by

not performing an exhaustive search for specifications that are satisfied by the given set of

traces offering consistency in performance as template sizes increase. In addition to this,

for a tradeoff in perfect classification, we define a reduced LTL specification capable of

defining system behavior over a reduced number of templates. We compare our algorithm

to LTL mining techniques through run time analysis.
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CHAPTER 3

SPECIFICATION-BASED MANEUVERING OF QUADROTORS THROUGH

SUSPENDED HOOPS

Emerging unmanned vehicle applications such as farming [102] and reconnaissance [8]

require navigating through a sequence of waypoints. With such applications, multiple ob-

jectives must be defined throughout the operation period of the vehicle. For example, a

robot tasked with surveillance may be required to visit certain locations within a targeted

area, report key information to users and periodically charge itself if its battery decreases

below a threshold level. Despite a wealth of work on point-to-point motion planning[62,

63, 69], it is still challenging to provide end-to-end solutions for this waypoint problem on

an actual platform that allows for reconfigurable waypoints and expressive task formulas.

Motivated by these applications and challenges, in this chapter, we study the problem

of flying quadrotors through a sequence of hoops. This problem is dynamically challenging

and using hoops provides a rich set of specifications for creating end-to-end planners. We

first consider the problem using a set of oriented hoops, meaning they have a front and a

back. The hoop flying problem can then be solved by a user directly specifying a desired

sequence of hoops. We develop a sequence-of-hoops algorithm that ensures a quadrotor

flies through this exact sequence when given as hoop/direction pairs by an external user.

We also considers use cases that involve complex tasks where explicit sequences may be

difficult to create.

For complex tasks, linear temporal logic formula can be used to characterize hoops

rather than specifying them directly. For example, a user may specify “visit hoop0 or hoop1

before hoop2” which can be represented by the LTL formula ζ = ¬hoop2 U (hoop0 ∨

hoop1)∧♢hoop2 or a user may indicate “avoid hoop1 at all times” which can be captured

in the formula ζ = □¬hoop1. Work in [90] proposed a sampling-based technique for
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agents to satisfy a global linear temporal logic specification, and [17] utilized a hybrid

controller approach to design continuous trajectories using the dynamics of an autonomous

system to satisfy LTL specifications. In addition to these prior works, we address the

issue of autonomous systems satisfying global LTL specifications; however, our algorithm

identifies more closely with the latter work as we consider the continuous dynamics of

quadrotors in addition to considering tasks specified in linear temporal logic. Moreover,

given a LTL specification, we model it as a Nondeterministic Büchi Automaton (NBA)

and find a satisfying run [23]. The satisfying run corresponds to an infinite sequence of

hoops that we parse through the planner as inputs. The planner then defines a trajectory

via hand-picked control points around each hoop in the continuous space for quadrotors.

We leverage the differentially flat dynamics of quadrotors [73, 5] to generate continuous

trajectories using spline interpolation. With a solution to generating feasible trajectories,

we turn to optimality.

This work follows [97] and [93] in applying cross-entropy optimization. We use cross

entropy as a way to avoid discretizing the action space of the quadrotors, thus reducing

computational complexity by not generating a transition system for the quadrotors. Cross-

entropy optimization also improves upon feasible trajectories by minimizing over a user

defined cost function.

Our work contributes to the application and development of controllers and algorithms

designed to provide abstraction-free planning methods for autonomous vehicles subject to

complex specifications given as a temporal logic formula. The main contributions of this

chapter include:

• An end-to-end solution to the hoop flying problem via a planner given any explicitly

labeled sequence of oriented hoops

• We utilize linear temporal logic without constructing a finite abstraction of the dy-

namics of the autonomous system to augment the expressive capabilities of our plan-

ner.
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• We use cross-entropy optimization on nominal trajectories to optimize via user pro-

vided cost functions.

The chapter proceeds in the following manner. We present a brief overview of the

quadrotor model and controller design in Section 3.1. We develop the mathematical foun-

dation for the hoop flying problem and present three scenarios and approaches in Section

3.2. Finally, we discuss experimental results in Section 7.6 and present conclusions in

Section 6.6.

3.1 Quadrotor Model and Controller

In this section, we give a brief overview of quadrotor dynamics and the controller used in

experiments.

Figure 3.1: A quadrotor with respect to the world frame (Fw), intermediate frame (Fc) and
body frame (Fb). Four motors (ω1:4) produce torques and thrust for the system.

The rotation matrix, R(ε), that translates between the world frame (Fw) and body frame

(Fb) is given by
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R(ε) =


cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ

−sθ sφcθ cφcθ

 (3.1)

where sθ and cθ stand for sin(θ) and cos(θ), respectively. The angles θ ,ψ, and φ are

the angles between the axes of the quadrotor in the body frame and the axes of the world

frame. The input (µ) to the system consists of µ = [ fz,ω
T
bw]

T with fz as the thrust and

ωbw = [ωx,ωy,ωz]
T as the body rotational rates of the quadrotor in the world frame. We

use the quadrotor model from [20] to describe the dynamics that generate trajectories for

quadrotors:

r̈ = gzw +
1
m

R(ε)zw fz (3.2)

ε̇ = Γ(ε)ωbw =


1 sφ tθ cφ tθ

0 cφ −sφ

0 sφscθ cφscθ

ωbw, (3.3)

where zw = [001]T is the z-direction vector for force in Fw and scθ and tθ are sec(θ)

and tan(θ), respectively. The position of the center of mass (r) in the world frame (Fw)

is r = [rx,ry,rz]
T ; m, and g are the mass and acceleration of gravity, respectively. We

represent the Euler angles as ε = [φ ,θ ,ψ]T , and Γ(ε) is the transformation matrix from

body rotational rates in Fb to euler angles in Fw. These dynamics give the 12-dimensional

state (ξ ) of the quadrotors where ξ = [rT , ṙT ,θ ,φ ,ψ,ωT
bw]

T and input (µ).

3.1.1 Controller

We define desired trajectories (ηd) as parametric curves in R3 that are three-times differ-

entiable such that ηd(t) ∈C3. The state (ξ ) and inputs (µ) are generated from trajectories

using differential flatness [5, 75] to develop the controller. This allows us to represent
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the entire state vector (ξ ) of the quadrotor and its inputs (µ) as algebraic functions of the

outputs. These outputs are called flat outputs, and are selected as η = [rT , ψ]T . Through

differential flatness, we control the quadrotors using a feedforward term µ f f adapted from

the differentially flat outputs and a feedback term µ f b. The µ f f is derived by inverting (3.2)

and (3.3) to get the feedforward thrust ( fz, f f ) and body rotation rates (ωbw, f f ). From [73],

fz, f f = γ(η , η̇ , η̈) =−m||r̈−gzw||

ωbw, f f = Γ(ε)−1
ε̇ =


1 0 −sθd

0 cφd sφdcθd

0 −sφd cφdcθd

 ε̇,

where θd = atan2(βa, βb),φd = atan2(βc,
√

β 2
a +β 2

b ) and the d stands for desired. The

functions βa,βb, and βc are defined as: βa = −ẍd cos(ψd)− ÿd sin(ψd), βb = −z̈d +g and

βc =−ẍd sin(ψd)+ ÿd cos(ψd).

For the feedback term µ f b, the feedback thrust ( fz, f b) and body rotation rates (ωbw, f b)

terms take the form,

fz, f b = Kp⟨R(ε)zw,rd− r⟩+Kd⟨R(ε)zw, ṙd− ṙ⟩,

ωbw, f b = Kp


φd−φ

θd−θ

ψd−ψ

+Kd


φ̇d− φ̇

θ̇d− θ̇

ψ̇d− ψ̇

+Kq


yd− y

xd− x

0


with gains Kp,Kd, and Kq ∈ R>0 where our total input to the system is µ = µ f f +µ f b. We

next define the hoop flying problem and our proposed approach.

3.2 Problem Formulation and Approach

Given a quadrotor with dynamics described in Section 3.1.1, we are interested in develop-

ing a fully autonomous planner capable of navigating through suspended hoops. We define
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a hoop in R3, with the following definition:

Definition 1. We define a hoop set H ={H0,H1, . . . ,Hn} according to Ei(r) =
(rx−xi)

2

a2 +
(ry−yi)

2

b2 +

(rz−zi)
2

c2 and Hi = {r ∈ R3 |Ei(r)≤ 1} where(rx,ry,rz) is the pose of the quadrotor, (xi,yi,zi) is the

position of a hoop (Hi) with index i and a,b, and c are the x-radius, y-radius and z-radius of the

hoops, respectively. We define these three constant radii (a,b,c) ∈ R>0 for the hoops to represent

the volume covered by each hoop in our experiments and note they are equivalent for all hoops.

(a) A top-down view of the orientation of control
points for a hoop where the straight line depicted
represents a hoop as seen from above. The five
labeled dots represent the five control points (two
avoid points, rear, center, and front) for each hoop.

(b) A front view of the hoop, depicted as a circle in
the above image, with the five control points (two
avoid points, rear, center and front). Note, the cen-
ter and rear control points are occluded in this view.

Figure 3.2: The orientation of the control points around an example hoop. We define five
control points as points in R3 at desired positions around hoops which are used as anchor
points for trajectories generated between them.

Additionally, each hoop contains five control points (two avoid points, front, rear, and

center) in R3, as illustrated in Figure 3.2. We leverage these control points as anchor

points defining locations of interest near hoops and use them to guide trajectories between

hoops. A motion plan is provided to the sequence-of-hoops planner. This motion plan

is a sequence of hoops given by name and direction indicating which labeled side of the

hoop the quadrotor must fly through. For example, to fly through “hoop0” in the forward

direction followed by “hoop1” in the rear direction, the sequence would be G = ‘hoop0F

hoop1R’. We now follow with the description of our sequence-of-hoops planner.
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3.2.1 Flying through Hoops in a Given Sequence

In this section, we describe our sequence-of-hoops trajectory planner in Algorithm 1. In

particular, we consider the following scenario:

Given a quadrotor and a set of pre-positioned labeled hoops, design a trajectory to fly

through a specific sequence of hoops.

The algorithm receives as input the current pose of the robot (r), a set of n hoops

(H ) (each defined by the control points previously mentioned), the input sequence (G )

of hoop/direction pairs, and the previous control points visited by the quadrotor (c1:m).

These control points are used to generate four distinct curves based on the distance of

the current pose and future control points along with the direction of the quadrotor and

generates segments (segment) via spline interpolation that joins control points together.

We first define the current (pos curr) and previous (pos prev) pose which are found based

on the order of the input sequence. In line 1, the past direction (dirpast) of the last control

point transition is recovered from the list of previous control points.

In line 2 - line 2 we define the next control point (pos next) and the distance vector

(distcurr,next) to the next control point. In line 2, the function NEXT CONTROL POINT

uses the current sequence to determine which control point on a labeled hoop is next. The

function DIRECTION in line 2 gets the direction that the quadrotor is heading. This will

inform our algorithm which type of trajectory, out of four pre-determined curves, will be

chosen for a particular path segment. Starting at line 2, hoops that are in the state space but

not in the input sequence (G ) are avoided using the AVOID function. The AVOID function

receives as input the current position, a hoop from the list of hoops and the desired next

position. If a hoop is between these two points, the function will choose the closest avoid

control point of a particular hoop without crossing through that hoop and that resulting

segment from the avoid control point to the current position will be added to the total

trajectory η(t).

Characterizing a Trajectory Segment: For the four types of trajectories that can be
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Algorithm 1 Sequence-of-Hoops Planner
input : pose of quadrotor r, hoops H , input sequence G , control points prev c1:m
output: trajectory η(t)

1 pos curr← r
pos prev← cm

dirpast ← DIRECTION(pos curr, pos prev)
for i← 0 to len(G ) do

2 pos next← NEXT CONTROL POINT(Gi)
distcurr,next ← DISTANCE(pos curr, pos next)

dircurr,next ← DIRECTION(pos curr, pos next)
for hoop in H do

3 if pos next != hoop then
4 segment ← AVOID(pos curr,hoop, pos next)
5 end
6 end
7 if distyz

curr,next == 0 then
8 segment← STRAIGHT(pos curr, pos prev)
9 end

10 if dircurr,next == dirpast then
11 if distx

curr,next ≤ distyz
curr,next then

12 segment← U TURN(distcurr,next)
13 else
14 segment← S CURVE(distcurr,next)
15 end
16 else
17 segment← TURN(distcurr,next)
18 end
19 pos prev← pos curr

pos curr← RETURN CONTROL POINT(segment)
η(t) = η(t)+ segment

20 end
21 return η(t)

(a) S CURVE: an
arc produced when
distx > distyz and
quadrotor is not
changing direction

(b) STRAIGHT: a
straight line curve
generated in the
x-direction when
distyz is zero

(c) U TURN: curve
produced when
quadrotor is chang-
ing direction

(d) TURN: curve
produced when
distx ≥ distyz and
quadrotor is not
changing direction

Figure 3.3: Trajectory segments that are generated in the sequence-of-hoops planner.
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generated, all are parameterized by time and are described by our algorithm in line 8 - line

18. We describe each function in detail here.

STRAIGHT: If distyz == 0, The function STRAIGHT in line 8 generates a trajectory

segment length ||ηs(t)|| = |rc
x− rw

x | where rc
x is the x− component of the current pose and

rw
x indicates the x− component of the previous pose.

U TURN: A trajectory the length of two quarter arcs joined by a straight segment is

returned by the U TURN function in line 12 where ||ηs(t)||= (distyz−distx)+(distx · π

2 ).

S CURVE: In line 14, the length of the trajectory segment is created by first defining a

right triangle leg (rt), such that rt = δ

√
dist2

x −dist2
yz. Then, theta (θ ) and the hypotenuse

(h) of the triangle are defined as θ = atan2(distyz,distx) and h = rt
sinθ

, respectively. The

total length of the trajectory results in ||ns(t)||= 2(2hθ) which generates two equal length

tangent arcs or an “s-curve” in function S CURVE.

TURN: If the direction is not the same as last, the trajectory length becomes a straight

segment followed by a half-circle that changes the direction of the quadrotor such that

||ηs(t)||= distx +(disty · π

2 ), the function TURN generates this segment.

In line 3.3 we show each type of trajectory segment that our planner can generate.

The path lengths are then transformed into time segments via ts =
||ηs(t)||

v , where v is the

desired speed. These time segments (ts) along with the waypoints (w1:m) given by the input

sequence are used to generate smooth trajectories (η(t)) via spline interpolation.

Example: Using the sequence-of-hoops planner, we provide the following sequence

G = ‘hoop0F hoop1F hoop2F hoop1R’. The provided sequence requires a quadrotor to

navigate through four (4) unique hoop direction pairs in a specified order. In Figure 3.4, we

provide an illustrated trajectory following the specified sequence passed to this algorithm.

A path is planned through all desired hoops and the quadrotor navigates to a pre-specified

final waypoint. In the depicted simulation, our trajectories are constrained with respect

to predefined sequences. In the next section, we propose using the expressive capacity of

LTL to enhance our algorithm. Moreover, we implement an improvement on the sequence-
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of-hoops planner that can utilize LTL specifications to generate sequences that are not

explicitly given by a user.

Figure 3.4: A sample sequence G = ‘hoop0F hoop1F hoop2F hoop1R’ in simulation using
the sequence-of-hoops planner.

3.2.2 Finding Satisfying Sequences Given an LTL Specification

In Section 3.2.1, we proposed a planner that can generate trajectories through explicitly

defined sequences of hoops. However, suppose instead of satisfying explicit sequences, we

utilized LTL as a method to convey high-level user input into trajectories that satisfy these

specifications. Consider the following scenario: Given a quadrotor and a set of pre-

positioned labeled hoops, design a trajectory that satisfies an LTL specification. For

example, consider the following specification: “always ensure flying through hoop0 implies

hoop2 is flown through before hoop1 and eventually reach hoop1”. This specification can

be represented by the LTL formula φ =□(♢hoop0→¬hoop1∪hoop2∧♢hoop1).

We check that propositions hoopi are satisfied by mapping the hoop set (Hi) in Defini-

tion 4.3, to the propositions through the labeling function k, where k(r) = {hoopi ∈Π : r ∈

Hi}. In other words, we map the position of a quadrotor (r ∈ R3) to a set of correspond-

ing hoop propositions. For example, k(r) = {hoop0} iff r belongs to H0. For continuous
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quadrotor trajectories ηc(t), we use a slight overload of notation for the following defini-

tion.

Definition 2. Let us define k over a continuous trajectory where k(ηc) = {hoopi1 ,hoopi2 ,

hoopi3 , . . . ,hoopi j} is the sequence of hoops visited by a quadrotor and hoopi ∈ Π and j indicates

the jth hoop in the sequence.

This labeling function generates a sequence of propositions from the continuous trajec-

tory ηc(t) for t ≥ 0. For example, a sequence could have the form k(ηc) =

{hoop0,hoop1,hoop0}. If the continuous trajectory ηc(t) is created such that all proposi-

tions (hoopi) generated from the trajectory satisfy an LTL formula ζ , then we have suc-

cessfully found a trajectory that satisfies a given LTL formula. Therefore, the trajectory ηc

satisfies the LTL formula ζ iff k(ηc) |= ζ .

Generating Büchi Automata from LTL: After defining discrete propositions in con-

tinuous space, we can plan trajectories in the discrete space and map the trajectories back

into the continuous domain using our sequence-of-hoops planner. From [23], any LTL

formula can be represented as a Büchi Automaton, which are defined as:

Definition 3. The tuple B = (Q,Π,δ ,Q0,F ) is a nondeterministic Büchi Automaton

(NBA) where Q denotes a finite set of states, Π denotes the input alphabet, δ : Q×Π→ 2Q

is the transition function, Q0 ⊆Q represents the set of initial states, and F ⊆Q is the set

of final states.

A run q = q0q1 . . . of a Büchi Automaton where qi ∈Q is an accepting run if qi ∈F

for infinitely many indices. Associated with run q is a sequence of propositions (π ∈ Π)

such that an infinite word σ = π0,π1, · · · ∈Π is accepted if there is an accepting run for σ .

Using efficient tools to translate LTL to nondeterministic Büchi Automaton (NBA) [103],

we represent the NBA as a directed graph. We then search through the graph for runs σ

of the prefix-suffix form σ = (q0, . . .qn)(qn+1, . . .)
ω where the suffix portion of the run

contains at least one state qi within the accepting set. The nth state indicates the last state
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Figure 3.5: A satisfying run from the LTL specification (φ = □(♢hoop0 → ¬hoop1 ∪
hoop2 ∧♢hoop1)). We show the prefix portion of the trajectory in black and the suffix
portion in red. The suffix portion indicates the set of hoops that can be visited infinitely
often.

in the prefix of the run. Once a satisfying run has been found, the satisfying word (i.e., a

sequence of hoops) has been found and we apply our sequence-of-hoops planner to find a

continuous trajectory.

Scenario Example: In regards to our proposed scenario, we augment the sequence-of-

hoops planner to accept LTL specifications. We introduce a function LTL TO SEQUENCE

which receives an LTL specification, generates an equivalent nondeterministic Büchi Au-

tomaton (NBA) [103] and searches for a satisfying sequence. In order to determine which

direction (front or rear) the quadrotor must fly through the hoop from, we use the Euclidean

distance between each proposed hoop to find the closest control point between two consec-

utive hoops in the sequence. The corresponding directions are appended to the hoops in

the sequence and the planner executes as before. From the proposed scenario, we get the

sequence: Σprop = (hoop1)(hoop2)
ω in prefix-suffix form. We note that Σprop is used to

denote the accepting word for the NBA generated from our sample LTL specification and ω

indicates the hoop, or set of hoops, that can be visited infinitely often during the execution

of the algorithm. The resulting trajectory is shown in Figure 3.5.

26



3.3 Optimizing Sequences Using Cross-Entropy

Although the sequence-of-hoops planner is able to generate trajectories from user provided

LTL specifications, the path is generally not optimal. We draw from the following scenario

to motivate our problem:

Given a sequence-of-hoops planner for quadrotors, utilize the cross-entropy method to

return trajectories that satisfy the sequence as well as minimize cost.

Use this method to guarantee an optimal trajectory with respect to a cost function

J (r,u), parameterized by the robot pose, r, and its control input u. We use the cross-

entropy method as a stochastic optimization technique for choosing trajectories according

to our cost function, which we define to minimize the total length of the trajectory, i.e.,

J (r,u) = ||η(·)||.

In the following, a high-level overview of the cross-entropy method will be given fol-

lowed by a proposed algorithm that further extends the augmented sequence-of-hoops plan-

ner in Section 3.2.2 to ensure optimality. For a more detailed description of the method see

[94, 97].

The Cross Entropy Method: Cross-entropy optimization is a method of importance

sampling for probabilistically rare events. The algorithm design for using cross-entropy

with motion planning [93] can be generalized as the following:

1. Generate a set of sample trajectories (J) from a distribution and calculate cost J (r,u) for

each trajectory

2. Update the distribution using a subset of samples (κ), until the sampling distribution con-

verges to a desired cost (Σ) and delta function over the optimal trajectory

The subset of samples is defined as κ = ρJ, where ρ = {ρ ∈ R : 10−1 ≤ ρ < 0.3} and J is

ordered from least cost to greatest. While this method may not generate a globally optimal

solution, due to it being a non-convex optimization method, the entire state space (X ) will
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be explored during trajectory generation. In the next section, we describe our algorithm for

minimizing the sequence-of-hoops trajectory using cross-entropy.

Optimizing the Sequence-of-Hoops Planner: From the augmented sequence-of-

hoops planner in Section 3.2.2, we apply cross-entropy optimization to reduce the cost of

the sampled trajectories once they are generated. Our algorithm is adapted from [97] with

modifications on sampling initial means. We sample from the sequence-of-hoops planner

to generate initial means to ensure that only the subset of the state space relevant to our

hoop sequence is sampled.

Algorithm 2 Cross-Entropy Sequence-of-Hoops Algorithm
input : LTL formula ζ , hoop propositions i→ n Hi:n, number of trajectories T , optimal cost Σ,

elite set modifier ρ , sampling distribution p(µ0,v), iteration number N
output: best path η(t)

22 n := initial iteration number
µ0 = Sequence-of-Hoops Planner(r, Hi:n, ζ , w1:m)
best cost := ∞

while best cost > Σ and n < N do
23 for i in T do
24 path samples→ p(·,v)

η(t)→ PATH(path samples)
path check→ LTL PARSER(ζ ,η(t),Hi:n)
if path check==T RUE then

25 sorted tra jectories→ η1(t)< η2(t) · · ·< ηp(t)
best cost = sorted tra jectories0
elite set = ρ ∗ sorted tra jectories
p(·,v)→ UPDATE(sorted tra jectories)

26 return η(t)

Path samples are sampled from a multi-variate Gaussian distribution. The means (µ0)

are initialized to be n equidistant samples from the augmented Sequence-of-Hoops planner.

As a result, we get path samples from line 24. In line 24 we define a PATH function that

receives as input samples from the distribution p(µ0,v) and generates a trajectory via spline

interpolation. This trajectory is then checked in line 24 where it is monitored for inclusion

in hoop sets (H ). The trajectory is then parsed in the syntax of the accepting set of hoops

and checked for whether it satisfies the string received initially from the augmented planner
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generated from the LTL formula (ζ ). If this check returns T RUE the trajectory is returned,

otherwise a new trajectory is sampled. Trajectories are collected and sorted from best cost

to worst cost and an elite set is chosen corresponding to a subset of trajectories (T). We

then update the probability distribution using the elite subset of trajectories.

Scenario 4.3 Example: Using the cross-entropy sequence-of-hoops planner, we op-

timize over the LTL formula φ = □(♢hoop0 → ¬hoop1 ∪ hoop2 ∧♢hoop1) provided in

line 3.2.2. In Figure 3.7, we show the optimized trajectory of the LTL formula with the

constraint that the each trajectory segment (prefix and suffix) length should be less than 5

meters or J (r,u) ≤ 5. In Figure 3.6 we show the sampled paths over an iteration of the

algorithm.

Figure 3.6: Here we show a series of trajectories generated from Algorithm 2. The prefix
portion of the trajectory, represented in blue, satisfied the cost function J = ||η(t)|| ini-
tially therefore, only one sample was needed. Several samples of the suffix portion, in red,
of the trajectory were sampled before a satisfying trajectory was found.

3.4 Demonstration of Planner

We implement the planner on the Robotarium at Georgia Tech where we use Crazyflie

2.0 quadrotors. The Robotarium uses a Vicon Tracking system which records real-time
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Figure 3.7: A simulation snapshot of the LTL cross-entropy sequence-of-hoops planner
after a satisfying run. The optimized trajectory of is shown here where each trajectory
segment must satisfy the cost constraint J (r,u)≤ 5.

position of robots with a 100 Hz update rate. The algorithm was created in Python and

sends control inputs to a PID controller in C++. Commands are sent via ROS messages

to Crazyflies and a radio operating in the 2400 MHz range with a data rate of 2 Mbit/s

sends these commands to the quadrotors. We orient hoops with vertical stands, as pictured

in Figure 3.8a, in the Robotarium and mark them with Vicon tracking points to record the

center of the hoops and generate the other control points.

Using the methods we have described in the previous sections, a user can specify either

an explicit sequence of hoops or an LTL formula via a command line interface (CLI).

Depending on the input, the sequence is then parsed through the sequence-of-hoops planner

as a sequence of hoops or LTL formula and generates trajectories that maneuver a quadrotor

through hoops satisfying that specification. The user is also given the option to give a

minimizing cost as well. Using the cross-entropy LTL algorithm, trajectories are minimized

via cost functions (J ) provided a priori.

In Figure 3.8b, a composite image of a quadrotor is shown completing a trajectory.

We define the sequence (G ) for the sequence-of-hoops planner to execute as the same in

Section 3.2.1. We use spline interpolation to generate trajectories between waypoints and
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define a constant velocity of 0.45 m/s.

By restricting the planning to discrete hoop-to-hoop transitions we argue we have pro-

vided a potential solution to the hoop flying problem with our sequence-of-hoops planner.

Using LTL, specifications as hoops can naturally be defined as discrete objects and en-

hances the range of specifications that the planner can satisfy. Leveraging the dynamics

of quadrotors allows us to generate continuous trajectories, implement these trajectories on

actual aerial robotic systems and provide applicable use cases for LTL with robotic systems.

(a) The hoops are mounted on adjustable stands
and are tracked via Vicon markers.

(b) A composite image of the quadrotor executing
the beginning of the automatically generated tra-
jectory from sequence G = ‘0F 1F 2F 1R’.

Figure 3.8: Hoops are placed in the Robotarium and users can give sequences/LTL specifi-
cations via a command line interface (CLI).

3.5 Conclusion

Through the methods developed and implemented in this chapter, we design an end-to-end

solution to the hoop flying problem. We show that given an explicitly labeled sequence

of hoop/direction pairs the planner generates trajectories from four predefined trajectory

segments to satisfy the sequence. We also show that for more complex specifications that

may not be easily defined as sequences can be defined as LTL specifications and parsed

through the planner as input. In addition, to ensure optimality, the cross-entropy optimiza-
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tion method is utilized on nominal trajectories to optimize via user provided cost functions.

In order to enhance the Robotarium user experience with quadrotors, we have implemented

this as a novel interaction modality for external users to engage with aerial vehicles in the

Robotarium.
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CHAPTER 4

MULTI-AGENT TASK ORCHESTRATION VIA CROSS ENTROPY

OPTIMIZATION

This chapter presents a task orchestration framework for multi-agent systems utilizing lin-

ear temporal logic (LTL) and cross entropy optimization, a stochastic optimization tech-

nique used for rare-event sampling. We define task orchestration as a combination of task

decomposition, allocation and planning for a quadrotor or team of quadrotors given a high-

level specification. Specifically, we consider tasks that are complex and consist of environ-

ment constraints, system constraints, or both, that must be satisfied. We first approached

motion planning for the single agent case in Chapter 3 where transition systems for the

environment allow tasks to be developed as linear temporal logic (LTL) specifications.

Trajectories were generated via motion primitives for a single quadrotor and optimized

via cross entropy to ensure optimal satisfaction of a cost function. We extend this work

to the multi-agent case where a team of homogeneous quadrotors are considered to sat-

isfy an LTL specification. In order to provide faster computations and initial cost-agnostic

sampling, we formulate the online version of multi-agent task allocation via cross entropy

for tasks specified in LTL specifications in Chapter 5. The results of this framework are

verified in simulation and experimentally with a team of quadrotors.

In the previous chapter, we presented a planner capable of utilizing LTL to delegate

high-level user specifications to a quadrotor. Through the introduction of motion primitives

we simplify the path planning problem and introduce cross-entropy to optimize trajectory

costs over a desired cost function. However, for large LTL specifications using a single

agent may become infeasible. By using multiple agents, we can scale up the number of

tasks a group of robots can perform and reduce the total time required to complete the tasks.

Therefore, in this chapter we propose to use LTL as global task specifications, allowing
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users to design global goals for multi-agent team execution. In addition to this, global

goals enable scalability (i.e. goals are independent of the team size) and reduce cognitive

load [1] on the designer as they do not have to assign each agent a specification. This

type of interaction modality is easily adapted from temporal logic formula, in addition to

providing formal guarantees for global specification satisfaction. In this chapter, we will

give a brief overview of the transition systems used followed by an LTL decomposition

framework that will allow for the decomposition of LTL specifications to a set of N agents.

Interaction with multi-agent systems often involves users requiring the satisfaction of a

set of complex tasks. These tasks are delegated to the multi-agent system for a wide vari-

ety of reasons including: autonomous surveillance [42], search and rescue tasks [40] and

environmental monitoring [104]. Often these tasks are defined as individual and environ-

ment constraints imposed on the system [32], [6]. These constraints must then be satisfied

by a single agent or a multi-agent system while a main objective is reached according to

an objective function or performance index. In this chapter, we formulate a system called

task orchestration, defined as a composition of task decomposition, allocation and plan-

ning to provide an end-to-end framework for a team of quadrotors given constraints and an

objective function. Specifically, users provide system constraints and objectives as linear

temporal logic (LTL) specifications [23] and tasks are decomposed using a task decom-

position framework and allocated according to an objective function for each agent in the

multi-agent system. Finally, trajectories associated with a set of assigned tasks are gener-

ated for each agent.

We experimentally validate the application of the task orchestration framework through

a fire-fighting quadrotors scenario. Consider a set of N quadrotors, capable of carrying

water, surveying various locations and identifying resources within a predefined area. How

does one dynamically allocate these quadrotors to different regions, extinguish fires and

monitor their internal states in an efficient manner? Using the task orchestration frame-

work, users give a desired global goal for the team of quadrotors to satisfy; the framework
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then dynamically allocates tasks to each agent based on input cost and trajectory length,

environment and agent constraints and plans trajectories for each agent. Experimentally,

we define desired regions as hoops in the work space and generate an environment tran-

sition system to indicate how regions are connected. The internal state of a quadrotor is

represented as the robot transition system.

With these formulations, we consider LTL as the global specification syntax users pro-

vide the task orchestration framework. Formal logic specifications, like LTL, provide an

efficient and concise method for specifying and verifying correct behavior in dynamical

systems and are well suited to human level interpretation and development due to its ex-

pressive syntax. High-level motion planning and task allocation using LTL allows for a

diverse set of problems to be solved.

We addressed the issue of quadrotor high-level motion planning by creating motion

primitives based on hoop/direction pairs in Chapter 3. In addition to providing a frame-

work for high-level motion planning in the single agent case, we also reduce the time con-

suming and resource intensive process of product automaton generation for the multi-agent

case. We do this in two ways: we leverage an LTL decomposition framework and introduce

a method for cross-entropy optimization on trajectories sampled from multivariate distri-

butions. The decomposition framework is from [34] and provides a theoretically sound

method for decomposing a global LTL specification for an arbitrary number of agents.

This bounds the size of the system product automaton to grow linearly with the number of

agents as opposed to exponentially, as in most other works. We expand this work by intro-

ducing cross-entropy optimization which allows task delegation and switching to be based

on the cost function of an individual agent. Cross-entropy optimization provides a method

for stochastic optimization of trajectories by estimating rare-event probabilities (character-

ized as events that occur infrequently), which we associate with a desired cost and cost

function. An alternative optimal sampling-based technique proposed in [105] leverages a

probabilistically complete method of motion planning; however, it is not applied to multiple
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goal satisfaction nor does it address how it can be used for multiple agents. However, many

prior works exist that utilize cross-entropy optimization for multi-agent task allocation ap-

plications. It has been used in solving problems like the max-cut problem [95], vehicle

routing problem [96] and other problems for which dynamic allocation of resources can

be formulated as minimizing according to a known desired cost and resources are drawn

from a known distribution in order to estimate an unknown distribution [97],[106]. This not

only removes the need for an expert dependent action cost assignment but also allows gen-

eral agent cost constraints to be defined within each agent that can leverage cross-entropy

optimization for multi-agent task allocation.

In this chapter, we develop a framework for task orchestration in the multi-agent case.

We presents a novel algorithm designed to sample trajectories and converge to a desired

cost to determine the best robot from a team of robots for continued satisfaction of a goal

specification and objective function. This algorithm advances the state-of-the art by in-

troducing a formulation that allows users to design agent specific cost functions – for a

homogeneous team of robots with equivalent dynamics – and dynamically allocate tasks

over time while satisfying a global specification in addition to constraints of the environ-

ment or individual agent dynamics.

This chapter proceeds in the following manner. We develop the mathematical founda-

tion for defining discrete transition systems and finite LTL in Section 6.2. A formal problem

formulation is given in Section 4.2. We present the MTAC-E algorithm in Algorithm 4.3.

Finally, we present a case study in simulation and provide experimental results in Section

4.4 and conclude in Section 6.6.

4.1 Defining Transition Systems

The framework for defining task decomposition [34] involves creating several state transi-

tion systems for a robotic system. From this discrete planning framework, we are able to

decompose a product automaton containing multiple agents into independent tasks that can
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be handled by each agent, while also satisfying a given goal specification. The definition

of the robot transition system, R, follows.

Definition 4. The robot transition system is defined as a tuple R = (SR ,SR,0,AR ,ΠR ,ΛR)

such that:

• SR is a set of robot states

• SR,0 ⊂ SR is the set of initial robot states

• AR is a set of available robot actions

• ΠR is the set of robot propositions

• ΛR : SR → 2ΠR is a labeling function that assigns atomic propositions to states.

The robot transition system captures the entire internal state of the robot and transitions

are based on the actions, AR available to the robot at each state. We next define the en-

vironment transition system E to capture the properties of the regions of interest for the

agents.

Definition 5. The environment transition system is defined as a tuple E = (VE ,EE ,ΠE ,ΛE )

such that:

• VE is a set of environment vertices

• EE is a set of edges between vertices where EE ⊆VE ×VE

• ΠE is the set of environment propositions

• ΛE : SV → 2ΠE is a labeling function that assigns atomic propositions to locations

The product automaton A is used to define the internal state and external location of

the agent throughout the planning space.

Definition 6. The agent transition system is given as a product transition system A =

E ⊗R = (SA ,SA ,0,AA ,ΠA ,ΛA ) such that:
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• SA =VE ×SR are the combined location and internal states of the agent

• SA ,0 = {(v,s0) ∈ SA : s0 ∈ SR,0} is the set of initial agent states

• AA ⊆ SA ×SA are the actions available to the agent

• ΠA ⊆ΠE ×ΠR is the set of agent propositions

• ΛA : SA → 2ΠA is a labeling function that assigns atomic propositions to agent states

In this definition, the set of actions AA are available to a robot based on both its internal

state and location in the environment. Additionally, the actions are restricted in that only

actions that are available at states which satisfy the Boolean transition formula, ξ : AA →

ψ , are included. More formally,

AA = {a = ((v,s),(v′,s′)) ∈ SA ×SA :

(v,v′) ∈ EE ∧ (s,s′) ∈ AR ∧ΛA ((v,s)) |= ξ (a)}

Now that we have the agent automata defined for all agents, we can define the planning

automaton P for the entire system.

Definition 7. The planning automaton P is a product automaton of the NFA and agent

transition system where P = F ⊗A = (SP ,S0,P ,AP) such that:

• SP = Q×SA is the set of states

• S0,P = {(q0,s) ∈ SP : q0 ∈ Q0∧ s ∈ SA ,0} is the set of initial states

• AP = {((q,s),(q′,s′)) ∈ SP ×SP : (s,s′) ∈ AA ∧β (s) |= δ (q,q′)} is the set of actions

With the planning automaton P , only sequences, σ – with propositions ΠA – that

satisfy the LTL specification φ are accepted.
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4.1.1 Decomposition Set

Given a multi-agent system with N agents, each represented according to the automata P i,

we seek to decompose the global LTL specification φ such that parts of it can be assigned

to the set of agents based on their cost functions. Moreover, using task decomposition, we

wish to generate independent sequences of action/state pairs from P i to satisfy φ where

sequences are si = s0a0, . . . ,ansn. We give the following definition of finite LTL task de-

composition.

Definition 8. [34] Let Ti with i ∈ {1, . . . ,n} be a set of finite LTL task specifications and

σi denote any sequence such that σi |= Ti. These tasks are called a decomposition of the

finite LTL mission specification φ if and only if:

σ j1 . . .σ ji . . .σ jn |= φ (4.1)

for all permutations of ji ∈ {1, . . . ,n} and all respective sequences σi.

From this definition of decomposition we can create the decomposition set D ⊆Q of

the NFA F developed from φ . This set contains all states q for which the pair of tasks

T q
1 ,T q

2 , where q is a state in the decomposition set D , define a valid decomposition. For

a proof of this property, we refer the reader to [34].

We use this to avoid generating a large product automaton of the transition system of

agents and automaton representation of the finite LTL specification. This greatly reduces

the computational complexity usually encountered with systems involving a large number

of agents. We define team product automata, T , with the following definition.

Definition 9. The team model automaton T is a union of the N local product automatons

P i with i ∈ {1, . . . ,N} where the tuple is T = (ST ,S0,T ,AT ,FT ) such that:

• ST = {(r,q,s) : r ∈ {1, . . . ,N},(q,s) ∈ Si
P} is the set of states
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• S0,T = {(r,q,s) ∈ ST : r = 1} is the set of initial states, with r being a randomly assigned

initial agent

• AT =
⋃

i Ai
P ∪ζ is the set of actions, including the switch transitions Z

• FT is the set of accepting final states

Switch transitions, Z, allow our algorithm to select a new agent within the product

automaton to complete the satisfaction of the specification.

Definition 10. The switch transitions in T are given by Z ⊂ ST × ST . A transition ζ =

((rs,qs,ss),(rt ,qt ,st)) ∈ Z if and only if [34]:

• rs ̸= rt: the agents are different

• qs = qt: the progress of the NFA is preserved

• rt = rs +1: A new agent is selected

• st = srt
0,A : The new state is the initial state of a new agent

• qs ∈D: the state is in the decomposition set of the NFA

4.2 Problem Formulation

With discrete transition systems defined for a homogeneous team of agents and a decom-

position framework, we turn to our problem formulation.

Problem: For a given set of homogeneous agents, distribute tasks among these agents

considering discrete agent transition systems with unknown action costs. Distribute these

tasks while minimizing individual agent cost functions fi(·), given by the operator before

execution, for agents i, . . . ,N.

We demonstrate this problem as a firefighting quadrotor scenario in Section 4.4. In

this problem, we designate N quadrotors, each defined by discrete product automata as

our set of homogeneous agents, with no action costs to transition between states. The
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swarm of robots is given the global task of surveying goal locations within the state space,

acquiring water and transporting it to the desired location while obeying the constraints of

the environment. We solve this problem using the MTAC-E algorithm proposed below.

4.3 MTAC-E Algorithm

Solution: We propose the Multi-Agent Task Allocation Cross-Entropy (MTAC-E) Algo-

rithm to delegate tasks to a set of agents. Previously, we defined a decomposition frame-

work in Section 6.2; given we have designed cost functions for each agent in the problem,

we need a way to find optimal trajectories by minimizing these cost functions. To find the

associated minimized costs, we propose using cross-entropy optimization. In this frame-

work, we use cost functions optimized via cross-entropy as opposed to static actions costs

defined at discrete state transitions. This additional flexibility in problem design allows

operators to minimize over individual agent cost functions and use generalized functions

for entire agent trajectories when the cost to perform an action is unknown. We present a

brief overview of cross entropy and our algorithm in the following sections.

4.3.1 Cross-Entropy Optimization

Cross-entropy optimization is a method of importance sampling for probabilistically rare

events. The algorithm design for using cross-entropy with motion planning [93] can be

generalized as the following:

1. Generate a set of sample trajectories (J) from a distribution p(·,x) and calculate cost

J (·) for each trajectory

2. Update the distribution, p, using a subset of samples (κ), until the sampling distribu-

tion converges to a desired cost (λ ) and delta function over the optimal trajectory

The subset of sampled trajectories with the lowest cost (i.e. κ ⊂ J) is defined such that |κ|=

ρ|J|, where typically 10−1 ≤ ρ < 0.3. This subset is known as an “elite set” and provides
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a new sampling space to generate the distribution p. In this work, we sample trajectories

according to a multi-variate Gaussian distribution N (µ,Σ) such that µ = [µ0, . . . ,µn]
T

for n equally spaced points along the set of sampled trajectory. The covariance matrices,

Σ = [Σ0, . . . ,Σn]
T form an nm×m matrix with Σi initially set to the identity matrix, I.

Expectation-Maximization [107] is used to update the means and covariances for the newly

sampled trajectories. In the next section, we describe the multi-agent task allocation cross-

entropy (MTAC-E) algorithm.

4.3.2 Algorithm

The algorithm developed in this chapter, provided in pseudocode format in Algorithm 3,

can be described in four steps:

1. given the initial state of the agent product automaton, find the cost of transitioning to

the next state using cross-entropy and the cost function assigned to the agent

2. if this state is contained in the decomposition set, check all other agent cost functions

and

3. if an agent has a lower total cost, switch to this agent for the remainder of the algo-

rithm or until a new switch is determined

4. this process in continued until the end state is found and corresponding trajectories

are returned to all agents for execution.

The algorithm receives as input the team product automaton, T , the decomposition set,

D , an optimal cost for each agent to minimize towards, λ , the elite set modifier, ρ , an initial

sampling distribution, p and the number of times to iterate the sampling procedure, K. In

Line 27, the initial state, pi, the agent of pi ,αi, and the current sequence of states visited by

agent i, sequencesi, are initialized. We recall Definition 9 of the team product automaton in

this framework such that via a standard BFS search, once the state p ∈ f inal states(T ) is

found and a sequence is generated that reaches this state, the LTL specification is satisfied.

42



The cross-entropy optimization technique in Line 29 is utilized in the function

cost to go. An initial probability distribution is provided for each agent with initial

means and variances. Also, elite set modifiers (ρ), an optimal cost (λ ), and a bounding

maximum iteration number (K) are supplied as input. The function samples from the given

distribution and iterates until either the cost function has been met or the maximum itera-

tions has been exceeded and returns the trajectories for each agent (ηi(t), . . . ,ηn(t)).

For states in the decomposition set (D), a cost is calculated from each in Line 30 and if

one of the costs is less than the current agent’s cost (costi) the agents are swapped and the

new agent j continues the remainder of the sequence until the next switch transition occurs.

By switching the agents at decomposition states, this algorithm optimizes the individual

task function of each agent via cross-entropy and optimally allocates tasks to minimize the

total cost of an individual agent. This algorithm will return a set of trajectories N with

each agents individual trajectory ηi(t).

4.3.3 Complexity

We give a brief overview of the complexity of the algorithm and compare it to other meth-

ods for task allocation using temporal logic. Size analysis to search through LTL automata

for satisfying sequences is well-known [23]. Generally, a trajectory, η can be checked if

it satisfies the automata Aφ in O(|η | · |Aφ |), denoting a bilinear complexity in the length

of the trajectory and in the size of the automata. Leveraging task decomposition, the size

of our team automaton, T is much smaller than one created via a product automata (i.e.

Aprod = Pi⊗Pi+1, . . . ,PN−1⊗PN), where N is the number of agents. In our work, we

check trajectories for membership in an agent planning automaton, Pi, which is equivalent

to the number of NFA states F times the number of agent states A or |Pi| = |F | · |SA |

unlike automata produced by constructing a product where |Aprod| = |F | · |SA |N , thus

|Pi| ≪ |Aprod| . Due to the checking of N agents in our framework, our algorithm can

check trajectories with complexity of O(N · (|η | · |Pi|)). Recall, that product automata
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Algorithm 3 MTAC-E Algorithm
input : product automaton T , decomposition set D , optimal cost λ , elite set modifier ρ , sampling

distribution p(µ0,v), iteration number K
output: set of trajectories N

27 pi := initial state(T )
αi→ pi := agent i in initial state
sequencesi := sequence of states visited by agent i
p→ pi := set p to initial state
while p /∈ final states(T ) do

28 for q in neighbors(p) do
29 ηi(t), costi→ cost to go(αi, q, sequencesi, λ , p(·,v), K, ρ)

if q ∈D then
30 η j:n(t), cost j:n→ cost to go(α j:n, q, sequences j:n,λ , p(·,v), K, ρ)

31 end
32 if cost j:n < costi then
33 αi→ α j

p→ p j

sequences j = sequences j + sequences j,p→q

34 end
35 else
36 sequencesi = sequencesi + sequencesi,p→q

37 end
38 end
39 end
40 N = {η1(t), . . . ,ηn(t)}

return N
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have states that grow exponentially with the number of agents therefore, due to our algo-

rithm being linear in the number of agents, N, we show our algorithm is far more scalable

than other methods utilizing product automata for task allocation. In addition to this, the

runtime of the MTAC-E Algorithm, while heavily dependent on cost function choice and

size of planning automaton, is ∼ 300 seconds for the task allocation of three agents.

4.4 Case Study: Fire Fighting Drones

We motivate the application of Algorithm 3 with a firefighting UAVs scenario. For ex-

ample, each agent may be a fire-fighting autonomous aircraft capable of collecting wa-

ter, extinguishing fires and surveying goal locations. These UAVs are given the following

global goal: “eventually visit LOC1 and LOC2 and always ensure visiting SMOKE implies

CARRY ING”. Using LTL, this specification can be represented as φ = ♢LOC1∧♢LOC2∧

□(SMOKE =⇒ CARRY ING).

Figure 4.1: A transition system for a single agent which describes the internal state of a
robot (Ri). All robots start at the initial state ‘NO WATER’ and a location-based transition
is used to determine when to transition to the ‘CARRYING’ state. If a robot is in the
environment state that satisfies the ‘WATER’ proposition, the robot can transition to the
‘CARRYING’ state.

According to our discrete planning framework, we define the internal state of the robot
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using Definition 4 where our robot is represented by a two state transition system with

a transition denoted by whether it has visited the water location in the environment. A

robot transitioning from the ‘NO WATER’ state to the ‘CARRYING’ state indicates the

‘WATER’ proposition was true in the environment during that transition. In Figure 4.1 we

represent the discrete internal transition system of robot i as (Ri).

The environment transition system, Figure 4.2, is represented by a set of nodes cor-

responding to states with adjacent nodes in the graph representing neighbors for potential

paths through the state space. In simulation and experiment, we represent each node as an

ellipsoid in R3. Formally, these ellipsoids have the following form:

Definition 11. The environment proposition set ΠE = {Ei, . . . ,En} is defined as:

E j(r) =
(rx− x j)

2

a2 +
(ry− y j)

2

b2 +
(rz− z j)

2

c2 (4.2)

E j = {r ∈ R3 | E j(r)≤ 1} (4.3)

where(rx,ry,rz) is the pose of the quadrotor, (x j,y j,z j) is the position of a region of interest

(E j) with index j and a,b, and c are the x-radius, y-radius and z-radius of the regions,

respectively. We define these three constant radii (a,b,c) ∈R>0 for the regions to represent

the volume covered by each ellipsoid in our experiments and note they are equivalent for

all ellipsoids.

Figure 4.2: The environment transition system where each state indicates a desired region
of interest. The initial state of the environment is the ‘ROBOT’ state. In the fire fighting
example, LOC 2, cannot be reached unless the quadrotor passes through the SMOKE re-
gion.

Using this definition, discrete transitions are identified when the relative position of a
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quadrotor transitions inside any of the regions of interest defined in the state space. In our

case study, the environment proposition set is ΠE = {WAT ER,SMOKE,LOC1,LOC2}.

By taking the product we can generate the full agent automaton for each agent i such

that Ai = E ⊗Ri shown in Figure 4.3. Following the standard procedure for developing

automata for robotic systems we generate a NFA from the finite-LTL specification and take

the product with Ai for each agent to get P, an automaton that only accepts runs that satisfy

the LTL specification and agent transition system.

Figure 4.3: The full agent transition system for a quadrotor. Transitions to the ‘CARRY-
ING’ state can only be fulfilled once the agent has retrieved water from the environment
node.

4.4.1 Deriving the Control Input

Utilizing the differentially flat dynamics [5] of the quadrotors, we represent the inputs and

outputs of the system as algebraic function of chosen flat outputs and their derivatives.

From this property, trajectories can be generated by leveraging the nonlinear dynamics of

the quadrotors. This leads to the ability to plan smooth trajectories that are three-times con-

tinuously differentiable functions, η(t)∈C3, in the output space that can be converted back

analytically into feasible trajectories for the full state of the quadrotors. We utilize a virtual

input u ∈ R3 from [20] that controls a chain of integrator dynamics for the differentially

flat outputs of the system.
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4.4.2 Simulation

We apply Algorithm 3 to the disjoint product of the n agents P automaton, T =Pi∪·· ·∪Pn.

In order to generate trajectories from the given specifications we utilize a custom sequence

planner that uses pre-selected trajectories based on a quadrotor’s position and speed relative

to a labeled location (e.g. an ellipsoid’s location and generate splines between ellipsoids).

After the initial trajectory for a given sequence is plotted, we use cross-entropy optimization

to minimize that trajectory over the cost function J =
∫ T

0 η(τ)+u(τ)dτ .

The MTAC-E Algorithm samples trajectories from an unknown distribution that min-

imizes the cost function, J , which is a function of the path length, η(t) and the control

input, u(t) = ...r where r = [x,y,z]T ∈ R3, the position of the center of mass of the robot.

We set λ = 0, indicating a desired optimal cost for each agent of minimal trajectory length

and cost. In general, a trade-off is made between picking a reasonable λ and algorithm

run-time, which is why limiting the number of iterations is desirable.

Figure 4.4: Three quadrotors during a simulated fire fighting mission. The entire team
is given the specification φ = ♢LOC1 ∧♢LOC2 ∧□(SMOKE =⇒ CARRY ING). Each
quadrotor is considered during the iteration through the product automaton of the system,
switches to another quadrotor are considered when the cost is beneficial for the team.

Results are shown in Figure 4.4 where three quadrotors are shown satisfying the LTL
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formula φ . The results sequences are quad0 = {WAT ER SMOKE LOC2}, quad1 =

{SMOKE} and quad2 = {WAT ER LOC1} which results in a satisfying sequence for the

entire input specification. The returned sequences are one of many satisfying sequences

returned by a search over the team automaton, T , and additional constraints in the graph

can modify which sequences are returned.

Figure 4.5: The MTAC-E Algorithm iterates 12 times over a subset of trajectories and
produces the trajectory with the lowest cost after all iterations. Here, we show the algorithm
evaluating which quadrotor should transition to LOC2. This calculation is formulated in our
cost function where we minimize the distance traveled and input to system. Each quadrotor
executes the MTAC-E optimization and after all quadrotors have completed the algorithm,
the quadrotor with the lowest cost is selected to complete that task, in this example quad2
is chosen.

4.4.3 Experimental Results

The MTAC-E Algorithm is implemented on the Robotarium at Georgia Tech where we

use Crazyflie 2.0 quadrotors. The Robotarium uses a Vicon Tracking system which records

real-time position of robots with a 100 Hz update rate. The algorithm was created in Python

and sends control inputs to a PID controller in C++. Commands are sent via ROS messages

to Crazyflies and a radio operating in the 2400 MHz range with a data rate of 2 Mbit/s sends

these commands to the quadrotors.

We use hoops with vertical stands to represent regions of interest, characterized by el-

lipsoids, as pictured in Figure 4.6, and mark them with Vicon tracking points to record
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Figure 4.6: In the experimental case study of the firefighting quadrotors, three quadrotors
are chosen to execute the global task specification. The entire team is given the specification
φ = ♢LOC1∧♢LOC2∧□(SMOKE =⇒ CARRY ING) and each are given a cost function
to minimize. Regions of interest are represented as ellipsoids and hoops on stands are used
in the experiment.

the center of the hoops and generate the proposition sets. In this experiment, we utilize

three quadrotors and deploy them with the same LTL specification used in Section 4.4.2.

Based on the cost constraint J , defined previously as functions of position and control

input, tasks are assigned to agents based on proximity requirements to goal locations, con-

trol input constraints and prior tasks executed. Resulting from this problem, the quadro-

tors are allocated tasks in the following sequences quad0 = {WAT ER LOC1 SMOKE},

quad1 = {SMOKE WAT ER LOC2 SMOKE}, and quad2 = {WAT ER SMOKE}.

This experiment demonstrates the practical use of quadrotors in a real world scenario, del-

egating tasks to the agents in an optimal fashion using the MTAC-E algorithm.

4.5 Conclusions

In conclusion, we have developed a novel method for multi-agent task allocation using

cross-entropy motivated by task switching for decomposed sequences of tasks. This method

allows users to design global specifications to multi-agent systems where exact action costs

for agents are not known to the user a priori but a known distribution can be approximated
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through a cost function. In addition, cost functions can be defined for individual agents de-

pending on agent specific constraints. We show that this algorithm is scalable and flexible

in system and environment constraint satisfaction through an operator chosen cost func-

tion. We showcase the efficacy of the algorithm both in simulation and in experiment under

a scenario that demands satisfaction of environmental constraints and system constraints

while optimizing a cost function designed to minimize individual agent trajectories and

inputs.
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CHAPTER 5

ONLINE MULTI-AGENT TASK ALLOCATION

The MTAC-E algorithm developed in Chapter 4 allowed the use of a stochastic optimiza-

tion technique for task allocation of a multi-agent system. In addition to this, we utilize

cost functions to assign agents a task based on the individual constraints of an agent and

its environment. However, this algorithm was developed in an offline manner, meaning

it must run to completion before tasks can be delegated to a set of agents. This is time

consuming and detrimental for time critical task assignment scenarios. The offline algo-

rithm also considers optimal costs defined a-priori by an expert individual. This assumption

makes it difficult for users to utilize this algorithm without prior information of the desired

cost function, agent and environment that a multi-agent system will operate in. We solve

both these issues by developing an online method of cross-entropy, modified to operate

over multi-dimensional probability distributions. This method allows fast generation of

trajectories in real-time and an expert independent method of optimal cost generation.

In addition to this, the online multi-agent task allocation framework we propose pro-

vides fast calculations of optimal agent assignments and greatly reduces the task allocation

computation time. One work that is close to ours is that of [98], where the authors use

adaptive cross-entropy for task assignment for UAV formations, optimized over a global

cost function. However, these authors do not consider path planning in their problem for-

mulation and only consider task allocation for simulated vehicles.

This chapter improves on the multi-agent task allocation algorithm by modifying our

framework to consider online task allocation, providing fast updates to desired trajectories

allocated to a team of robots. This novel approach to task allocation provides online tra-

jectory sampling from a known distribution and iteratively updates based on the desired

quantile of the multivariate distribution associated with a desired trajectory. By providing
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this online methodology we combine the reduction in product automata size from task de-

composition with an expert independent framework for choosing optimal costs and a fast

way to dynamically allocate tasks to a set of agents which scales linearly.

This chapter extends the work from [108] and [106] by significantly expanding the ca-

pabilities of the previously developed multi-agent task allocation algorithm via the online

cross-entropy optimization method developed in this chapter. In particular, we present a

novel characterization of online cross-entropy over multivariate distributions and develop

a general, task orchestration framework that utilizes this stochastic optimization methodol-

ogy for online task assignments to individual agents in a multi-agent system. We compare

this online result to the prior offline work, and empirically show a significant decrease in

overall cost and execution time. In addition to this, we validate the online approach for task

orchestration of multi-agent systems on a particular fire-fighting quadrotors scenario.

5.1 Online Cross Entropy

In order to apply an online version of the MTAC-E algorithm, we consider the trajectory

Xt sampled at time t. The trajectory Xt = (X1t , . . . ,Xnt) is a vector of i.i.d. random

variables Xit drawn from known multivariate Gaussian distributions N (µ,Σ). Similar

to [109], we consider a sample, XNe , elite if at position ρ · |X |, with ρ > 0 and |X | the

cardinality of the set of trajectories drawn at time t, it belongs to the subset of ordered

trajectories {X0 < X1 < · · ·< Xρ·|X |}. At each time step, this sample is chosen based on

if its corresponding cost f (XNe) ≥ λt where λt is the elite threshold. The threshold (λt)

either increases, decreases or stays constant according to four cases depending on where

the new sample and the dropout sample belong in the set of N trajectories:

1. New sample (X[Ne+1]) and dropout sample (X[Ne]) are elite, this is a rare event with

probability ρ and as such has a small probability of occurring. In this event, the

threshold, λ and threshold position stays the same and does not change.
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2. New sample is elite but dropout sample is not elite. In this case, the threshold value

will increase by the difference in cost between the new sample and the sample at

the end of the elite set such that λt+1 = λ + f (X[Ne+1])− f (X[Ne]). This increase

in λ is attributed to “expanding” the search of trajectories with similar costs to gain

membership to the elite set.

3. New sample and dropout are not elite. The threshold will stay the same.

4. New sample is not elite and dropout sample is elite. In this case, the threshold value

will decrease since the thresholding may be too high for samples to be considered

elite. Thus, the threshold is lowered to λt+1 = λ + f (X[Ne−1])− f (X[Ne]).

Let ∆t = E( f (X[Ne+1])− f (X[Ne])|Gt) be the update step for the threshold where Gt is

the σ -algebra of all known random outcomes up to time t and f (X[Ne]) as the trajectory

cost measured at the elite set threshold. Given that the sample positions within the set of

trajectories are distributed uniformly,

E(λt+1|Gt ,new sample is elite)

= λt +P(case 1) ·E( f (X[Ne+1])− f (X[Ne])|Gt)+P(case 2) ·0

= λt +(1−ρ) ·∆t .

Likewise, for the non-elite sample case

E(λt+1|Gt ,new sample is not elite)

= λt +P(case 3) ·0+P(case 4) ·E( f (X[Ne−1])− f (X[Ne])|Gt)

= λt−ρ ·∆t .

The update step is equivalent to the product of the average difference between samples and

the difference between Xt evaluated at the ρ th probability and 1 sample above it. In order
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(a) t=2.5 (b) t=5 (c) t=7.5 (d) t=10

Figure 5.1: Samples drawn from the inverse distribution F−1 are shown in the above plot.
Sample means µ are measured and shifted by the quantity given by the product of the co-
variance of N (µ,Σ) and the standard normal inverse function Φ−1 evaluated at the ρ th

quantile. In these plots, sample means are measured via the straight line distance between
a quadrotor and the desired hoop, the covariance matrix is Σ = 0.05 ·I and ρ = 0.05. At
each iteration, new samples are drawn from the quantile F−1, here we show samples, cor-
responding to points drawn at the ρ th quantile, drawn at different times during the runtime
of the sampling algorithm. The final iteration at t=10 contains the trajectory the quadrotor
follows.

to create an update step for trajectories sampled from a Gaussian distribution, we develop a

Gaussian approximation for multivariate distributions. Prior works that utilize online cross

entropy for task allocation used an update step based on uniform or univariate Gaussian

distributions, relying on one dimensional samples. Our work extends this by formulating

an update step for multivariate Gaussian distributions in the following section.

5.2 Developing the Update Step

The update step for samples from multivariate distributions will be a n×m matrix corre-

sponding to n samples from Xt , with each sample a m-dimensional vector. Consider a

continuous update step that measures samples from normal distributions according to the

desired ρ th percentile. From the inversion principle [110]:

Fact 5.2.1. Let Φ be the cumulative distribution function on Rn with the inverse Φ−1 de-

fined as

Φ
−1(p) = inf{x ∈ Rn : Φ(x)≤ p,0 < p < 1}. (5.1)
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1. If U is a uniform [0, 1] random variable then Φ−1(U) has distribution Φ.

2. If X has distribution Φ, then Φ(X) is distributed uniformly on [0, 1].

Proof. The first statement can be verified through

P(Φ−1(U)≤ x) = P(inf{y ∈ Rn : Φ(y)≤U} ≤ x) = P(U ≤Φ(x)) = Φ(x).

The second statement is a result of the following relationship

P(Φ(X)≤ u) = P(X ≤Φ−1(u)) = Φ(Φ−1(u)) = u

The normal distribution we sample from is not a standard distribution, therefore our

inverse function Φ−1 is

F−1(ρ) = µ +Σ ·Φ−1(ρ) (5.2)

where ρ is the desired percentile of N (µ,Σ) and Σ is the covariance matrix. In [111],

the average of two samples from a normal distribution is 2σ/
√

π , extending to the multi-

variate distribution case, we form ∆t = E|X1−X2| ·δF−1(ρ) as the difference between the

quantile functions for a particular sample weighted by the expectation of two samples from

a normal distribution with known parameters such that

δF−1(ρ) =
1
2
F−1(1−ρ +

1
N
)−F−1(1−ρ) (5.3)

∆t =
1√
π
·Σ[F−1(1−ρ +

1
N
)−F−1(1−ρ)]. (5.4)

This formulation of ∆t is a matrix and a scalar form is desirable for doing computations

on λ , another scalar. We propose the following definition to achieve a scalar approximation

of delta, ∆t̃ .

Fact 5.2.2. Let ∆t be the multivariate update step for threshold cost, λ . The scalar approx-
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imation of ∆t is formulated as

∆t̃ = min
i

m

∑
j=1
|∆i j| ∈ R (5.5)

minimizing the sum of quantile differences and returning the smallest difference between

quantile samples.

Using ∆t̃ we update the desired threshold λt in real-time as samples are acquired. How-

ever, the quantile function Φ(x) is not easily acquired. In the next subsection, we define

how to sample from a hyperellipsoid to generate uniformly sampled points from the ρ th

quantile of Φ(x).

5.2.1 Generating Quantile Function for Multivariate Gaussian

We begin by defining our problem as finding the contour line of a hyperellipsoid derived

from the parameters of N (µ,Σ).

Fact 5.2.3. Let Y be a sample from the surface of the hyperellipsoids with the following

form

(Y−−→µ )T
Σ
−1(Y−−→µ )≤ c2

Where c is the desired distance of Y from mean −→µ . A semi-axis of the hyperellipsoid is

σi = ±c
√

γivi and contains 100(1-ρ)% of the sampling distribution and c2 = χ2
ρ,α , the

chi-squared distribution for α degrees of freedom measured at its ρ th value.

Proof. The eigendecomposition of the covariance matrix is Σ=V DV T , with V as the eigen-

vector matrix and D as the diagonal matrix of eigenvalues γi. We find the square root of

Σ = V S1/2V T . Σ = ΛΛT where Λ = V D1/2. The matrix Λ scaled by a factor c results in
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Λ∗ = cΛ and likewise Σ∗ = c2ΛΛT = c2V D1/2D1/2V T = c2Σ which determines the contour

of the distribution considered by the sampled vector Y.

With our desired distance value, c, we project points sampled from a uniform hyper-

spheroid, R, onto the covariance Σ, shifted by the mean vector, µ . The points from hyper-

spheroid, R are sampled using the following algorithm [112] and we develop the following

algorithm for sampling from quantile functions of multivariate distributions:

Algorithm 4 Quantile Sampling

Input : desired value of quantile function ρ , covariance matrix Σ, mean vector
→
µ , degrees

of freedom α , number of samples m
Output: point sampled from ρ th quantile,Y

41 c2→X 2
ρ,α

c→
√

X 2
ρ,α

Σ1/2 =V D1/2V T

Λ = cΣ1/2

42 Xnz×m ∼N (0,1) :

rss =
√

∑
i=m
i=0 (X

2
nz×i)

Kx = 1nz×1⊗ rss
Xnz×m = Xnz×m/Kx

z =
→
µ ·11×α

Y = XT
nz×m ·Λ+ zT

We provide a brief description of Algorithm 4 here. We begin with sampling the chi-

squared distribution for a desired number of samples m at percentile ρ with α degrees of

freedom at line 41. Followed by this, we find the square root of the received value and store

it as c. We find the eigendecomposition of the covariance and its corresponding square root

followed by the definition of Λ at line 41. Afterwards we follow the developments from

[112] to sample from a hyperellipsoid. In line 42 we take the square root of the sum of

squares of samples from a normal distribution sampled m times. The matrix Xnz×m results

in points uniformly distributed on a hypersphere. Because we wish to access the values

of this hypersphere stretched by cΣ and centered on mean z, we apply the linear equation

58



in line 42 to find points sampled from the ρ th quantile, as shown in Figure 5.1 over 5

selected means. This proposed method allows us to sample from a desired percentile of

our sampling distribution for multivariate Gaussians. Desired trajectories corresponding to

elite samples can be drawn from this sampling function and we use this sampling function

to generate ∆t at each iteration.

5.3 Online Cross Entropy Sampling Algorithm

In Algorithm 5 from lines 43 - 45 we check if the run is the first run of the algorithm, if

true, initial means µt are generated based on the current position of the quadrotor (r) and

position of the hoop (H ). In addition to this we generate covariances (Σ), a randomly gen-

erated value for the desired cost (λ ) and ∆t is generated from the Quantile Sampling

function where we assume that the samples are generated from a distribution with N tra-

jectories. If the run is not the initial run, we use the previous µ,λ , and ∆t . Following this,

we perform the matrix operation from Equation 5.5 on ∆t . We sample a trajectory Xt from

a normal distribution by interpolating between path samples drawn from the distribution

using the means and covariances previously acquired. If the cost function f (Xt) and the

trajectory satisfy the constraint in line 51 then λt is increased. Otherwise, λ is decreased

conditional on the case that the trajectory goes through the hoop but does not satisfy the

cost constraint. Finally, ∆t is updated and we return the pose in Xt that corresponds to time

t.

5.4 Update ∆t Threshold

Our value for incrementing the desired threshold, γ , can also be modified with an expo-

nential factor β = ae−bt with a,b > 0. The delta threshold is updated at each time step t

such that ∆t̃+1 = (1−β )∆t̃ +β | f (xt)− f (xt+1)|. Using this update formulation, initially,

∆t̃ weights information from the costs between samples as more important than prior ∆t̃

values. This is beneficial for us since our samples are drawn uniformly from a quantile
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Algorithm 5 Online Cross Entropy
Input : robot position r, desired hoop H , desired value of quantile function ρ , previous

cost f (x)t−1, previous time tt−1, previous lambda λt−1 previous delta ∆t−1, pre-
vious means µt−1, previous covariancesΣt−1, previous samples Xt−1, number of
total trajectories N

Output: updated desired state pt , means µt , covariances Σt , path samples Xt , lambda λt ,
cost f (x)t , delta ∆t

43 if initial run is True then
44 µt → generate means(r,H )

Σt → generate initial covariances()
λt → random generator()

45 ∆t → Σ√
π
· Quantile Sampling(1−ρ + 1

N ,µt ,Σt) - Quantile Sampling(1−ρ,µt ,Σt)

46 end
47 else
48 µt → µt−1

λt → λt−1
∆t → Σ√

π
· Quantile Sampling(1−ρ + 1

N ,µt ,Σt) - Quantile Sampling(1−
ρ,µt ,Σt)

49 end
50 ∆t̃ → ∆t

Xt ∼N (µ,Σ)

51 if f (X )t ≥ λt−1 and goes through hoop(Xt) is True then
52 λt → λt +(1−ρ) ·∆t̃

µt ,Σt → MLE(Xt , . . . ,Xt−1)

53 end
54 else if goes through hoop(Xt) is True then
55 λt → λt−ρ ·∆t̃

56 end
57 ∆t → (1−β )∆t̃−1 +β∆t̃ |( f (Xt)− f (Xt−1)|

pt →Xt(t)
return pt , µt , Σt , λt , f (x)t , ∆t
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function whose initial samples may not be reliable but allows a sufficient search of the cost

function space of nearby samples. In Figure 5.2 we show how varying values of a and

Figure 5.2: The time evolution of ∆t̃ for varying values of a and b. From the figure, a greater
value of a and b indicate a greater dependence on the absolute error in sample trajectory
costs f (X ) initially. This causes a greater change in magnitude of the step size of ∆t̃ than
in smaller values of a and b and may reduce the sensitivity of the algorithm to desirable
values of ∆t̃ . We observe through empirical tests that values near a = 0.01 and b = 0.001
provide a reasonable trade-off between utilizing the trajectory costs and prior step size ∆t
for updating ∆t̃ .

b affect the convergence of ∆t̃ . In this figure, we plot the change in ∆t̃ as the quadrotor

runs the online cross entropy algorithm to converge to a desired hoop in 10 seconds. Initial

∆t̃ update values can vary due to dependence on f (Xt), so instead we focus on the con-

vergence rate of each plot. We can see that for a = 0.1 and b = 0.01 as time progresses,

∆t̃ quickly converges to a value close to zero as ∆t̃ moves from reliance on relative dif-

ference in measured cost to previous ∆t̃ values. On the other extreme, for a = 0.001 and

b = 0.0001, ∆t̃ does not move far from its initial value and stays near the value it eventually

converges to during the run time. For all experiments, we chose a = 0.01 and b = 0.001

due to the values allowing for initial cost consideration, followed by slow convergence to

values closer to expected quantile differences.
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5.5 Online MTAC-E Algorithm

Algorithm 6 Online MTAC-E Algorithm
Input : current robot poses ri,...,n time t, LTL spec φ

Output: new poses ri,...,n, flag for specification satisfaction satis f ied ltl
58 satis f ied ltl is False

if first iteration then
59 satisfying run→ generate satisfying run(φ)
60 end
61 for q in satisfying run do
62 if q is satisfied then
63 continue
64 end
65 if all q satisfied OR all agents assigned then
66 if all nodes satisfied then
67 satis f ied ltl is True
68 end
69 break
70 end
71 if q ∈D then
72 ri,...,n−1→ switch condition(ri,...,n−1, fi,...,n−1(x,u), t)
73 end
74 else
75 r j→ online cross entropy(...)
76 end
77 end
78 return ri,...,n, satis f ied ltl

The Online MTAC-E algorithm presented in Algorithm 6 proceeds in the following

section. The current robot poses for n robots is given, the time t, and the desired LTL spec-

ification (φ ) to be satisfied. If the algorithm is in its first iteration we generate the sequence

of propositions that satisfy the specification, otherwise we store this desired sequence for

future iterations. Then for each node, in lines 61 - 70 a series of checks are done to verify

if the node has been satisfied or if all the nodes have been satisfied. In addition to this, we

track if each agent has had a chance to be assigned a proposition, when all agents have an

assignment, the desired states are sent to each robot. If the robots are in the decomposition

set D we consider the switch condition where each agents current state, desired trajectory
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to node q, and the cost function fi(x,u) associated with a particular agent to assign the node

to the agent with the lowest cost. If the node is not in the decomposition set, the online cross

entropy algorithm executes for a single agent. Due to the node not being in the decomposi-

tion set, once an agent is assigned to the set D̄ = {q ∈ D̄ |qi ̸= q0∧ (qi,qi+1) ∈ ED} it may

not transition to the decomposition set for the remainder of the run. The set of states p are

returned for each robot agent where each state is the chain of integrators state referred to in

Section ??. We have now formally generated an online method for task allocation using the

stochastic optimization technique, cross entropy, for quadrotors. However, now we verify

the algorithm against the offline version followed by experimental results.

5.5.1 Comparison to Offline MTAC-E

In this section we compare the efficiency defined as the individual agent costs and run time

performance of the online MTAC-E with the offline version. In Figure 5.3, we compare

the sum of agent costs for a predefined number of agents ranging from 1- 5. For each run,

we assign the agents to satisfy the LTL specification . From the figure, we see that the

online method is more efficient at overall task assignment as total agent costs are greatly

reduced compared to the offline version. This is due to the fact that we must initially set

an estimate for optimal costs for the offline MTAC-E while the online version can use a

random estimate for optimal costs and iterate towards a local minima that is more efficient.

In addition to this, a higher estimate of optimal costs needs to be given for the offline

version in order for faster execution time otherwise the completion time of the program

could be significantly long. However, we note there is an increase in the sum of agent costs

since in the online MTAC-E algorithm, each time an agent is considered for a new task, the

cost is added to the total trajectory cost for that agent.

Run time comparisons are done on a laptop with a 2.6 GHz Intel i7-4720HQ processor

using the time module in Python. Each run is done in simulation and execution times are

measured against complete satisfaction of the given LTL specification. We see from Figure
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Figure 5.3: We compare the total trajectory costs for separate runs of the online and offline
MTAC-E algorithm. We can see that the total costs associated with different numbers of
agents is reduced for agents in the online case. This is due to a measurement of a known
quantile function of a distribution and an optimal trajectory cost that is randomly initiated
and updated at each sample step. This reduces the need of an expert to determine optimal
costs for a particular domain.

Figure 5.4: We compare the time to completion for both the online and offline MTAC-E
algorithm. For all runs of the online MTAC-E with various numbers of agents considered,
a lower total run-time is achieved.

64



5.4 a 3x - 5x factor of reduction of runtime for agents 1-5 indicating a faster algorithm for

multi-agent task allocation.

From simulation results, we see the online MTAC-E algorithm is not only more efficient

at minimizing the total costs for a multi-agent system but also in reducing individual agent

costs and the overall run time associated with allocating tasks to a multi-agent system. We

also verify our online algorithm experimentally in Section 5.6.

5.6 Fire Fighting Drones Experimental Results

Experiments are validated on the Robotarium at Georgia Tech [113] using the Crazyflie

2.1 quadrotors. Control inputs are calculated from continuously differentiable splines gen-

erated online from desired waypoints using the differential flatness property of quadrotors

described in Section 3.1.1. Quadrotor positions are tracked with a Vicon camera system

with a tracking frequency of 100 Hz and the controller generates control inputs at a fre-

quency of 50 Hz.

We recreate the simulated scenario of fire-fighting quadrotors by indicating desired

regions of interest with hoops, characterized by ellipsoids, pictured in Figure 5.5b 1. These

hoops are covered with Vicon tracking markers, allowing us to record the corresponding

center of the hoops and from the centers form the proposition sets. The regions of interest

are satisfied if a quadrotor flies within 0.2 meters of the hoop. We give initial starting

positions of

p1 =


1

−0.5

0.8


T

, p2 =


1

0

0.8


T

, p3 =


1

0.5

0.8


T

for three quadrotors and the desired global LTL specification φ = ♢LOC1 ∧ ♢LOC2 ∧
1Experiment Video: Online Multi-Agent Task Allocation via Cross Entropy
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(a) The real trajectories of each quadrotor superimposed over the
simulation environment. The locations of the hoops are the same
as those in the experimental run.

(b) The quadrotors are flown in the Robotarium where hoops are
used to validate the experiment. Each hoop has tracking markers
to locate the center of mass of each hoop, used to calculate control
points and the desired ellipsoids used to characterize the hoops.
Quadrotors are also tracked with the Vicon system.

Figure 5.5: The trajectories of the quadrotors and a visualization of the experimental run
are shown in the figure above.
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□(SMOKE =⇒ CARRY ING). We plot the real trajectories of the quadrotors in Figure

5.5a and given the initial positions, control inputs and global LTL specification we utilize

the online MTAC-E algorithm to generate trajectories in real-time for each quadrotor. The

assignments shown in the figure are dynamically allocated tasks given to each robot based

on the individual cost function associated with each agent and environment constraints.

These assignments are not strictly assigned and could change given new information (e.g.

more samples from the online cross entropy algorithm) or a different cost function. We run

the algorithm on a desktop with an Intel Core i7-7700K processor with 16 GB of RAM.

The total run time of the experiment is 127 seconds and terminates when the entire desired

sequence of hoops is satisfied for a specified LTL specification. Through this experiment,

we show the implementation of the online MTAC-E algorithm on quadrotors which vali-

dates our task orchestration framework by decomposing a specification, delegating tasks

and generating trajectories in real-time for a set of quadrotors.

5.7 Conclusion

In conclusion, we extend the multi-agent task allocation methodology to generate desired

trajectories online via hyperellipsoid sampling and estimation of minimal quantile distribu-

tion differences. This allowed us to create a faster and more efficient method of trajectory

sampling for multi-agent task allocation given an LTL specification that contained system

and environmental constraints. To the authors knowledge, this is one of the first papers to

develop online task allocation for quadrotors using cross entropy optimization and validate

the algorithm experimentally on hardware. In addition to this we propose a formulation for

the update step using the quantile functions of multivariate Gaussian distributions. We ver-

ify this in experiment and simulation as a task orchestration framework for decomposing

and delegating tasks and generating trajectories for a multi-agent system to satisfy high-

level user specifications given these constraints.
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CHAPTER 6

LEARNING LTL FORMULAS USING SUPPORT VECTOR MACHINES

Robotic systems often need repeated sets of instructions to complete a task or set of tasks.

These instructions can be trajectories, waypoints or more complex modalities [3, 114].

Sometimes, these tasks need to be repeated or are complex and may benefit from instruc-

tions specified in a syntax prevalent in system specification. Temporal Logics are well-

known languages used for guaranteeing completion and persistence of system tasks [115].

In addition to this, the syntax is human-readable and easily interpretable for individuals

familiar with logic syntax. Because of these benefits, many have used temporal logic for

system specification design.

The goal of work centered around using temporal logic for robotic system control is to

provide an intuitive and syntactically safe control modality for users to interact with robots.

However, not all users are familiar with temporal logics and their syntax. The requirement

to learn this language in addition to generating the correct formulas may be too large of

a hurdle for some users to adopt. Thus, we propose to learn LTL specifications through

desired traces.

Prior work on learning LTL specifications has focused on the use of learning a reward

policy in a Markov decision process [9, 116]. However, this reward function shaping can

become complicated and it is not always clear how to develop correct reward functions for

a desired behavior. Other works focused on mining specifications given a desired set of

traces and a template like the authors in [35]. This work accepts as input a log of traces and

a general template [101] of an LTL specification. The authors develop a program that uses

a tree-like search method to define LTL specifications with the given template that satisfy

all traces given. However, this work required users to generate templates as well as a log

of traces in order to develop the LTL formula.
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Our work is similar to that of [10] and [39] in that we utilize templates for learning LTL

specifications via demonstrations or given traces. In both works, the authors use Bayesian

inference to infer the likelihood that a trace belongs to a chosen specification of a group

of defined templates. We would like our model to learn over fewer trace examples and we

refrain from probabilistic sampling techniques. In addition, the prior method may be com-

putationally expensive for large datasets and relies on model assumptions implicit within

its likelihood function, all of which we will avoid using support vector machines (SVMs).

In this chapter, we leverage support vector machines to learn desired LTL templates

from a set of user generated traces. SVMs form a set of hyper-planes over a multi-

dimensional (infinite dimensional) feature space to minimize a convex optimization prob-

lem [117]. SVMs are sufficient for classifying data from sparse support vectors which we

consider ideal from the perspective that end-users may not have the capacity to generate

thousands of features necessary for other learning methods. A key problem for correctly

applying SVMs to a problem domain is identifying a linearly separable feature space that

can be abstracted to a higher dimensional space. We propose to utilize a feature space

composed of finite trace specific information. The trace features are generated from the

trace length, a count on the propositions and we check for all LTL templates their equiva-

lent non-deterministic finite automaton (NFA). Each NFA accepts a particular language and

has an equivalent regular expressions, we check if each trace is accepted by these regular

expressions.

We then propose a reduced LTL specification formulation to reduce the number of tem-

plates needed to define system behavior over a set of traces. We formulate this problem as a

set covering problem which utilizes the SVM generated templates as sets. We demonstrate

the efficacy of our work by comparing our learning algorithm to two brute force LTL min-

ing techniques and we show simulation results with respect to a house surveillance robot

case study. To the best of our knowledge, this is the first support vector machine learning

method developed for learning temporal logic specifications from user generated traces.

69



This chapter proceeds in the following manner. We introduce LTL in Section 6.1. We

develop our problem formulation in Section 6.2. The SVM learning model and feature

space is presented in Section 6.3. We construct the reduced LTL specification in Section

6.4. Finally, the experimental results are provided in Section 6.5 and we provide concluding

remarks in Section 6.6.

6.1 Preliminaries

In this section, we provide a brief background on LTL, a propositional logic well-suited for

formally representing planning problems [17], system properties[60] and interpreting finite

or infinite sequences [118, 115].

6.1.1 Linear Temporal Logic Definition

LTL specifications φ are defined as logic formalisms suited for specifying linear time prop-

erties[82, 23]. LTL specifications are defined over traces and indicate satisfaction of a set

of propositions Π defined in the following definition.

Definition 12. (Propositions) Let Π = {π0, . . . ,πk} be the finite set of atomic propositions.

Each proposition πi maps from system state to true (⊤) or false (⊥) and enables us to

define a Boolean property of the state space (e.g. “Is the robot in area G?”).

LTL formulas over the set Π of atomic propositions are formed with the following logic

operators:

φ :=⊤ | π | φ1∧φ2 | ¬φ | ⃝φ | φ1Uφ2 (6.1)

LTL formulas are composed of the basic Boolean operators (e.g. conjunction (∧) and

negation (¬)) and two temporal operators next (⃝) and until (U). Formula⃝φ evaluates

as true at time t if φ holds at time step t + 1. Formulas of the form φ1Uφ2 evaluates as

true at time t if φ1 is true until a time step is reached where φ2 becomes true. From these

base operators of LTL we can construct the following higher-order temporal operators:
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♢(eventually), □(always), and W(weak until). The eventually formula (♢φ ) holds true at

time t if φ holds for some time tn ≥ t. The always formula (□φ ) holds true at t if φ holds

at all times tn ≥ t. The weakly until formula (φ1Wφ2) holds such that the occurrence of

formula φ2 does not need to be satisfied.

Definition 13. (LTL Templates) LTL templates are a subset of LTL specifications with a

particular structure that describe the relationship between trace events defined over an

abstract set of atomic propositions Π̂. From [101], LTL templates describe an essential

aspect of system behavior (and the relationship between its propositions) that are expressed

as an LTL specification.

For example, the template ♢A =⇒ ¬AU(B∧¬A) indicates “B must occur before A”

which is the “precedence” relationship between atomic propositions A and B.

Definition 14. (LTL Template Instance) Similar to [35], let φ be an LTL template. An LTL

template instance φi of template φ has the same structure as template φ but the propositions

are drawn from the trace demonstrations provided by a user. Let t : Π̂→ Π be a bijective

assignment function mapping Boolean propositions from Π̂ to the event propositions, Π,

drawn from the user traces. The set of instances for LTL template φ is represented as

{φi(t) : i ∈I } generated from the proposition set Π and template set I .

In the next section, we will introduce finite LTL, a subclass of LTL defined over finite

traces.

6.1.2 Finite LTL

This chapter focuses on learning over user defined traces represented as finite sequences.

Therefore, we consider finite LTL specifications. Finite LTL specifications are a class of

LTL specifications designed to handle finite traces. One particular subclass of finite LTL

specifications are known to be insensitive to infiniteness [119]. These specifications main-

tain the same properties as LTL defined over infinite traces except traces of propositions
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will have the form

π = π f inite{end}ω (6.2)

for some finite trace (π f inite) and a new proposition end which repeats infinitely (indicated

by ω). These traces are interpreted as infinite traces where π f inite |= φ iff π f inite{end}ω |=

φ . Thus, by verifying if a finite LTL specification is insensitive to infiniteness we can re-

duce it to an LTL specification that handles infinite traces of the form in Equation 6.2 where

the finite traces satisfy the LTL specification if and only if its infinite counterpart does as

well. All specifications referenced in this chapter are finite LTL specifications which are

insensitive to infiniteness and will be referenced as LTL.

6.1.3 Automaton Construction

Any LTL specification can be represented via a non-deterministic finite automaton [34],

which we define below.

Definition 15. A non-deterministic finite automaton (NFA) is given as the tuple F =

(Q,Q0,β ,δ ,F) such that:

• Q is a set of states

• Q0 is a set of initial states

• β is the set of Boolean formulas defined over the proposition set (Π)

• δ is a set of transition conditions such that δ : Q×Q→ β

• F is a set of accepting final states.

We utilize an equivalent deterministic interpretation for a particular type of NFA called

a Deterministic Büchi Automaton (DBA) which allow infinite runs q = q0q1, . . . where

qi ∈ Q. In addition, associated with each run is a sequence π – defined as a sequence
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of propositions πi from Π – which satisfies φ if it enables a run q such that qi ∈ F for

infinitely many indices. This sequence σ enables transitions from state q to q′. These

transitions, generated from δ (q,q′) = {βi}, map onto a subset of the Boolean formulas, β ,

which evaluate to true if the proposition, πi, from σ satisfies it. Moreover, the DBA can

be constructed from an LTL formula φ where a finite sequence σ f inite |= φ if and only if

σ f inite{end}ω successfully produces a run q such that qi ∈ F . In the next section, we will

introduce our problem formulation.

6.2 Problem Formulation

We define our problem in two parts:

(a) First, consider the input π̂i as a task demonstration represented as an observed se-

quence of propositions presented to an agent. Find a set of features, m, from trace

π̂i such that the output of our learning algorithm, f (π̂i) ∈ {φi : i ∈ Î }, matches the

input trace to a template instance from Table 6.1 and Î = I1∪·· ·∪In is the union

of template sets for n template types.

(b) Second, from a set of features – XN×m – for N traces, generate the LTL specification

that satisfies all user provided traces as a composition of LTL templates. Then, de-

velop a reduced LTL specification to limit the number of LTL templates needed to

satisfy the user provided traces.

6.3 LTL Template Matching on SVMs

We propose that there exists a feature mapping between traces and a set of LTL templates.

In addition to this, our goal is to show that there exists a linearly separable feature space

that we use to classify traces to desired LTL templates. In this section, we give a brief

overview of support vector machines (SVMs). We present the feature space of the trace set

and detail how our multi-class SVM is trained for K templates. Lastly, we construct the
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closed form expression of the full candidate LTL specification.

Table 6.1: Examples of LTL templates for general propositions πi and π j.

Patterns LTL Templates

Occurrence
φabsence(πi) ¬♢(πi∧♢πi)
φexistence(πi) ♢πi

Order
φresponse(πi,π j) □(♢πi =⇒ π j)

φprecedence(π j,πi) ♢πi =⇒ (¬πiU(π j∧¬πi))
Choice φexclusive choice(πi,π j) (♢πi∨♢π j)∧¬(♢πi∧♢π j)

6.3.1 Support Vector Machines

A support vector machine constructs a set of hyper-planes in a high or infinite dimensional

space [117]. They are used for classification by finding the maximum separation between

training points of any class and the margin boundaries. For training vectors xi ∈ Rq, i =

1, . . . ,N and, in the two-class case, classes y ∈ {−1,1}n, the goal is to find w ∈ Rq and

b ∈ R such that the prediction class of sign(wT (K(x)+ b) is correct for vectors xi. This

technique solves the convex optimization problem:

min
w,b,ξ

C
N

∑
n=1

ξn +
1
2
||w||2 (6.3)

s.t. yi(wT K(xi)+b)≥ 1−ξi, (6.4)

ξi ≥ 0, i = 1, . . . ,n (6.5)

where ξn is a slack variable introduced to softly penalize incorrectly classified points, K(xi)

is the feature space representation of vector xi and C controls the trade-off between the

margin and slack variable penalty. In our case, we utilize multi-class SVMs and solveK

2

 different 2-class SVMs for K classes where each class k ∈ K represents an LTL

template. In the following section, we describe our feature space in detail.
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6.3.2 Trace Feature Space

From the input, a set of traces π̂ provided by the user, we generate the feature space needed

to map traces to desired LTL templates. Each trace π̂i is composed of a sequence of propo-

sitions the user wants the robot to satisfy. These propositions are evaluated to true (⊤) if the

robot is located inside of the proposition at time t. For example, the trace π̂i = [A,B,B,A]

indicates the robot must satisfy proposition A, then B twice, followed by A again. We for-

mulate the feature space as a composition of trace features generated from desired propo-

sitions we want a robot operating in the state space of our problem domain to satisfy.

Trace Features

• Trace Length: Each input trace π̂i has a length associated with it. For example,

the trace π̂i = [A,B,B,A] has length 4. Each trace length is logged and added to the

feature vector. The first feature is represented as

Xi1(π̂i) =

[
|π̂|

]
.

• Regular Expression: LTL is a logic formalism that can be represented by an equiv-

alent NFA. A well-known property of NFAs is that the set of finite words accepted

by some non-deterministic finite automaton A is its accepted language, denoted as

L (A) [23]. In addition to this, there exists an equivalent regular expression for any

non-deterministic finite automaton A [120] that accepts L (A). Thus, the set of traces

accepted by this NFA is equivalent to the set of traces accepted by its regular expres-

sion. For every proposition, and combination of propositions, we generate equivalent

regular expressions for the NFAs derived from the LTL templates. For example, the

NFA of LTL specification φA = ♢A can be represented by the regular expression

regex(φA) = (!A∗)(A∗)(1)∗. Each of these regular expressions is added as a feature

for the trace π̂i. If the entire trace is accepted in the language of the regular expression
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we return its evaluation as 1 otherwise the regular expression returns 0. We express

this relationship as regex(φTi) : π̂i→{0,1} for a regular expression on LTL template

(Ti). We represent the second part of the feature vector as

Xi2(π̂i) =


regex(φTi[π̂i:i∈|Π|])

...

regex(φTk[π̂i:i∈|Π|])


T

. (6.6)

• Proposition Count: Every trace is composed of propositions from the proposition

set Π. We create a feature vector of size 2|Π| and count the number times each

proposition appears in the trace. This feature vector follows the others with form

Xi3(π̂i) =

[
count(πi) · · ·count(π2|Π|)

]
(6.7)

From the trace features (Xi1,Xi2, and Xi3), we create the feature vector Xi(π̂i) for each

trace π̂i of form:

Xi(π̂i) =

[
Xi1(π̂i)︸ ︷︷ ︸

trace length

Xi2(π̂i)︸ ︷︷ ︸
regex features

Xi3(π̂i)︸ ︷︷ ︸
prop. count features

]T

(6.8)

6.3.3 Training

Table 6.2: We use the HalvingGridSearch in scikit-learn to find the best parameters to train
and test our SVM model. The following table shows the best parameters for two of each
kernel tested.

data size kernel fcn. gamma degree C mean acc. sd.
1800 linear – – 10 90.8 % 0.079
5400 linear – – 1 91.2 % 0.076
1800 rbf. 0.01 – 100 90.4 % 0.079
1800 rbf. 0.001 – 200 90.8 % 0.079
1800 poly. – 2 100 90.8 % 0.079
1800 poly. – 3 10 90.7 % 0.081
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We train our multi-class SVM for all K LTL templates over Pk(|Π|, pi) instances of the

kth template where pi is the number of propositions found in template k and Pk(N, pi) is the

number of permutations for N items chosen pi times. For instance, the eventually template

φeventually for |Π|= 3 will generate three template types. For each of these template types,

we generate an equivalent deterministic Büchi automaton (DBA) and sample 200 traces

via random walks. After each trace is sampled, we find the associated feature vectors. We

then train a one-vs-one multi-class SVM for various kernel functions (linear, radial basis

function (rbf), polynomial) and show the results in Table 6.2.

6.3.4 LTL Template Classes

The returned classes of the SVM model will be the LTL templates as instances of all propo-

sitions in the proposition set Π. For LTL template φk, there are potentially pk propositions

selected by it where the total set of propositions is πk ∈ Πpk . The resulting LTL formula

formed from the classification of new sample traces will then be selected from the set

{πk} ⊆Πpk . The full candidate LTL specification has the following form:

φ =
∧

πk∈{πk}
φk(πk) (6.9)

Where each template φk potentially has a different number of propositions πk. For in-

stance, if we consider the alphabet Π= [A,B,C]. The template φeventually will contain pk = 1

propositions and a potential LTL candidate specification composed entirely of φeventually

would be

φ = φeventually(A)∧φeventually(B)∧φeventually(C)

However, for K templates, the size of the candidate specification can grow exponentially

in πk. This may result in very large end template specifications that over satisfy the given
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traces. In addition, for brute force mining techniques [35, 121], this can be prohibitively

expensive. We show in the next section how to formally represent our trace classification

problem as a set cover problem where we minimize the number of templates needed to

satisfy given traces.

6.4 Reduced LTL

Given that we have defined a way to match generated trace features to LTL templates using

SVMs, we now consider the issue of over classification. By this we approach the problem

of template matching for traces in the event that more LTL templates are selected than

necessary. As we have mentioned in Section 6.3.4 the template space is exponential in

the number of propositions. We would like to define a minimal specification that uses the

smallest number of LTL templates necessary to satisfy all traces. We define minimal LTL

specifications as the following:

Definition 16. A minimal LTL specification is a composition of the smallest number of LTL

templates that satisfies a set of given traces.

In prior works [121, 9], minimal LTL specifications have been proposed. These works

typically include solution techniques involving incrementally solving a Boolean satisfia-

bility problem. We approach this problem as a set covering problem where we wish to

minimize some objective function over the set of templates {φi : φi ∈ φK} for K templates.

Formally, this problem is defined as:

min ∑
k∈K

wkφk (6.10)

s.t. ∑
k:π̂i∈k

φk ≥ 1 ∀ π̂i ∈ π̂ (6.11)

φk ∈ {0,1} ∀k ∈ K (6.12)

where wk ≥ 0 is the weight assigned to template φk, φk indicates if a set belongs in the set
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cover and π̂i ∈ k represents if the trace π̂i belongs to the set covered by the template φk.

6.4.1 Minimal Set Identification

Recall that regular languages (L1) and (L2) are closed under union (∪), meaning that L1

and L2 are regular languages and L3 = L1∪L2 is also a regular language [120].

In addition to this, the language accepted by the NBA Aφ1 is L (Aφ1) and L (Aφ2) is the

regular language accepted by Aφ2 for LTL specifications φ1 and φ2, respectively. Therefore,

if we construct an NBA Aφ3 = Aφ1 ×Aφ2 then both languages of Aφ1 and Aφ2 are accepted

by Aφ3 such that L (Aφ3) = L (Aφ1)∪L (Aφ2).

Lemma 6.4.1. If a minimal LTL specification (φminimal) exists, it satisfies all user given

traces.

Proof. Assume the minimal LTL specification exists and does not satisfy all user given

traces. Let a minimal LTL specification have form:

φminimal =
∧

φk,k = 1, . . . ,n. (6.13)

For a set of traces {π̂tr} that φminimal does not satisfy, the following must be true:

{π̂tr} /∈L (Aφminimal)

{π̂tr} /∈L (Aφ1)

...

{π̂tr} /∈L (Aφn)

Therefore, φminimal must be reconstructed such that L (Aφminimal) = L (Aφminimal)∪L (Aφt )

where φt is the template, or set of templates, that covers {π̂tr} and Aφt is the NBA con-

structed from φt . However, by definition, φminimal covers every element in the user given

set. Therefore, if φminimal exists, all traces provided by the user are found in L (φminimal)
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and a contradiction is reached.

Remark 6.4.1. This formulation relies on perfect trace classification to the set of LTL Tem-

plates. However, since our sets are generated from the SVM model with results presented

in Table 6.2 there may be misclassifications in practice. Therefore, φminimal will in practice

produce φreduced which generates set covers that cover all traces with a misclassification

rate π̃i for each trace (π̂i) where π̃i =
bK
K where bK is the number of incorrect template

member assignments for π̂i and K is the number of templates. The total misclassification

rate is then

r(π∗) =
∑

N
π̃i

|π̂|
. (6.14)

6.4.2 LTL Template Composition

We introduced scenarios for the explosion of template size for SVM classification in Sec-

tion 6.3.4. Next we show that the minimal LTL specification is bounded in size.

Lemma 6.4.2. The length of the minimal LTL specification (|φminimal|) ≤ ∑
j
i:S j∈ f |φS j | ·

∑k:k∈φ∗k
|φk|

Proof. We demonstrate this in four (4) steps:

1. We construct the dual linear program (LP) relaxation of our minimal LTL problem

as:

max
n

∑
i=1

π̂i (6.15)

s.t. ∑
i:mi∈S j

π̂i ≤ w j, j = 1, . . . ,m (6.16)

π̂i ≥ 0, i = 1, . . . ,n (6.17)

where mi is a trace belonging to set S j.
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2. Any feasible solution of our dual LP ≤ feasible solution of our primal LP (the LP

relaxation of the minimal LTL problem):

n

∑
i=1

π̂i ≤
m

∑
k=1

wk ·φk (6.18)

From the weak-duality theorem of linear programs [122], we have

n

∑
i=1

π̂i ≤ L∗LP ≤ OPT (6.19)

where L∗LP is the optimal solution of the LP and OPT is the optimal solution for the

minimal LTL problem.

3. If we consider a tight constraint for the dual LP (e.g. ∑ π̂i = w j) we define k ∈ K′ of

the set cover K′ with subsets S j only if w j = ∑i:π̂i∈S j π̂i
∗, then we have the following

f -approximation:

∑
k∈K′

wk = ∑
k∈K′

∑
i:π̂i∈S j

π̂i
∗ (6.20)

=
n

∑
i=1
|k ∈ K′ : π̂i ∈ S j| · π̂i

∗ (6.21)

≤
n

∑
i=1

fiπ̂i
∗ (6.22)

≤ f
n

∑
i=1

π̂i
∗ (6.23)

≤ f ·OPT (6.24)

where fi = |k ∈ K′ : π̂i ∈ S j| is the size of the number of sets that contain π̂i and

f = maxi=1,...,n fi.

4. It is well known that the procedure above is used to develop a dual rounding al-

gorithm to form an f -approximation algorithm of the set cover problem [122, 123,
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124]. The solution to the primal LP will be no greater than f ·OPT and the length of

φminimal will thus be no greater than the length of templates in f chosen to cover any

trace (π̂i) times the length of templates in the optimal solution (|φk|).

In the next section, we will evaluate our model against brute force techniques and verify

results over simulation through a house surveillance robot case study.

6.5 Experimental Results

In this section we will evaluate the performance of our classification technique compared

to brute force techniques Samples2LTL [121] and Texada [35]. Next, we show how our

technique can be used in a house surveillance scenario where a user gives a robot a set of

traces and the robot learns the desired behavior from this set of traces.

For all our applications, we consider the minimal LTL specification set weights ŵk. The

standard weights are represented as

ŵk = ∑
i:π̂i∈φk

π̂i (6.25)

where each weight sums over the number of traces satisfied by template φk. We enhance

these weights through the following equations

cw =
1

(N +1)⊗1T
k − cT

bin
(6.26)

wk =
ŵk||cw||

cw
(6.27)

where cbin represents the bin count where an array is indexed by the template numbers K

and counts which traces were classified by the SVM model and updates the bin number

accordingly and N is the number of traces. This new weight biases our set cover to prefer
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templates that were chosen from the SVM formulation. The new weight wk is calculated in

Equation 6.27.

6.5.1 Comparison to Brute Force Techniques

We compare our LTLfromSVM algorithm against the brute force algorithms Texada and

Samples2LTL. We generate trace batches ranging in size from 10-490 traces for the set of

templates LTLfromSVM can identify. Runtime comparison is generated for each template

for an increasing number of traces. Experiments are conducted on a 64-bit Ubuntu Machine

with 16 GB RAM and an Intel i7 Skylake processor. In Figure 6.1b we show that Texada

outperforms LTLfromSVM in runtime due to performance increases utilized in C++. How-

ever, we show LTLfromSVM maintains consistent performance over increasing template

size. As desired template sizes grow in specification size, Texada requires additional time

to find satisfactory specifications. In addition to this, template types must be provided to

Texada an input that is not required for LTLfromSVM.

The runtime performance of brute force technique Samples2LTL, presented in [121], is

shown in Figure 6.1c. Both LTLfromSVM and Samples2LTL are written in Python and we

see LTLfromSVM performs 10x faster in trace classification compared to Sample2LTL. In

addition to this, LTLfromSVM also maintains better performance consistency compared to

Samples2LTL.

6.5.2 Case Study: House Surveillance Robot

We present an application of the LTL SVM learning method via a house surveillance drone.

The problem domain is a set of five locations (Kitchen, Bathroom, Bedroom, Living Room,

and Laundry Room) that can be surveyed by a drone depicted in Figure 6.2. These loca-

tions are represented as propositions πk ∈ Π. Additionally, these locations are represented

as ellipsoids in R3. The goal of our model is to learn a satisfying LTL specification given

a sequence of traces. We utilize the differential flatness property of quadrotors to generate
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(a) Runtime performance of LTLfromSVM algorithm over
the set of template types.

(b) Runtime performance of Texada over the set of template
types accepted by LTLfromSVM.

(c) Runtime performance of Samples2LTL for increasing
trace size over traces drawn from expected template types.

Figure 6.1: A runtime comparison of LTLfromSVM, Texada and Samples2LTL for each
template type over an increasing number of traces.
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(a) A 2D map of the problem domain. We present a
case study of the LTL SVM learning algorithm on a
house surveillance drone.

(b) We show the 30 trajectories generated
from the user defined traces.

Figure 6.2: In Figure 6.2a we depict a map of the problem domain. The drone has access
to five locations in a house. The user must give a set of traces (task demonstrations) which
will be used to learn a LTL specification that satisfies this desired behavior. In Figure 6.2b,
we show the desired trajectories corresponding to the input traces.

trajectories in the flat output space [106, 75]. We generate three-time continuously differ-

entiable trajectories η(t) ∈C3 and control the simulated dynamical system via the inputs

derived from the flat outputs. We present the results of our model via two examples.

In the first example, we generate 200 traces from an LTL specification that contains

behaviors we would like our surveillance drone to adopt. We give the specification

φ = φeventually(Living Room)∧

φprecedence(Laundry Room, Bathroom)

(6.28)

which means “eventually survey the living room and ensure the drone visits the laundry

room before the bathroom”. We train the SVM with a linear kernel over the 200 traces that
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satisfy the expected specification and receive the following learned LTL specification:

φ = φexclusive choice(Bathroom, Laundry Room)∧

φexclusive choice(Bathroom, Living Room)∧

φresponse(Bathroom, Laundry Room)∧

φprecedence(Laundry Room, Bathroom)

(6.29)

While this specification does not exactly match the desired specification, the traces that

satisfy this specification provide the desired behavior of “visiting the laundry room before

the bathroom” and in some traces “visiting the living room”. Also, the learning method

does return the precedence template and does not necessarily violate the conditions of our

“original” specification.

When we apply the minimal LTL formulation from Section 6.4, the reduced specifica-

tion

φprecedence(Laundry Room, Bathroom)

is produced with a misclassification rate r(π∗) = 38.4%. This rate indicates that of the 200

traces mapped to the template classes, 38% of the traces will be incorrectly assigned to a

particular template class.

The second example is conducted under more practical assumptions. We hand generate

30 traces and simulate trajectories for quadrotors that satisfy the propositions within each

trace (see Figure 6.2b). We generate the specification

φresponse(Laundry Room, Bathroom)∧

φresponse(Living Room, Laundry Room)∧

φabsence(Kitchen).
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Note that the response template is present in this LTL specification. This is due to the high

misclassification rate relative to other templates seen in Figure 6.3a where response tem-

plates are indexed from 16-35, however, we have correctly identified the φabsence template

as well as generating a template that satisfies the given traces.

The reduced specification generated is produced below

φresponse(Laundry Room, Bathroom)

with a misclassification rate r(π∗) = 25.5%. It is likely that better feature sets and appropri-

ately chosen kernels will fix the generalization issues present with the current framework.

From Figure 6.3b, the templates belonging to the φresponse templates are labeled 16-35. The

highest density of template assignment is issued to these templates.

It is a known problem that learning template matching without a unified metric is hard

[39]. In fact, by addressing this problem we seek to identify a metric space that appro-

priately defines the distance between a set of graphs given paths through the graph. This

work shows preliminary steps towards addressing this problem from the perspective of LTL

template matching.

6.6 Conclusion

In conclusion, we have developed a method of leveraging finite LTL specifications to gen-

erate a feature space used for SVM classification of traces to LTL templates. We show the

accuracy of the best performing models using the feature set involving traces length, regu-

lar expressions and proposition counting over the set of traces. We formulate the reduced

LTL specification problem as a set cover and show it produces the smallest length speci-

fication associated with a misclassification rate and a set of traces. In addition to this, we

compare our algorithm to brute force LTL mining techniques and apply it to two example

problems.
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(a) This heatmap represents the set membership of 200 traces classified from the LTL specification
in Equation 6.28.

(b) This heatmap represents the set membership of the 30 traces generated from a user.

Figure 6.3: A heatmap representing the number of times a particular trace (y-axis) was
classified into the set defined by the LTL Templates (x-axis) learned via the SVM. The color
gradient increases from low template membership (purple) to high template membership
(yellow) for each trace.

88



CHAPTER 7

REMOTELY ACCESSIBLE AERIAL SWARMS

Aerial robots are increasingly becoming more prevalent in robotics research and industrial

applications. They are often agile and lightweight and able to maneuver in spaces that

ground vehicles are unable to reach [125]. As more research is done on these types of

robots, researchers will need to have access to the resources necessary to accommodate

aerial vehicles. Over time, access to aerial robotic platforms has grown with many types of

vehicles accessible to users [126]. However, there still remains a barrier to entry for aerial

swarm robotics researchers due to the space and hardware requirement and additional back-

ground knowledge necessary to instantiate an aerial robotics research testbed. Primarily, it

is time consuming and expensive to develop a state-of-the-art testbed capable of facilitating

multiple aerial robots for swarm robotics research. In addition to this, a remotely accessible

testbed must consider how to ensure hardware safety while providing users the ability to

control large groups of robots.

The Robotarium solved this problem for ground vehicles by being the first remote ac-

cess multi-robot testbed [113, 127]. It allowed users to access a sandbox-like environment

through an API where users can control dozens of robots for a wide variety of multi-robot

experiments. In addition to this, safety constraints are applied to each users algorithms

to ensure continuous autonomous operation of the Robotarium by limiting damage to the

platform and individual robots. To date, thousands of experiments have been executed on

the Robotarium and users ranging from individuals to research institutions have tested their

algorithms on the testbed.

In this chapter, we introduce an extension of the Robotarium by providing remote access

to aerial vehicles for multi-robot research. We do this by providing users access to micro-

UAVs (Unmanned Aerial Vehicles) i.e. quadrotors, where users can test algorithms and
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Figure 7.1: A quadrotor demonstrating the collision avoidance behaviors generated via
exponential barrier functions. This experiment was conducted with 5 quadrotors on the
Robotarium testbed.

controllers on this platform with minimal knowledge necessary. We provide users access to

quadrotors through an API with encoded safety measures to ensure long duration autonomy

and repeatable use.

Aerial robotics research platforms are increasingly being developed [128, 129]. The

RAVEN testbed [130] was an early approach to multi-vehicle testbeds using motion-capture

systems which included aerial vehicles. It studied long duration autonomy with UAVs and

facilitated deployment of coordinated control algorithms between ground and air vehicles.

OpenUAV is an open source cloud-based aerial swarm robotics platform that allows ex-

ternal users to run simulations using their code base [131]. These works differ from our

testbed in that we provide open access to simulations and physical hardware through safe

interactions to bridge the simulation-experiment gap commonly seen in multi-robot system

research for external users.

The Robotarium provides users a simple interface to interact with multiple UAVs while

guaranteeing safety through minimally invasive control input augmentations. A necessary

consideration in the development of this addition to the Robotarium is what level of ac-
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cess do we allow the novice user to have for quadrotors. These dynamical systems are

highly nonlinear under-actuated vehicles that require extensive knowledge of their dynam-

ics for control design. In order to democratize access to aerial vehicles while incorporating

safe features in the design, we develop a system architecture composed of hardware, soft-

ware and control-theoretic design to maintain long duration autonomy and satisfaction of

user experiments. We leverage the Crazyflie quadrotor as the aerial vehicle platform for

all experiments conducted on our testbed due to its small size and modular design which

makes it well suited for indoor testbeds like ours. VICON tracking is used for maintaining

global positioning of each quadrotor during complex flight maneuvers. Communication is

done using ROS where we leverage the publisher-subscriber model of message passing.

For communicating from a host PC to large aerial swarms, Crazyswarm [132], a system

architecture for state estimation and communication of aerial swarms, is leveraged.

This chapter proceeds in the following manner. In Section 7.1 we introduce the quadro-

tor model and our formulation for providing users a method for controlling quadrotors. In

Section 7.2 we discuss the hardware necessary for using quadrotors on the testbed. Sec-

tion 7.3 will layout the safety features added for aerial vehicles including control barrier

functions and firmware changes on-board the quadrotors. Section 7.5 details the simulator

details and safety verification process. Section 7.6 experimentally validates the Robotarium

as a testbed for developing and testing algorithms designed for aerial swarms. Finally, we

provide concluding remarks in Section 7.7.

7.1 Leveraging Differential Flatness for Quadrotor Control

The dynamics of quadrotors are well-modelled systems that utilize the thrust generated by

four propellers to move in three-dimensional space. They are complex dynamical systems

that require a well-defined understanding of the dynamics and limitations of these systems.

In this section, we give a brief overview of quadrotor dynamics and the waypoint controller

we provide external users.
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7.1.1 Quadrotor Model

The inertial frame and body-fixed frame are labeled {I} and {B} with right-handed coor-

dinates, respectively. Left subscripts represent the reference frame with respect to which

quantity is expressed. We will use the Z−Y −X Euler angle convention to express the

rotation matrix of the quadrotor system. Using this convention, the rotation matrix from

{B} to {I} is IRB = Rz(ψ)Ry(θ)Rx(φ) with φ ,θ and ψ representing the roll, pitch and yaw

angle, respectively and Rz(·),Ry(·), and Rx(·) indicating the rotation about the body frame

z,y, and x axes.

The equations of motion describing the dynamics for a quadrotor are:

I r̈rr =−Ieeezg+
1
m

(IRB Beeez ft
)

(7.1)

Bω̇ωω = BI −1 (−Bωωω×I Bωωω + Bτ) (7.2)

where the linear acceleration of the quadrotor is expressed in Equation 7.1 where I r̈rr =

[ẍ, ÿ, z̈]T is the acceleration, g is the acceleration due to gravity, m is the mass of the vehicle,

ft is the total thrust generated by the rotors and Beeez is the unit vector along the body frame

z-axis.

The angular acceleration of the quadrotor, expressed in the body frame {B}, is repre-

sented in Equation 7.2 where Bω̇ωω = [p,q,r]T is the angular velocity vector, Bτ = [τx,τy,τz]
T

is the torque vector and BI ∈R3×3 is the moment of inertia matrix. We consider the inertia

matrix to be a diagonal matrix (e.g. BI = diag(Ix,Iy,Iz)) due to the assumed symmetry

and choice of inertial axes. For controller design, we consider the system input uuu ∈ R4 to

be the total thrust and torques generated by each rotor.

7.1.2 Differential Flatness

Differential flatness is a well known property of many dynamical systems [74, 75]. This

property allows the expression of the full state and input of the system as algebraic func-
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tions of the flat output and its time derivatives.

It has been show that quadrotor dynamics are differentially flat in [5, 133], thus we

can generate trajectories that leverage the nonlinear dynamics of the quadrotors rather than

considering the system dynamics as constraints. We use the controller developed in [5]

onboard the Crazyflie where the flat outputs for the quadrotor are hhh = [x,y,z,φ ]T . The

full state ξξξ = [x,y,z,φ ,θ ,ψ, ẋ, ẏ, ż, p,q,r]T and input uuu = [ ft ,τx,τy,τz]
T of the system are

represented algebraically using the following functions

ξξξ = gs(hhh, ḣhh, ḧhh,
...
hhh ),

uuu = gu(hhh, ḣhh, ḧhh,
...
hhh ,

....
hhh )

for endogenous transformations (gs,gu).

7.1.3 Quadrotor Waypoint Control

We will leverage the differentially flat properties of quadrotors for trajectory tracking.

We do this by allowing users to control the quadrotors using desired pose commands,

rd = [x,y,z]T , and generating four-times differentiable desired trajectories (ηd) via spline

interpolation.

We generate interpolating splines pi for n+ 1 points (s0, t0),(s1, t1), . . . ,(sn, tn),n ≥ 3

where s is a pose dimension and t is the time. In our case we set a dimension of the current

pose, r, to s0 and the desired pose, rd to sn. Two additional midpoints are found to meet

the requirements of the minimum number of interpolating points. The function P(s) is a

piecewise continuous function that must satisfy the following conditions:

1. For each interval [s j−1,s j], j ∈ {1,2,3, . . . ,n}, P(s) is given by the polynomial p j(s).

2. P(s) satisfies the interpolation conditions: P(s j) = t j for all j ∈ {0,1,2, . . . ,n} (i.e.

p j(s j−1) = t j−1, p j(s j) = t j for all j ∈ {1,2,3, . . . ,n}).
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3. P(s) is four-times differentiable in [s0,sn], i.e. for each j ∈ {1,2, . . . ,n−1} it holds

that p′j(s j)= p′j+1(s j), p′′j (s j)= p′′j+1(s j), p′′′j (s j)= p′′′j+1(s j) and p′′′′j (s j)= p′′′′j+1(s j).

4. At the endpoints, the curvature of P(s) is set to zero such that: p′′′′(s0) = p′′′′(sn) = 0.

Each 5th degree polynomial, p j(s) = a jt5 + b jt4 + c jt3 + d2
j t + e jt + f j, has six unknown

coefficients. For n 5th degree polynomials, 6n equations are needed to solve for the coeffi-

cients. These coefficients can be found by solving a system of equations, at each dimension,

thus giving our desired trajectory nd ∈C4 as a function of time (t).

From the spline interpolation, we generate a virtual control input v ∈ R3 to control

integrator dynamics and we set the yaw angle to zero, ψ(t) = 0. Using this, we have

....r = v (7.3)

where r = η1:3 = [x,y,z]T ∈ R3 and v is the virtual snap control input. The integrator

system, written in state space form, is

q̇ =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


︸ ︷︷ ︸

F∈R4×4

⊗I3×3 ·q+



0

0

0

1


︸︷︷︸
G∈R4

⊗I3×3 · v, (7.4)

where q = [rT , ṙT , r̈T ,
...r T ]T ∈ R12 and ⊗ is the Kronecker product. The integrator system

is driven to the virtual input v using standard linear feedback control techniques and the

corresponding state values of the integrator model are provided to the FullStateSet point

streaming point provided by Crazyswarm. Streaming points allow controllers to send set-

point values over radio at high frequencies compared to other methods of sending message

packets to Crazyflies. This allows us to devote PC computation to high-level planning or

other resource intensive tasks while only sending the control setpoints to the quadrotor.
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Figure 7.2: Crazyflie 2.1 quadrotors are an open source, lightweight aerial vehicle platform
well suited for research applications. Global positioning is acquired via a VICON optical
tracking system that tracks the center of mass of uniquely positioned markers for each
quadrotor.

This setpoint takes as input (rT , ṙT , r̈T ,ψ, p,q,r) which can be generated via integrator dy-

namics or differential flatness. This streaming setpoint is then received by the onboard

feedback controller to achieve the desired states where, in our case, this controller is the

one described in [5].

7.2 Hardware

In this section, we overview the hardware that makes the Robotarium a capable multi-

quadrotor testbed. We leverage much of the platform developed for the Robotarium [127]

except with a few key changes made explicitly for the introduction of quadrotors.

7.2.1 Quadrotor Tracking

The Robotarium operates on a 3.65 m ×4.25 m ×2 m arena. quadrotor experiments can

be recorded via either an overhead camera above the testbed or a side camera. Position

tracking is provided via a VICON motion-capture system. We use 16 VICON Vantage

cameras and track unique tracking marker configurations for each quadrotor at a rate of
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120 Hz, see Figure 7.2.

7.2.2 Crazyflie Robots

One main challenge of providing a remotely accessible testbed is to find an appropriate

platform for running user experiments. The quadrotors we use must be easily repairable and

durable in the event of collisions or damage. In addition to this, they must be small enough

to use on our testbed and amenable to swarm robotics research. We use the Crazyflie 2.1 1,

an open source, lightweight quadrotor platform well suited for research in aerial vehicles.

Each Crazyflie weights 27 grams with a battery, however, we include a VICON tracking hat

and markers and Qi charging reciever which increases the weight to 39 grams. Currently,

up to 8 quadrotors are available to the user for swarm robotics experiments where we rely

on the Crazyswarm communication architecture for large scale communication from the

host PC to Crazyflies through broadcasted messaging. All Crazyflies are controlled via the

Crazyradio PA, a USB radio dongle designed for low latency communication. In addition

to this, each Crazyflie is equipped with a 260 mAh battery, capable of approximately 4

minutes of flight time depending on the aggressiveness of user experiments submitted.

7.2.3 Wireless Charging

Autonomous wireless charging is essential for long duration testbed operation. In order

to maintain automatic experiment execution for users without the additional overhead time

needed for battery changing, we utilize wireless charging. We use Qi inductive charging

decks from Bitcraze in addition to transmitting coils set within a 3D printed mounting

dock. In Section 7.4, we will explain in detail the autonomous charging routine used for

autonomous testbed operation.
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Figure 7.3: After each experiment, the autonomous charging routine is called for all active
quadrotors to return to their designated charging pads.

7.3 Safety

In this section, we provide details on the safety considerations implemented on the Robo-

tarium to ensure user experiments are safe, i.e. do not damage the equipment and quadrotor

interactions remain collision-free. We provide a number of safeguards to guarantee safety

such as implementing control barrier certificates and providing firmware updates.

7.3.1 Exponential Barrier Certificates

Control barrier certificates guarantee provably collision-free interactions for all aerial ve-

hicles in the Robotarium. Also, they are designed to affect user inputs only if collisions

will occur from the unmodified input. Control barrier certificates are enforced through

control barrier functions (CBFs). CBFs are Lyaponuv-like functions which can be used to

guarantee the forward invariance of a desired set, i.e. if the system starts in the safe set, it

stays in the safe set for all time. This can be used to ensure collision-free flight maneuvers,

introduced in [78] through the use of differential flatness for safe trajectory generation.

Consider the dynamics of the integrator system in Section 7.1.3. Due to the high relative

degree of the output y = q, we leverage exponential control barrier functions (ECBF) [134].

1https://www.bitcraze.io/products/crazyflie-2-1/
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Figure 7.4: Architecture Overview. Users submit code and configuration files through a
web interface. The configuration file contains the desired number of quadrotors, a Boolean
check for internal sensor data logging and the desired run-time; if no file is present, the de-
fault values are used. Internally, experiments are checked for safety violations and control
inputs are generated via a Python or MATLAB API. These control inputs are then sent via
radio to the Crazyflies. Components directly accessible to the user are blue, Components
that interface with the quadrotors are red and all other components that interact with the
host PC are marked in black.

Next, consider a team of N quadrotors with dynamics modelled as fourth-order integrators

with virtual inputs vi ∈ R3,

....ri = vi (7.5)

where ri = [xi,yi,zi]
T is the position of the center of mass (CoM) of quadrotor i and the full

state is q= [rT , ṙT , r̈T ,
...r T ]T ∈R12. Let r = [rT

1 ,r
T
2 , . . . ,r

T
N ]

T ∈R3N and v= [vT
1 ,v

T
2 , . . . ,v

T
N ]

T ∈

R3N denote the ensemble variables for position and virtual control of the team of quadro-

tors.

The following CBF ensures pairwise safety between quadrotors i and j

h1
i j(qi,q j) = (xi− x j)

4 +(yi− y j)
4 +

(
zi− z j

c

)4

−D4
s (7.6)
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where Ds is the safety distance and c is the scaling factor along the z axis caused by air flow

disturbance. Indeed, safe trajectories are guaranteed by encapsulating each quadrotor in a

rectangular super-ellipsoid to ensure quadrotors maintain a safe distance in the x− y plane

as well as on the z−axis. Collision-free trajectories are ensured when h1
i j ≥ 0.

From [78], the virtual input v must satisfy

−

0, . . . , 1︸︷︷︸
ith

, . . . , −1︸︷︷︸
jth

, . . . ,0

⊗ΛΛΛ · v (7.7)

≤ γKKK ·ηηη +L4
f h1

i j(q)∀i ̸= j (7.8)

where ΛΛΛ is [4(xi− x j)
3,4(yi− y j)

3,4 (zi−z j)
3

c4 ], ηηη = [h1
i j, ḣ

1
i j, ḧ

1
i j,

...
h 1

i j]
T , K ∈ R1×4 is a vector

obtained by pole placement for a closed-loop matrix (F−GK) and L4
f h1

i j = 24δ̇ 4 +144δ ◦

δ̇ 2◦ δ̈ +36r2◦ δ̈ 2+48r2◦ δ̇ ◦
...
δ ) ·1113 for δ = [xi−x j,yi−y j,

zi−z j
c ] and ◦ is the element-wise

vector product.

The given inequality can be treated as a linear constraint on v where Ai j ·v is represented

by Equation 7.7 and bi j is Equation 7.8. These constraints form the convex set Ksa f e for all

inputs v that provide pairwise safety barrier constraints where

Ksa f e = {v ∈ R3N |Ai j · v≤ bi j, ∀i ̸= j, j ∈ N} (7.9)

As long as the virtual control v is in Ksa f e for its corresponding initial conditions, the team

of quadrotors is guaranteed safe. Next, we will show a similar formulation for the boundary

of the arena.
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7.3.2 Arena Barrier Certificates

In addition to providing safety guarantees for robot collision avoidance, we also provide

testbed collision avoidance. We consider the CBF

h2
i =−(xi−Bx)

4− (yi−By)
4− (zi−Bz)

4 (7.10)

+(BBBmax−BBBcent)−D4
B (7.11)

for quadrotor i where the desired closest boundary distance is DB, BBBcent = [Bx,By,Bz] are

the coordinates for the center of the boundary volume and BBBmax are the maximum x−y− z

coordinates of the boundary. Through a similar formulation as the previous section, we use

this CBF as a linear constraint for each quadrotor where

Ai =−diag(4(xi−Bx)
3,4(yi−By)

3,4(zi−Bz)
4) (7.12)

bi = γKKK +L4
f h2

i (q) (7.13)

where the barrier inequality constraint for quadrotor i has the form

Aiv≤ bi.

These previously defined constraints are combined to ensure a guaranteed safe and mini-

mally invasive controller via the following quadratic program (QP)

v∗ = argmin
v∈R3N

J(u) =
N

∑
i=1
||vi− vnom||2 (7.14)

s.t. Ai jv≤ bi j ∀i ̸= j, j ∈ N (7.15)

Aivi ≤ bi ∀i ∈ N (7.16)
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Figure 7.5: Charging docks are 3D printed in a funnel-like shape to aid landing procedures.
Each charging dock contains a Qi charger transmitter that inductively charges Crazyflies.

where vnom is the control input generated from the spline developed by the user’s waypoint

and v∗ is the actual control command. The solution provided by this QP guarantees that

trajectories generated for quadrotors remain collision free both for the arena and between

quadrotors.

7.3.3 Firmware Updates

Safe trajectories greatly enhance the long term use of the testbed by ensuring multiple user

experiments can be run without damaging the quadrotors or arena. However, some user

code can be unintentionally malicious through algorithm design. We therefore update the

open source firmware of the Crazyflie by implementing a switching controller design. We

use the Mellinger controller [5] for all normal operations of flight; however, in the event

that no message packet is recieved from the Crazyflie Realtime Protocol (CRTP), we induce

a hover controller. This hover controller ensures that if a user’s code blocks the ROS topic

responsible for sending new input commands, the quadrotor will not fall while waiting for

new inputs to be received. If the next command takes longer than a predefined number of

seconds, the quadrotors will land automatically and wait for the next experiment.
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7.4 Autonomous Charging

A key addition to the inclusion of quadrotors on the Robotarium is the ability to land and

charge quadrotors autonomously. Funnel-like charging docks are 3D printed (see Figure

7.5) that leverage the grounding effects [135] of the propellers to assist quadrotor landing

maneuvers. A key goal of autonomous landing and charging is to enable repeatable take-

off and landing from the charging docks and to return to the charging docks and resume

charging the quadrotors from anywhere on the testbed. In this section, we will introduce

two procedures that enable landing and charging for external user experiments.

Algorithm 7 Autonomous Landing
set desired poses← post takeo f f poses
update poses()
start→ post takeo f f posesz

end→ pre takeo f f posesz
η → desired tra jectories(start,end)
while r ̸= pre takeo f f poses do

cmdFullState(η1:9,ψ,Bω̇)

noti f ySet pointsStop()
land()

Our first procedure is the land() function with the algorithm shown in Algorithm 7.

The software stack first saves the post-takeoff and pre-takeoff poses of all quadrotors in a

user experiment. Then we set desired poses to be the post-takeoff positions (positions of

quadrotors at the start of the experiment), once reached, we define a new set of waypoints

defined by intermediate heights between the post-takeoff and pre-takeoff pose heights, la-

beled as post takeo f f posesz and pre takeo f f posesz. Trajectories are generated for all

active quadrotors and the desired setpoint is developed by the chain of integrator system

and sent as a ROS topic to cmdFullState. In the landing procedure, the arena barrier certifi-

cates are not enabled as the docking stations are outside of the boundary volume. Finally,

after the quadrotors have landed we call the notifySetpointsStop service in the Crazyswarm

ROS package which halts all streaming setpoints passing from the host computer to the
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Crazyflies.

The second procedure we implement is the charge robots() procedure. We first enable

logging in the Crazyswarm launch file, allowing us to record realtime log data provided by

the vendor firmware and access the charge status of the crazyflies. Crazyflie battery states

include:

• Battery: 0

• Charging: 1

• Charged: 2

• Low power: 3

• Shutdown: 4

We first check if the quadrotor is not in the charging or charged state and if the battery state

is not one of these values, the charge robots() script begins. We implement an aggres-

sive trajectory tracking controller to adjust position due to small changes in position error

for all charging routines. The charging locations, previously recorded via a configuration

file loaded at the beginning of the experiment, are set as the desired endpoints for each

quadrotor trajectory. Each quadrotor is landed independently of the first to ensure external

disturbances do not impact landing procedures. Once all robots have entered the charged

or charging state, the autonomous charging procedure exits.

7.5 Software, Simulation and Safety Verification

The software addition to the Robotarium was designed to ease user access to aerial swarms

for robotics research. We developed our software stack with that goal by introducing:

model-based simulation, data logging and safety verification.

The simulator uses model-based simulation for users to test their algorithms and see

how their code would operate on real world systems before implementation. The model
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and model parameters are available in the simulator for users to see and adjust their code

accordingly. Users must first declare the number of quadrotors desired for an experiment

and then call the build() function which initializes the experiment and generates the sim-

ulation window. Interaction with the robots is limited to waypoint control through the

set desired poses() function where users give an array of desired positions for their swarm.

Finally, these pose commands are updated using the update poses() function which up-

dates the dynamical model of the quadrotors and simulates the quadrotors motion via the

provided waypoints. The simulator is available as a MATLAB simulator or Python simu-

lator on the Robotarium GitHub 2.

Often user experiments require data recorded from the experiments, users can save

experiment data via the save data() function. This function generates a pickle file (or .mat

file) with a record of the quadrotor position, chain of integrator input, and orientation for

a particular timestamp. These values are replaced with the real values in the submitted

experiments.

Finally, we implement a safety verification checker via simulation when users submit

experiments. This checks how often we modify user input to ensure safety and experiments

where a high number of collisions are rejected based on a predefined threshold Dsa f e. This

is represented by the function D ∈ R+ for N robots over time t ∈ [0,T ]. We represent this

safety check formally as

D =
N

∑
i=0

Di =
T

∑
t=0

Ii(t)dt (7.17)

where Ii(t) is an indicator function that is 1 if a quadrotor has ”collided” at time t and 0

otherwise. For the entire user experiment D≤ Dsa f e to satisfy the virtual safety checker.
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Table 7.1: Videos of Quadrotor Experiments

Experiment Video Links
Adversarial Agent https://youtu.be/XfVc4Yp6qiM

Circle Swap https://youtu.be/xTRfJkU3MEE
Leader Follower https://youtu.be/VPc6ooAvHUU

7.6 Types of Experiments

In this section we show examples of the types of experiments we have run using the aerial

vehicle framework. These experiments were first simulated and then ran autonomously on

our testbed. All corresponding videos for each experiment can be found in Table 7.1.

7.6.1 Adversarial Agent Interactions with Exponential Barrier Certificates

This experiment is a demonstration of the effectiveness of barrier functions implemented on

quadrotors [78]. This shows four quadrotors in a circle formation with an antagonistic fifth

quadrotor flying through the formation. Because barrier functions are implemented on all

quadrotors, as the fifth quadrotor tries to collide with the other quadrotors, each trajectory

is modified and all quadrotors remain safe and collision-free.

7.6.2 Swap Positions in Three-Dimensional Space

A classic example of barrier functions in two-dimensions for the GritsBots is the swap

positions experiment [113]. In this example, each robot is commanded to swap positions

with its furthest neighbor in a circle. Emergent collision avoidance behavior is generated

through safe trajectories created through control barrier certificates. We implement this on

the quadrotors and show this emergent behavior in three-dimensional space.

7.6.3 Leader Follower Network Control on Undirected Weighted Graphs

Many swarm robotics applications develop leader-follower like networks where a single or

a subset of agents influence the behavior of a group of agents. These types of networks

2https://github.com/robotarium
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can be seen in biomemetic robotics applications [136], military operations [137] or sensor

network emulations [138]. We show through the development of a leader follower network

on undirected weighted graphs, first presented in [139], the extension of leader-follower

networks for aerial swarms represented by the dynamics

ẋ =−((Diag(δ̂ f )Lw)⊗ Id)x+(∆l⊗ Id)ul (7.18)

where Diag(δ̂ f ) is the diagonal indicator matrix representing which agents are followers,

Lw is the weighted graph Laplacian of graph G, Id is a d×d identity matrix, ∆d is the matrix

representing the leaders in G, ul is the input vector to the leaders and x ∈ Rd . This system

shows that easy prototyping of network control type problems can be created in simulation

and verified in experiment on our platform.

7.7 Conclusion

In conclusion, we have developed a remotely accessible aerial swarm robotics testbed as

an addition and improvement upon the original Robotarium. We highlight the software

and hardware changes made to enable safe deployment of external user experiments. We

provide formal guarantees of safety through the introduction of control barrier certificates

for quadrotors and safety verification by measuring collision information. To show the

efficacy of our testbed we show a number of examples created to highlight the versatility

of swarm robotics applications that quadrotors are capable of executing while remaining

collision free and autonomous.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

As humans begin working more frequently in environments with multi-agent systems, they

are presented with challenges on how to control these systems in an intuitive manner. It is

often the case that to control robotic systems, experts must design complex controllers for

single agents or provide basic trajectory commands for the multi-agent case. We seek to

democratize the use of robotic systems where novice users can provide high level specifi-

cations with little overhead necessary to achieve desired goals.

In Chapter 3 we begin by exploring specification-based maneuvering where we lever-

age the dynamics of quadrotors to design trajectories that satisfy goal specifications as well

as the dynamical constraints of the system. In addition to this, we show how to develop

specifications both as explicit sequences of hoops as well as LTL specifications. By includ-

ing LTL specifications we enhance the expressive capabilities of our planning framework

for reconfigurable waypoints.

In Chapter 4 we define task orchestration as a combination of task decomposition, allo-

cation and planning for a quadrotor or team of quadrotors given a high-level specification.

By doing this we consider tasks that are complex and consist of environment constraints,

system constraints, or both, that must be satisfied. Trajectories are optimized according to

agent specific cost functions for a homogeneous team of agents (in our case quadrotors).

We then verify this task orchestration framework with a fire-fighting quadrotors case study.

This problem is complex enough in that it captures many aspects of the types of problems

this orchestration framework seeks to solve. Indeed, by considering a set of N quadrotors,

capable of carrying water, surveying various locations and identifying resources within a

predefined area, we dynamically allocate these quadrotors to different regions, extinguish

fires and monitor their internal states in an efficient manner.
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This task decomposition is extended in Chapter 5 where we define an online method

of task allocation for multi-agent systems. We develop online cross entropy optimization

for online task allocation and consider use cases where end users are unfamiliar with op-

timal costs necessary in the prior problem formulation of Chapter 4. In addition to this,

we extended online cross entropy to consider multivariate distribution sampling and its

applications to robotic systems.

In the prior parts of this thesis, we assumed end users are familiar with LTL specifi-

cations. And while this formal language is expressive and close to human syntax, often

experts are needed to understand ideal construction of specifications for preferred behavior

of robotic systems. With this in mind, we approach learning temporal logic specifications

through support vector machines in Chapter 6. Features are learned from traces and then

mapped to temporal logic templates where specifications are generated as a composition

of temporal logic templates. This enables novice users to “define” desired system speci-

fications by only providing traces to a learning algorithm. We validate this work with a

comparison to brute force LTL mining techniques as well as a case study involving home

surveillance drones.

Throughout this thesis, specification-based planning has been used to provide end users

control to aerial swarms. In Chapter 7, we provide external users access to waypoint control

for real hardware systems via the Robotarium. In addition to this, the extension of the

Robotarium aims to bridge the hardware-software gap prevalent in multi-robot research and

aerial swarm robotic research by providing an open access research platform to users with

limited knowledge of aerial vehicles or testbeds. We present the hardware and software

changes necessary to provide users safe access to micro-UAVs and provide examples of the

types of experiments users can submit to the Robotarium.

In conclusion, this thesis provides intuitive methods of quadrotor control for the single

and multi-agent cases. We leverage system and environment constraints to inform plan-

ning and task decomposition with minimal input from the end users. It is our belief that
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by using specification-based planning, novice users can define and satisfy complex goals

for quadrotor teams. It is evident from the use of formal methods, such as temporal logic,

for specification design that we can guarantee system performance and specification design

through the tools we have presented in this thesis. Additionally, we show that we further

reduce obstacles for robot control for novice users using specification design by learning

temporal logic specifications. It is here we envision future research can be approached to

leverage additional information from a system, or desired behavior, to generate specifica-

tions defining its generalized behavior formally through temporal logics.
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