487 research outputs found

    Composing Communicating Systems, Synchronously

    Get PDF
    Communicating systems are nowadays part of everyday life, yet programming and analysing them is difficult. One of the many reasons for this difficulty is their size, hence compositional approaches are a need. We discuss how to ensure relevant communication properties such as deadlock freedom in a compositional way. The idea is that communicating systems can be composed by taking two of their participants and transforming them into coupled forwarders connecting the two systems. It has been shown that, for asynchronous communications, if the participants are \u201ccompatible\u201d then composition satisfies relevant communication properties provided that the single systems satisfy them. We show that such a result changes considerably for synchronous communications. We also discuss a different form of composition, where a unique forwarder is used

    Decentralized bisimulation for multiagent systems

    Full text link
    Copyright Ā© 2015, International Foundation for Autonomous Agents and Multiagent Systems. The notion of bisimulation has been introduced as a powerful way to abstract from details of systems in the formal verification community. When applying to multiagent systems, classical bisimulations will allow one agent to make decisions based on full histories of others. Thus, as a general concept, classical bisimulations are unrealistically powerful for such systems. In this paper, we define a coarser notion of bisimulation under which an agent can only make realistic decisions based on information available to it. Our bisimulation still implies trace distribution equivalence of the systems, and moreover, it allows a compositional abstraction framework of reasoning about the systems

    Modal specification theories for component-based design

    Get PDF

    Communication requirements for team automata

    Get PDF
    Compatibility of components is an important issue in the quest for systems of systems that guarantee successful communications, free from message loss and indefinite waiting for inputs. In this paper, we investigate compatibility in the context of systems consisting of reactive components which may communicate through the synchronised execution of common actions. We model such systems in the team automata framework, which does not impose any a priori restrictions on the synchronisation policy followed to combine the components. We identify a family of representative synchronisation types based on the number of sending and receiving components participating in synchronisations. Then, we provide a generic procedure to derive, for each synchronisation type, requirements for receptiveness and for responsiveness of team automata that prevent that outputs are not accepted and inputs are not provided, respectively. Due to the genericity of our approach w.r.t. synchronisation policies, we can capture compatibility notions for various multi-component system models known from the literature.Peer ReviewedPostprint (author's final draft

    A compositional analysis of broadcasting embedded systems

    Get PDF
    This work takes as its starting point D Kendall's CANdle/bCANdle algebraic framework for formal modelling and specification of broadcasting embedded systems based on CAN networks. Checking real-time properties of such systems is beset by problems of state-space explosion and so a scheme is given for recasting systems specified in Kendall's framework as parallel compositions of timed automata; a CAN network channel is modelled as an automaton. This recasting is shown to be bi-similar to the original bCANdle model. In the recast framework,"compositionality" theorems allow one to infer that a model of a system is simulated by some abstraction of the model, and hence that properties of the model expressible in ACTL can be inferred from analogous properties of the abstraction. These theorems are reminiscent of "assume-guarantee" reasoning allowing one to build simulations component-wise although, unfortunately, components participating in a "broadcast" are required to be abstracted "atomically". Case studies are presented to show how this can be used in practice, and how systems which take impossibly long to model-check can tackled by compositional methods. The work is of broader interest also, as the models are built as UPPAAL systems and the compositionality theorems apply to any UPPAAL system in which the components do not share local variables. The method could for instance extend to systems using some network other than CAN, provided it can be modelled by timed automata. Possibilities also exist for building it into an automated tool, complementing other methods such as counterexample- guided abstraction refinement

    Integration of analysis techniques in security and fault-tolerance

    Get PDF
    This thesis focuses on the study of integration of formal methodologies in security protocol analysis and fault-tolerance analysis. The research is developed in two different directions: interdisciplinary and intra-disciplinary. In the former, we look for a beneficial interaction between strategies of analysis in security protocols and fault-tolerance; in the latter, we search for connections among different approaches of analysis within the security area. In the following we summarize the main results of the research

    Composing Communicating Systems, Synchronously

    Get PDF
    Conference moved to 2021 due to covid-19International audienceCommunicating systems are nowadays part of everyday life, yet programming and analysing them is difficult. One of the many reasons for this difficulty is their size, hence compositional approaches are a need. We discuss how to ensure relevant communication properties such as deadlock freedom in a compositional way. The idea is that communicating systems can be composed by taking two of their participants and transforming them into coupled forwarders connecting the two systems. It has been shown that, for asynchronous communications, if the participants are "compatible" then composition satisfies relevant communication properties provided that the single systems satisfy them. We show that such a result changes considerably for synchronous communications. We also discuss a different form of composition, where a unique forwarder is used
    • ā€¦
    corecore