47 research outputs found

    Teaching robots parametrized executable plans through spoken interaction

    Get PDF
    While operating in domestic environments, robots will necessarily face difficulties not envisioned by their developers at programming time. Moreover, the tasks to be performed by a robot will often have to be specialized and/or adapted to the needs of specific users and specific environments. Hence, learning how to operate by interacting with the user seems a key enabling feature to support the introduction of robots in everyday environments. In this paper we contribute a novel approach for learning, through the interaction with the user, task descriptions that are defined as a combination of primitive actions. The proposed approach makes a significant step forward by making task descriptions parametric with respect to domain specific semantic categories. Moreover, by mapping the task representation into a task representation language, we are able to express complex execution paradigms and to revise the learned tasks in a high-level fashion. The approach is evaluated in multiple practical applications with a service robot

    Graph-based task libraries for robots: generalization and autocompletion

    Get PDF
    In this paper, we consider an autonomous robot that persists over time performing tasks and the problem of providing one additional task to the robot's task library. We present an approach to generalize tasks, represented as parameterized graphs with sequences, conditionals, and looping constructs of sensing and actuation primitives. Our approach performs graph-structure task generalization, while maintaining task ex- ecutability and parameter value distributions. We present an algorithm that, given the initial steps of a new task, proposes an autocompletion based on a recognized past similar task. Our generalization and auto- completion contributions are eective on dierent real robots. We show concrete examples of the robot primitives and task graphs, as well as results, with Baxter. In experiments with multiple tasks, we show a sig- nicant reduction in the number of new task steps to be provided

    Language-based sensing descriptors for robot object grounding

    Get PDF
    In this work, we consider an autonomous robot that is required to understand commands given by a human through natural language. Specifically, we assume that this robot is provided with an internal representation of the environment. However, such a representation is unknown to the user. In this context, we address the problem of allowing a human to understand the robot internal representation through dialog. To this end, we introduce the concept of sensing descriptors. Such representations are used by the robot to recognize unknown object properties in the given commands and warn the user about them. Additionally, we show how these properties can be learned over time by leveraging past interactions in order to enhance the grounding capabilities of the robot

    Multi-robot task acquisition through sparse coordination

    Get PDF
    Abstract — In this paper, we consider several autonomous robots with separate tasks that require coordination, but not a coupling at every decision step. We assume that each robot sep-arately acquires its task, possibly from different providers. We address the problem of multiple robots incrementally acquiring tasks that require their sparse-coordination. To this end, we present an approach to provide tasks to mul-tiple robots, represented as sequences, conditionals, and loops of sensing and actuation primitives. Our approach leverages principles from sparse-coordination to acquire and represent these joint-robot plans compactly. Specifically, each primitive has associated preconditions and effects, and robots can con-dition on the state of one another. Robots share their state externally using a common domain language. The complete sparse-coordination framework runs on several robots. We report on experiments carried out with a Baxter manipulator and a CoBot mobile service robot. I

    Culturally-Competent Human-Robot Verbal Interaction

    Get PDF
    The article describes a system for culture-aware human-robot verbal interaction, that constitutes the basis for designing culturally-competent robots for health-care, i.e., robots able to autonomously re–configure their way of acting and speaking, when offering a service, to match the culture, customs, and etiquette of the person they are asstisting. The article shows how culture-aware verbal interaction is tightly related to cultural knowledge representation and acquisition, by describing the methodological and technological solutions adopted, and showing in details one of the preliminary experiments performed to design a culturally-competent robot

    Modeling and Learning of Complex Motor Tasks: A Case Study with Robot Table Tennis

    Get PDF
    Most tasks that humans need to accomplished in their everyday life require certain motor skills. Although most motor skills seem to rely on the same elementary movements, humans are able to accomplish many different tasks. Robots, on the other hand, are still limited to a small number of skills and depend on well-defined environments. Modeling new motor behaviors is therefore an important research area in robotics. Computational models of human motor control are an essential step to construct robotic systems that are able to solve complex tasks in a human inhabited environment. These models can be the key for robust, efficient, and human-like movement plans. In turn, the reproduction of human-like behavior on a robotic system can be also beneficial for computational neuroscientists to verify their hypotheses. Although biomimetic models can be of great help in order to close the gap between human and robot motor abilities, these models are usually limited to the scenarios considered. However, one important property of human motor behavior is the ability to adapt skills to new situations and to learn new motor skills with relatively few trials. Domain-appropriate machine learning techniques, such as supervised and reinforcement learning, have a great potential to enable robotic systems to autonomously learn motor skills. In this thesis, we attempt to model and subsequently learn a complex motor task. As a test case for a complex motor task, we chose robot table tennis throughout this thesis. Table tennis requires a series of time critical movements which have to be selected and adapted according to environmental stimuli as well as the desired targets. We first analyze how humans play table tennis and create a computational model that results in human-like hitting motions on a robot arm. Our focus lies on generating motor behavior capable of adapting to variations and uncertainties in the environmental conditions. We evaluate the resulting biomimetic model both in a physically realistic simulation and on a real anthropomorphic seven degrees of freedom Barrett WAM robot arm. This biomimetic model based purely on analytical methods produces successful hitting motions, but does not feature the flexibility found in human motor behavior. We therefore suggest a new framework that allows a robot to learn cooperative table tennis from and with a human. Here, the robot first learns a set of elementary hitting movements from a human teacher by kinesthetic teach-in, which is compiled into a set of motor primitives. To generalize these movements to a wider range of situations we introduce the mixture of motor primitives algorithm. The resulting motor policy enables the robot to select appropriate motor primitives as well as to generalize between them. Furthermore, it also allows to adapt the selection process of the hitting movements based on the outcome of previous trials. The framework is evaluated both in simulation and on a real Barrett WAM robot. In consecutive experiments, we show that our approach allows the robot to return balls from a ball launcher and furthermore to play table tennis with a human partner. Executing robot movements using a biomimetic or learned approach enables the robot to return balls successfully. However, in motor tasks with a competitive goal such as table tennis, the robot not only needs to return the balls successfully in order to accomplish the task, it also needs an adaptive strategy. Such a higher-level strategy cannot be programed manually as it depends on the opponent and the abilities of the robot. We therefore make a first step towards the goal of acquiring such a strategy and investigate the possibility of inferring strategic information from observing humans playing table tennis. We model table tennis as a Markov decision problem, where the reward function captures the goal of the task as well as knowledge on effective elements of a basic strategy. We show how this reward function, and therefore the strategic information can be discovered with model-free inverse reinforcement learning from human table tennis matches. The approach is evaluated on data collected from players with different playing styles and skill levels. We show that the resulting reward functions are able to capture expert-specific strategic information that allow to distinguish the expert among players with different playing skills as well as different playing styles. To summarize, in this thesis, we have derived a computational model for table tennis that was successfully implemented on a Barrett WAM robot arm and that has proven to produce human-like hitting motions. We also introduced a framework for learning a complex motor task based on a library of demonstrated hitting primitives. To select and generalize these hitting movements we developed the mixture of motor primitives algorithm where the selection process can be adapted online based on the success of the synthesized hitting movements. The setup was tested on a real robot, which showed that the resulting robot table tennis player is able to play a cooperative game against an human opponent. Finally, we could show that it is possible to infer basic strategic information in table tennis from observing matches of human players using model-free inverse reinforcement learning

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics

    Get PDF
    This Open Access proceedings present a good overview of the current research landscape of industrial robots. The objective of MHI Colloquium is a successful networking at academic and management level. Thereby the colloquium is focussing on a high level academic exchange to distribute the obtained research results, determine synergetic effects and trends, connect the actors personally and in conclusion strengthen the research field as well as the MHI community. Additionally there is the possibility to become acquainted with the organizing institute. Primary audience are members of the scientific association for assembly, handling and industrial robots (WG MHI)
    corecore