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Abstract. In this work, we consider an autonomous robot that is re-
quired to understand commands given by a human through natural lan-
guage. Specifically, we assume that this robot is provided with an internal
representation of the environment. However, such a representation is un-
known to the user. In this context, we address the problem of allowing a
human to understand the robot internal representation through dialog.
To this end, we introduce the concept of sensing descriptors. Such repre-
sentations are used by the robot to recognize unknown object properties
in the given commands and warn the user about them. Additionally, we
show how these properties can be learned over time by leveraging past
interactions in order to enhance the grounding capabilities of the robot.

Keywords: Sensing Descriptors; Human-Robot Interaction; Natural Lan-
guage Processing.

1 INTRODUCTION

One of the main goals of RoboCup@Home is to develop an assistant and com-
panion for humans in domestic settings. The idea is to allow robots to naturally
interact with non-expert users in these environments. However, when first in-
teracting with an unknown robot, users may be able to imagine its capabilities,
while not knowing how to instruct it. For example, when seeing a manipulator in
front of multiple blocks, a user might assume that the robot is able to manipulate
them, while being unaware of the commands understood. To this end, several
approaches have been proposed to enable untrained users to interact with robots
through either constrained or unconstrained natural language.

In this paper, we consider the scenario in which a human needs to instruct
an autonomous robot through a natural language interface. We assume that
this robot is provided with a specific internal representation of the environment
that is unknown to the user. For example, a robot might be able to understand
colors but not orderings. Also, it may be able to recognize shapes but may not
be able to resolve spatial referring expressions. In this scenario, we address the
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problem of allowing a robot to recognize what object properties can or cannot be
grounded with its current sensing capabilities. Moreover, we address the problem
of learning new object attributes by exploiting past interactions with the user.
While addressing these problems, our goal is to enable an untrained user to
understand, through the interaction with the system, which object properties the
robot can understand. These interaction can then used to enhance the grounding
capabilities of our robots. Note that in this paper, we will use the term grounding
to refer to the concept of “physical symbol grounding" as defined by Vogt [1].

To this end, we contribute a novel approach that enables the robot to recog-
nize unknown objects properties contained in the received commands and warn
the user about them. We note that the majority of the techniques proposed in
literature make the implicit assumption that if a robot can semantically parse an
utterance, then it will be able to ground it. We believe that this assumption may
not always hold, since while a robot may be able to correctly parse a sentence and
extract its semantic, it may not be able to ground it due to a missing sensing
capability. Hence, we internally represent sensing capabilities through sensing
descriptors and use them to recognize unknown object properties. At this point,
the robot can notify the user and request an alternative command. In addition,
the robot can learn new object properties by leveraging these interactions with
the user. After learning, the robot is able to execute the natural language com-
mands, as in Figure 1. Our contribution has been used to instruct several robots,
including a Baxter manipulator able to perform complex manipulation tasks. In
this paper, we describe all the components of our approach along with in depth
illustrative examples with the Baxter manipulator robot.

Commands
- pick up the cubic block

- grab the yellow block

- touch the second block

- point at the left block

- take the narrow block

Fig. 1: Baxter manipulator robot used in our experiments and examples of commands
that our approach is able to successfully execute.

In the remainder of the paper, we first present an overview of related work,
focusing on past research on natural language processing applied to robotic sys-
tems. Next, we provide an overview of our natural language approach describing
all of our contributions thoroughly. Then, we present an application of the ap-
proach to the case of a Baxter manipulator. This setting is then used to quanti-
tatively evaluate the proposed approach. Finally, we conclude with a discussion
of our contribution and remarks on future work.
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2 RELATED WORK

Our research topic is mostly related to the literature on natural language human-
robot interaction. Initial studies on natural language understanding can be traced
back to SHRDLU [2], a system able to process natural language instructions to
perform actions in a virtual environment. Inspired by this system, multiple re-
searchers extended SHRDLU’s capabilities into real-world scenarios, soon start-
ing to tackle related problems, including natural language on robotics systems.

Research has applied speech-based approaches to deploy robotic systems in
a wide variety of environments. For example, these approaches have been used
in manipulators [7,8,9], aerial vehicles [10], and wheeled platforms [11,12]. More-
over, several prototypes have been developed for social robots carrying out spe-
cialized tasks, such as attending as a waiter [13], as a receptionist [15] or as
a bartender [14]. Some of these specialized tasks target industrial goals, such
as assembly [16], or moving objects [17]. Dialog has also been used to teach
robots how to accomplish a given task, such as giving a tour [18], delivering ob-
jects [19], or manipulating them [20]. Finally, other related works have combined
speech-based approaches with other types of interactions [21,22]. Specifically, in
the former work the authors have developed a theory of mind for the inter-
acting user, built upon perspective taking, multi-modal communication, and a
symbol grounding capability. Instead, in the latter case, the authors present a
multi-modal approach for building on-line a semantic map of the environment.

More recently, several domain-specific systems that allow users to instruct
robots through natural language have been presented in literature. For exam-
ple, Kollar et al. [3] and MacMahon et al. [4] present different methods for fol-
lowing natural language route instructions by decoupling the semantic parsing
problem from the grounding problem. In these works, the input sentences are
first translated to intermediate representations, which are then grounded into
the available knowledge base. Instead, Chernova et al. [5] show how to enable
natural language human-robot interaction in a scenario of collaborative human-
robot tasks, by data-mining past interactions between humans. Dzifcak et al. [6]
address the problem of translating natural language instructions into goal de-
scriptions and actions by exploiting λ−calculus. However, these approaches are
not able to incrementally enhance their natural language understanding from
the continuous interaction with the user.

Such a problem has been faced by Kollar et al. [23]. By exploiting the dialog
with the user, in this work the authors present a probabilistic approach able to
learn referring expressions for robot primitives and physical locations in a map.
Our approach is inspired to this latter work. However, we make an additional
step forward, assuming the user to be unaware of the capabilities and the internal
representation of the robot. With this assumption, we propose an approach for
allowing a robot to recognize unknown object properties contained in the received
commands and warn the user about them. With this approach, on one hand
the user is able to understand over time what a robot can and cannot ground.
On the other hand, the robot can leverage past interactions to learn new object
properties. The next section describes how our approach can achieve these goals.
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3 APPROACH

In this section, first we motivate and introduce the concept of sensing descriptors.
Next, we present our approach for human-robot natural language interaction
based on such a concept. Finally, we show how the system can leverage previous
interactions with users to learn previously unknown referring expressions for the
objects perceived.

3.1 Sensing Descriptors

Usually, when dealing with robots and natural language user commands, a stan-
dard processing chain is adopted to decouple the semantic parsing problem from
the grounding problem [3,4,19,23]. First, the natural language utterances are con-
verted into text through an automatic speech recognition (ASR) system. Next,
the text is converted into a specific representation that captures the semantic
meaning of the uttered command. This conversion is carried out either through
grammars or probabilistic approaches. The obtained representation is then “con-
textualized” in the operational environment through a grounding process. The
final result is an executable function and a set of parameters passed as input.

In general, during this process each natural language command is grounded
through a combination of sensing actions and queries to a given knowledge base.
However, this approach does not take into account the sensing capabilities of the
robot. In fact, we note that approaches proposed in literature often assume that
if the robot can semantically parse an utterance, then it will be able to ground
it. However, a robot may be able to correctly parse a sentence and extract its
semantic without being able to ground the command due to a missing sensing
capability. Hence, we propose to explicitly represent in the knowledge base these
capabilities and use them to recognize parts of the commands that could only
be grounded through a sensing ability not available to the robot. To this end,
we introduce the concept of sensing descriptor.

Each sensing operation carried out by a robot can be defined as a function
that takes as input a particular type of sensed data and outputs a value expressed
in the internal representation of the robot. This value will be an instance of a
sensing descriptor. Formally, a sensing operation can be defined as:

fsensing : D → SD

were D is the particular type of data sensed and SD is a specific sensing de-
scriptor. As an example, let’s consider the operation of sensing the color of a
particular object. The input will be the RGB values of the pixels sensed by a
camera. The output will be one or more instances of the sensing descriptor color
(e.g., [255, 0, 0] or red depending on the internal representation of the robot).
These sensing descriptors can be used to check if the utterances received from a
user can be grounded with the current capabilities of a robot. We perform this
check as an intermediate step between the semantic parsing and the grounding
process, as explained in the next section.
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3.2 Human-Robot Natural Language Interaction

Figure 2 shows an overview of our processing chain. Specifically, this processing
approach is divided in four consecutive steps. First, speech is converted into text
using a free-form speech-to-text engine. Text from speech is confirmed by the
user. Thus, without loss of generality, the input of the system is established as
natural language text.

Fig. 2: Overview of our natural language processing chain. Instead of directly ground-
ing the frames extracted from the commands, we perform an additional step that
analyzes the sensing descriptors included in the frame elements.

Next, the text is converted into a specific representation characterizing the
semantic of the sentence. This step is performed through the aid of specific
grammars that drive the recognition process by attaching a proper semantic
output to each grammar rule. The output has the form of a semantic frame
representing a “situation” in the world (typically an action) inspired by the notion
defined in the Frame Semantics linguistic theory [24]. The meaning of each frame
can be enriched by semantic arguments, called frame elements, that are part of
the input sentence. The output of the recognition process is then converted to
a parse tree that contains syntactic and semantic information. This information
is used to instantiate a frame, similarly to [25]. As an example, the command
“pick up the red block” will be mapped to the GETTING frame. The sub-phrase
“the red block” will instead represent the specific frame element THEME, which
represents the target of the GETTING action.

At this point, instead of directly grounding the frames in the internal repre-
sentation of the robot we explicitly represent each sensing descriptor that can
be recognized and grounded by the robot, also defining the range of values that
it can assume. Formally, in our knowledge base we represent every sensing de-
scriptor SDi that can be handled by a robot, also representing all its possible
known instances sd j ∈ SDi. We use these sensing descriptors to check if the
obtained frame elements can be grounded with the current sensing capabilities
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of the robot. Hence, we define sensing descriptor extractor a function ψ able to
extract from each frame element all the contained instances of sensing descrip-
tors. Formally, if we define FE the frame element type, the sensing descriptor
extractor can be specified as:

ψ : FE → {SD1,SD2, ...SDn}

where SD i is a specific sensing descriptor extracted from the given frame element.
There are many possible ways to implement this function. In our approach,

the sensing descriptor extractor is represented as a parser that exploit gram-
matical rules to carry out its task. In fact, we note that particular grammar
elements are associated to referring expressions that require sensing capabilities
to be grounded. Hence, for our specific case, we propose an heuristic rule that
selects all the adjectives found in the frame elements. This rule is used to handle
element frames such as “the big red and cylindric block” where the word “and”
may or may not be used and where the words “big”, “red”, and “cylindric” need
to be extracted. The words extracted represent the sensing descriptor instances
that will be checked in the knowledge base. If all the instances are found to
belong to a particular sensing descriptor expressed in the knowledge base, the
system will proceed to ground the command, otherwise we either leverage dialog
or adopt a probabilistic approach to resolve this issue.

3.3 Handling Unknown Sensing Descriptors

When an instance of a sensing descriptor is not found in the knowledge base two
different scenarios may occur:

– The referring expression belongs to an unknown sensor descriptor and it has
never been used by a user;

– The referring expression belongs to a sensor descriptor not available to the
robot but it has been previously used to refer to a particular object.

In the first case, the robot asks the user to provide an alternative referring
expression to the object, while keeping track of all the referring expressions
used in the different interactions. These expressions are in fact the unknown
sensing descriptors found in the frame elements that are not represented in
the knowledge base of the robot. Since there is a limited amount of sensing
properties that can be expressed, eventually the user will refer to the object in
a way that the robot can understand, enabling the robot to associate all the
previously used referring expression to the grounding found. To this end, we
explicitly represent this association in the knowledge base by using the binary
logic predicate sd_grounding(X, Y). In this predicate, X represents the unknown
instance of a sensing descriptor, while Y represents the grounding found through
the multiple interactions with the user.

For example, let us consider a robot only able to recognize colors. Addition-
ally, let us assume that a user needs to refer to a cylindric red object. At a
first interaction a user might refer to the object as “the cylindric block”. When
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warned by the robot that the term “cylindric” can not be understood, the user
will provide a command with an alternative referring expression. Eventually, the
user will refer to the object as “the red block”, enabling the robot to correctly
ground the expression and assert sd_grounding(cylindric, block_1) in his knowl-
edge base. Figure 3 shows an example of a dialog between a manipulator robot
and a user that our system is able to understand and the information that the
robot is able to extract and store in the knowledge base.

Fig. 3: Example of a dialog between the robot and a user that our system is able to
understand and the information extracted and stored in the knowledge base.

To each association instance in the knowledge base, a number is also attached
to keep track of how many times the referring expression has been used to refer
to a particular object. This counter is needed to handle the alternative scenario
that may occur. In this second scenario, a referring expression belonging to
an unknown sensor descriptor has been previously used to refer to a particular
object. In this case, we adopt a probabilistic approach to ground the expressions.
Specifically, if we define KB as the knowledge base available to the robot, R the
referring expression being analyzed and G the possible groundings for it, we can
obtain the most probable grounding by selecting the one that maximizes Bayes
rule:

p(G|R;KB) =
p(R|G;KB) · p(G;KB)∑
R p(R|G;KB) · p(G;KB)

.

Here, the prior over groundings p(G;KB) is computed by looking at the counts of
each element of G in the knowledge base. The other term p(R|G;KB) is instead
obtained by counting the number of times a particular referring expression has
been used to refer to a particular grounding, and dividing by the overall number
of referring expressions used for the same grounding. Formally, if we define count
the function that returns the number of times that a particular association has
been encountered, we can compute p(R|G;KB) as:

p(R|G;KB) =
count(association(R,G))∑
R count(association(R,G))

.

After having grounded the expressions, we allow the user to give a feedback to
the robot to update the counter attached to each association instance. Algo-
rithm 1 reports the overall natural language processing approach. Specifically,
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the algorithm takes as inputs the natural language command expressed as text
and a specific knowledge base. The command is first analyzed to obtain its rep-
resentation in terms of frames and frame elements (line 3). Next, the sensing
descriptor instances are extracted from each frame elements through the sens-
ing descriptor extractor ψ (line 5). Once extracted, the instances are checked
against the available knowledge base to find any that cannot be grounded with
the current sensing capabilities of the robot (line 7). If an unknown instance
is found, the robot exploits dialog and the previous knowledge acquired to as-
sign a grounding to the referring expressions (line 10). Otherwise, the command
is grounded into the knowledge base available to the robot to obtain the final
executable function (line 13).

Algorithm 1: Ground Command
Input: Text command C, knowledge base KB

Data: Frame f, set of frame elements FE, set of sensing descriptor instances SD,
set of unknown sensing descriptor instances USD

Output: Executable action function Φ

1 begin
2 // Extract frames and set of frame elements
3 f, FE ← extractFramesAndFrameElements(C)
4 // Extract the set of sensing descriptor instances
5 SD ← ψ(FE)
6 // Select unknown sensing descriptor instances
7 USD ← selectUnknownInstances(SD ,KB)
8 if USD 6= {} then
9 // Exploit Dialog and Previous Experience to ground command

10 Φ← handleUnknownSensingDescriptors(USD, SD, KB, f, FE)
11 else
12 // Otherwise normally ground command
13 Φ← ground(f, FE)

14 return Φ

15 end

4 Experimental Evaluation

In this section we describe in detail how the presented approach has been de-
ployed on a Baxter manipulator robot able to manipulate a set of blocks placed
in front of it. This setting has been used to quantitatively evaluate our proposed
approach. Since the evaluation space of the experiment was large and generat-
ing results with humans was extremely time consuming, the experiments were
conducted by using a simulator faithful to the chosen setting1. A representa-
tive sample of the scenarios described in the paper was successfully run on the

1 https://github.com/RethinkRobotics/sdk-docs/wiki/Baxter-simulator
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manipulator interacting with humans, achieving results that are consistent with
those reported in the following sections.

4.1 Setup

Baxter has two 7 degree of freedom arms, cameras on both arms, and a mounted
Microsoft Kinect. Baxter has been programmed to perform the actions touch,
grab, move, point to, and push. These primitives are used to manipulate a set
of blocks located on a table in front of the robot. The manipulated blocks have
different shapes and colors. Additionally, each block has a unique id, associated
with a specific QR code. Given this setting, we considered the sensing descriptors
shown in Table 1. Specifically, five different blocks were considered:

– A short, wide, triangular, blue block;
– A short, narrow, cubic, brown block;
– A short, wide, bridge-shaped, yellow block;
– A tall, narrow, rectangular, green block;
– A tall, narrow, cylindric, red block.

Additionally, these blocks were associated with the number one through five,
respectively. Figure 1 shows the described scenario.

Table 1: Sensing descriptors considered in the chosen scenario and possible values.
Sensing descriptors Possible values

color {blue, brown, yellow, green, red, orange, purple}
shape {triangular, cubic, bridge-shaped, rectangular, cylindric}
block id {first, second, ..., fifth}
height {short, tall}
width {narrow, wide}

spatial location {left, center, right}

Before accepting commands, the robot was allowed to analyze the scene in order
to accumulate knowledge about the operational environment. This knowledge
was stored in the form of logic predicates in a knowledge base. The spoken
commands given to the robot were converted into text through a free-form ASR2.
For this particular scenario, a dedicated grammar was developed to convert the
natural language commands to the previously described frame representation. To
extract the sensing descriptors from the frame elements, a POS Tagger3 was used
to grammatically analyze the words in the command. Particularly, we adopted
the heuristic of extracting the adjectives related to target objects, considering
them instances of a specific sensing descriptor. With this approach we were able
to allow users to understand how to instruct the robot while interacting with it.
2 The Google free-form ASR has been used.
3 We exploited the Stanford POS Tagger to extract the sensing descriptor instances
from the frame elements.
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4.2 Approach Evaluation

In order to show the effectiveness of our algorithm, we compared our approach
with an algorithm commonly used in literature. Specifically, the chosen two-step
approach first converts the received commands to frames exploiting grammars.
Then, it directly grounds the commands without exploiting any information
about sensing descriptors. When the algorithm receives a command that can be
grounded to multiple targets (e.g., “touch the narrow block” in this scenario), it
selects a random target between the possible ones.

The two approaches have been tested by first generating all the possible
commands that can be given to the robot in this setting. Figure 1 shows some
example commands generated. Next, 50 commands were randomly chosen and
incrementally given in input to the robot. When the robot wasn’t able to un-
derstand an object attribute, the property was changed with another one not
yet used. This process was repeated until the robot understood the command.
Such an operation has been carried out for both approaches and averaged for
100 times by varying the number of sensing descriptors known by the robot. For
each run we measured the cumulative number of interactions needed to execute
all the 50 commands. Figure 4 shows the results obtained in the experiment.

Fig. 4: Results for the experiment performed on both processing chains averaged for
100 times by varying the number of sensing descriptors known by the robot.

From the graph, it can be noticed that on average our algorithm required sig-
nificantly less interactions to ground the randomly chosen commands. Moreover,
it is worth noticing the effects of the different available levels of information on
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the two approaches. In fact, when the two robots were capable of understanding
and grounding most of the used sensing descriptors, the two approaches had a
comparable result. Instead, when a lower amount of information was available,
our approach greatly outperformed the other one, leading to a decrease in in-
teractions needed to understand the command, up to approximately 50% in the
chosen scenario.

5 CONCLUSION

In this paper, we considered an autonomous robot provided with an internal rep-
resentation of the environment, unknown to a user interacting with it through
natural language. In this setting, we addressed the problem of allowing humans
to understand the internal representation of the robot through dialog. Moreover,
we enabled our robot to learn previously unknown object properties leveraging
the past interactions with the user. We successfully deployed our approach on
a Baxter manipulator robot able to carry out tasks assigned by several users
through natural language. Specifically, our experiments report in-detail the per-
formance of our algorithm in this scenario, suggesting an improvement in the
grounding effectiveness compared to another commonly used approach.

As a future work, we are studying extensions of the proposed approach. In
fact, as a long term goal, we would like to generalize the approach allowing our
robots to not only recognize unknown object properties but also every unknown
concept contained in the received commands.
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