4 research outputs found

    Initial estimation of kinematic structure of a robotic manipulator as an input for its synthesis

    Get PDF
    Researchers often deal with the synthesis of the kinematic structure of a robotic manipulator to determine the optimal manipulator for a given task. This approach can lower the cost of the manipulator and allow it to achieve poses that might be unreachable by universal manipulators in an existing constrained environment. Numerical methods are broadly used to find the optimum design but they often require an estimated initial kinematic structure as input, especially if local-optimum-search algorithms are used. This paper presents four different algorithms for such an estimation using the standard Denavit-Hartenberg convention. Two of the algorithms are able to reach a given position and the other two can reach both position and orientation using Bezier splines approximation and vector algebra. The results are demonstrated with three chosen example poses and are evaluated by measuring manipulability and the total link length of the final kinematic structures.Web of Science118art. no. 354

    Genetic optimization of a manipulator: Comparison between straight, rounded, and curved mechanism links

    Get PDF
    There are several ubiquitous kinematic structures that are used in industrial robots, with the most prominent being a six-axis angular structure. However, researchers are experimenting with task-based mechanism synthesis that could provide higher efficiency with custom optimized manipulators. Many studies have focused on finding the most efficient optimization algorithm for task-based robot manipulators. These manipulators, however, are usually optimized from simple modular joints and links, without exploring more elaborate modules. Here, we show that link modules defined by small numbers of parameters have better performance than more complicated ones. We compare four different manipulator link types, namely basic predefined links with fixed dimensions, straight links that can be optimized for different lengths, rounded links, and links with a curvature defined by a Hermite spline. Manipulators are then built from these modules using a genetic algorithm and are optimized for three different tasks. The results demonstrate that manipulators built from simple links not only converge faster, which is expected given the fewer optimized parameters, but also converge on lower cost values.Web of Science116art. no. 247

    Kinematics and Robot Design IV, KaRD2021

    Get PDF
    This volume collects the papers published on the special issue “Kinematics and Robot Design IV, KaRD2021” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2021), which is the forth edition of the KaRD special-issue series, hosted by the open-access journal “MDPI Robotics”. KaRD series is an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2021, after the peer-review process, accepted 12 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Task-Specific Manipulator Design and Trajectory Synthesis

    No full text
    corecore