
applied
sciences

Article

Genetic Optimization of a Manipulator: Comparison between
Straight, Rounded, and Curved Mechanism Links

Robert Pastor * , Zdenko Bobovský , Daniel Huczala and Stefan Grushko

����������
�������

Citation: Pastor, R.; Bobovský, Z.;

Huczala, D.; Grushko, S. Genetic

Optimization of a Manipulator:

Comparison between Straight,

Rounded, and Curved Mechanism

Links. Appl. Sci. 2021, 11, 2471.

https://doi.org/10.3390/app11062471

Academic Editor: Nuno Lau

Received: 20 January 2021

Accepted: 5 March 2021

Published: 10 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Robotics, Faculty of Mechanical Engineering, VSB-TU Ostrava, 70800 Ostrava, Czech Republic;
zdenko.bobovsky@vsb.cz (Z.B.); daniel.huczala@vsb.cz (D.H.); stefan.grushko@vsb.cz (S.G.)
* Correspondence: robert.pastor@vsb.cz; Tel.: +420-597-324-125

Abstract: There are several ubiquitous kinematic structures that are used in industrial robots, with
the most prominent being a six-axis angular structure. However, researchers are experimenting
with task-based mechanism synthesis that could provide higher efficiency with custom optimized
manipulators. Many studies have focused on finding the most efficient optimization algorithm for
task-based robot manipulators. These manipulators, however, are usually optimized from simple
modular joints and links, without exploring more elaborate modules. Here, we show that link
modules defined by small numbers of parameters have better performance than more complicated
ones. We compare four different manipulator link types, namely basic predefined links with fixed
dimensions, straight links that can be optimized for different lengths, rounded links, and links
with a curvature defined by a Hermite spline. Manipulators are then built from these modules
using a genetic algorithm and are optimized for three different tasks. The results demonstrate that
manipulators built from simple links not only converge faster, which is expected given the fewer
optimized parameters, but also converge on lower cost values.

Keywords: evolutionary robotics; manipulator optimization; modular robot; curved manipula-
tor links

1. Introduction

The most common serial manipulator design in the industry benefits from its so-called
angular structure with 6 degrees of freedom, which can easily reach the surrounding areas
and achieve multiple different poses. However, this universal kinematic structure has a
disadvantage in that when such robots are deployed in densely built workplaces, they can
collide either with obstacles or themselves. Custom manipulator designs can overcome
this problem, as best shown in the work by Brandstoetter [1], where he presented a robotic
manipulator with a task-desired kinematic structure.

Evolutionary robotics (ER) is often used to create custom robots or their components,
such as the morphology, kinematics, or controllers. It is a set of evolutionary techniques
used for the development of robotic systems, as stated by Nolfi [2] in his book, which
delivered the theoretical basics for this topic. ER strategies were described in a survey by
Back [3] and in a newer paper by Li [4]. ER is often used to synthesize robot controllers
for a specific behavior [5] or multiple behaviors [6]. One of the use cases for evolutionary
robotics is in determining the kinematics required for a robot to optimally perform a task
or a set of tasks. The reason for the usage of optimization algorithms is that the synthesis
of the kinematic structure of a manipulator is a rather complicated task if an analytical
approach is used. One of the recent achievements in terms of analytical manipulator
synthesis was the synthesis of three-revolute spatial chain by Hauenstein to allow five
poses [7]. Evolutionary robotics can provide satisfying results nowadays, allowing more
degrees of freedom and more poses (or even entire trajectories).

The optimization problem is often carried out on kinematic structures built from pre-
defined modules. Hornby [8] was one of the first that demonstrated the possible application

Appl. Sci. 2021, 11, 2471. https://doi.org/10.3390/app11062471 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7064-0853
https://orcid.org/0000-0003-4134-5251
https://orcid.org/0000-0002-7398-7825
https://orcid.org/0000-0002-8984-153X
https://doi.org/10.3390/app11062471
https://doi.org/10.3390/app11062471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11062471
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11062471?type=check_update&version=2

Appl. Sci. 2021, 11, 2471 2 of 14

of evolutionary robotics in practical engineering work by evolving a design for walking
robots. More of these examples can be found in the survey by Alattas [9]. The research
on the evolution of manipulators built from adaptive modules to perform desired tasks
was started by Han [10], who determined the optimal robot configuration and the length
of links between modules. Chocron [11] also found the optimal kinematic structure for
the modules that he defined. Another solution was presented by Valsamos et al. [12,13],
who presented a more developed approach with so-called pseudo-joints, which with the
use of a genetic algorithm (GA) attempts to find the kinematic structure with the best
manipulability. Their outcomes were later verified by Katrantzis [14] in an experiment
with a real manipulator.

It is important to note that the use of a genetic algorithm is not the only possible ap-
proach to solve the presented issue. Patel [15] used a simulated annealing algorithm, while
Ha [16] addressed the issue using a heuristic-guided tree search algorithm. Whitman [17]
and Dogra [18] applied a deterministic quasi-Newton algorithm to find the local minimum
of a cost function.

The complexity of the modules from which a robot is constructed determines the
optimization difficulty. In this context, the complexity of a module can be thought of as a
number of parameters describing one module and the variety of shapes it can achieve. Liu
et al. [19] showed that changing the number and position of connecting faces in a module
influences the evolvability of a modular robot. In another study [20], Moreno and Faina
used the same robotic modules to show how changing the length of modules affects the
resulting robot structures and performance.

The performance of an open-chain manipulator can be improved for a specific task
by optimizing the Denawit–Hartenberg (DH) [21] parameters. Ceccarelli optimized the
DH parameters of a 3R manipulator for a specific workspace geometry [22]. Singla [23]
presented a method for synthesizing serial redundant manipulators by optimizing their
DH parameters in an environment with obstacles. Previously studies that have used
DH parameters to optimize task-specific manipulators have generally been limited to
predefined modules or straight modules with variable lengths. Brandstöter [1] presented a
concept of a modular robot with a general kinematic structure and curved links. Unlike
these previous studies, we investigate and compare configurable straight and curved links
in a single set of motion tasks.

The purpose of this study is to demonstrate how the complexity of modules affects
the overall robot kinematics optimization results. We demonstrate this by optimizing a
manipulator built from link modules with different complexities for three different tasks.
Furthermore, we use two different cost functions and compare how the results differ. First,
the simulation of the manipulator, the joints, and the different types of links are described.
Then, the optimization process and tasks are described and the results are presented.

2. Materials and Methods

In this study, we tested the performance of different mechanism links for task-specific
manipulator optimization.

In this study, we used a genetic algorithm (GA) implemented in .NET C# combined
with a simulation implemented in CoppeliaSim [24], whereby the GA takes care of the
optimization and the simulation provides a way to evaluate the individuals proposed by
the GA and calculates their cost value.

2.1. The Manipulator

The algorithm uses links, joints, and an end-effector to build a serial manipulator for
evaluation. The manipulator always starts with a link, while the placement of links and
joints alternates so that there are never two links or two joints connected to each other. The
end-effector is connected to the last link or joint. An example of a manipulator built by the
algorithm is shown in Figure 1.

Appl. Sci. 2021, 11, 2471 3 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 15

The algorithm uses links, joints, and an end-effector to build a serial manipulator for

evaluation. The manipulator always starts with a link, while the placement of links and

joints alternates so that there are never two links or two joints connected to each other.

The end-effector is connected to the last link or joint. An example of a manipulator built

by the algorithm is shown in Figure 1.

Figure 1. Example of a manipulator with links, joints, and an end-effector.

2.2. Manipulator Joints

Since we focused on the manipulator links in this paper, we limited the selection of

joints to three different modules. All manipulators were built only from those three joint

modules (Table 1). We selected joint modules manufactured by Schunk (production

models PR70, PR90 and PW70) and created corresponding models (matching in size,

weight, inertia, and torque) in CoppeliaSim (Figure 2). For simplicity, only rotational

joints were considered. Two of the joint modules contained a single rotational joint and

one was a double joint module. The modules can be reused an unlimited number of times,

i.e., all joints in a manipulator can be instances of one joint. The joints were implemented

in the genetic algorithm as genes comprising three parameters: joint type (ID), orientation

between previous link and the joint (ora), and orientation between the joint and the

subsequent joint (orb). It is possible to connect the modules using four different

orientations, hence the four orientation values separated by 90°. Ranges of the joint

parameters are shown in Table 2.

Figure 2. Schunk joint modules: (a) PR 70; (b) PR 90; (c) PW 70. The simulated counterparts: (d) PR

70; (e) PR 90; (f) PW 70.

Table 1. Joint module physical parameters.

Parameter PR 70 PR 90 PW 70 (axis1, axis2)

Maximal torque 46 Nm 145 Nm 24 Nm, 4 Nm

Weight 1.7 kg 3.6 kg 1.8 kg

Maximal current 8 A 12 A 8 A, 6.5 A

Flange size 70 mm 90 mm 70 mm

Type ID (in the program) 0 1 2

Table 2. Joint module parameters used for optimization.

Parameter Range (Limits for Optimization)

ID {0, 1, 2}

ora {0, π/2, π, 3π/2}

Figure 1. Example of a manipulator with links, joints, and an end-effector.

2.2. Manipulator Joints

Since we focused on the manipulator links in this paper, we limited the selection of
joints to three different modules. All manipulators were built only from those three joint
modules (Table 1). We selected joint modules manufactured by Schunk (production models
PR70, PR90 and PW70) and created corresponding models (matching in size, weight, inertia,
and torque) in CoppeliaSim (Figure 2). For simplicity, only rotational joints were considered.
Two of the joint modules contained a single rotational joint and one was a double joint
module. The modules can be reused an unlimited number of times, i.e., all joints in a
manipulator can be instances of one joint. The joints were implemented in the genetic
algorithm as genes comprising three parameters: joint type (ID), orientation between
previous link and the joint (ora), and orientation between the joint and the subsequent joint
(orb). It is possible to connect the modules using four different orientations, hence the four
orientation values separated by 90◦. Ranges of the joint parameters are shown in Table 2.

Table 1. Joint module physical parameters.

Parameter PR 70 PR 90 PW 70 (axis1, axis2)

Maximal torque 46 Nm 145 Nm 24 Nm, 4 Nm
Weight 1.7 kg 3.6 kg 1.8 kg

Maximal current 8 A 12 A 8 A, 6.5 A
Flange size 70 mm 90 mm 70 mm

Type ID (in the program) 0 1 2

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 15

The algorithm uses links, joints, and an end-effector to build a serial manipulator for

evaluation. The manipulator always starts with a link, while the placement of links and

joints alternates so that there are never two links or two joints connected to each other.

The end-effector is connected to the last link or joint. An example of a manipulator built

by the algorithm is shown in Figure 1.

Figure 1. Example of a manipulator with links, joints, and an end-effector.

2.2. Manipulator Joints

Since we focused on the manipulator links in this paper, we limited the selection of

joints to three different modules. All manipulators were built only from those three joint

modules (Table 1). We selected joint modules manufactured by Schunk (production

models PR70, PR90 and PW70) and created corresponding models (matching in size,

weight, inertia, and torque) in CoppeliaSim (Figure 2). For simplicity, only rotational

joints were considered. Two of the joint modules contained a single rotational joint and

one was a double joint module. The modules can be reused an unlimited number of times,

i.e., all joints in a manipulator can be instances of one joint. The joints were implemented

in the genetic algorithm as genes comprising three parameters: joint type (ID), orientation

between previous link and the joint (ora), and orientation between the joint and the

subsequent joint (orb). It is possible to connect the modules using four different

orientations, hence the four orientation values separated by 90°. Ranges of the joint

parameters are shown in Table 2.

Figure 2. Schunk joint modules: (a) PR 70; (b) PR 90; (c) PW 70. The simulated counterparts: (d) PR

70; (e) PR 90; (f) PW 70.

Table 1. Joint module physical parameters.

Parameter PR 70 PR 90 PW 70 (axis1, axis2)

Maximal torque 46 Nm 145 Nm 24 Nm, 4 Nm

Weight 1.7 kg 3.6 kg 1.8 kg

Maximal current 8 A 12 A 8 A, 6.5 A

Flange size 70 mm 90 mm 70 mm

Type ID (in the program) 0 1 2

Table 2. Joint module parameters used for optimization.

Parameter Range (Limits for Optimization)

ID {0, 1, 2}

ora {0, π/2, π, 3π/2}

Figure 2. Schunk joint modules: (a) PR 70; (b) PR 90; (c) PW 70. The simulated counterparts: (d) PR
70; (e) PR 90; (f) PW 70.

Table 2. Joint module parameters used for optimization.

Parameter Range (Limits for Optimization)

ID {0, 1, 2}
ora {0, π/2, π, 3π/2}
orb {0, π/2, π, 3π/2}

2.3. Manipulator Links

The links of the manipulator were the main focus of this study. There were four
different types of links used in this study. Each type of manipulator link is defined by the
different parameters listed in Table 3. Each parameter is an integer and is passed to the
simulator at initiation. Figure 3 shows the comparison of all link types.

Appl. Sci. 2021, 11, 2471 4 of 14

Table 3. Link parameters.

Modular Link Type Parameter/Parameters Range (Limits for
Optimization)

Basic ID {0, 12}
Linear Length (L) {35, 500} [mm]

Rounded Circumferential length (L) {35, 500} [mm]
Turn radius (R) {10, 500} [mm]

Turn direction angle (α) {0, 180} [deg]
Hermite spline Normal 1 (n1) {1, 300} [mm]

End X (px) {−500, 500} [mm]
End Y (py) {−500, 500} [mm]
End Z (pz) {−500, 500} [mm]
Bend (γ) {−90, 90} [deg]
Twist (β) {−90, 90} [deg]

Normal 2 (n2) {1, 300} [mm]

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 15

orb {0, π/2, π, 3π/2}

2.3. Manipulator Links

The links of the manipulator were the main focus of this study. There were four

different types of links used in this study. Each type of manipulator link is defined by the

different parameters listed in Table 3. Each parameter is an integer and is passed to the

simulator at initiation. Figure 3 shows the comparison of all link types.

Table 3. Link parameters.

Modular Link Type Parameter/Parameters Range (Limits for Optimization)

Basic ID {0, 12}

Linear Length (L) {35, 500} [mm]

Rounded
Circumferential length

(L)
{35, 500} [mm]

 Turn radius (R) {10, 500} [mm]

 Turn direction angle (α) {0, 180} [deg]

Hermite spline Normal 1 (n1) {1, 300} [mm]

 End X (px) {-500, 500} [mm]

 End Y (py) {-500, 500} [mm]

 End Z (pz) {-500, 500} [mm]

 Bend (γ) {-90, 90} [deg]

 Twist (β) {-90, 90} [deg]

 Normal 2 (n2) {1, 300} [mm]

Figure 3. Types of links: (a) basic; (b) linear; (c) rounded; (d) Hermite spline.

Each link type is built differently. The basic link type is a simple straight link, which

is selected from a set of predefined links (Figure 4). The only thing defining which link

module to use is a single parameter ID. One of the modules (ID 5) is shaped at 90 degrees

to allow for more variability in solutions. Since the joint modules have two available

flange sizes (70 and 90 mm), the modules are prepared to end with 70 and 90 mm flanges

on one or both sides. Parameters corresponding to the IDs are listed in Table 4.

Figure 3. Types of links: (a) basic; (b) linear; (c) rounded; (d) Hermite spline.

Each link type is built differently. The basic link type is a simple straight link, which
is selected from a set of predefined links (Figure 4). The only thing defining which link
module to use is a single parameter ID. One of the modules (ID 5) is shaped at 90 degrees
to allow for more variability in solutions. Since the joint modules have two available flange
sizes (70 and 90 mm), the modules are prepared to end with 70 and 90 mm flanges on one
or both sides. Parameters corresponding to the IDs are listed in Table 4.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 15

orb {0, π/2, π, 3π/2}

2.3. Manipulator Links

The links of the manipulator were the main focus of this study. There were four

different types of links used in this study. Each type of manipulator link is defined by the

different parameters listed in Table 3. Each parameter is an integer and is passed to the

simulator at initiation. Figure 3 shows the comparison of all link types.

Table 3. Link parameters.

Modular Link Type Parameter/Parameters Range (Limits for Optimization)

Basic ID {0, 12}

Linear Length (L) {35, 500} [mm]

Rounded
Circumferential length

(L)
{35, 500} [mm]

 Turn radius (R) {10, 500} [mm]

 Turn direction angle (α) {0, 180} [deg]

Hermite spline Normal 1 (n1) {1, 300} [mm]

 End X (px) {-500, 500} [mm]

 End Y (py) {-500, 500} [mm]

 End Z (pz) {-500, 500} [mm]

 Bend (γ) {-90, 90} [deg]

 Twist (β) {-90, 90} [deg]

 Normal 2 (n2) {1, 300} [mm]

Figure 3. Types of links: (a) basic; (b) linear; (c) rounded; (d) Hermite spline.

Each link type is built differently. The basic link type is a simple straight link, which

is selected from a set of predefined links (Figure 4). The only thing defining which link

module to use is a single parameter ID. One of the modules (ID 5) is shaped at 90 degrees

to allow for more variability in solutions. Since the joint modules have two available

flange sizes (70 and 90 mm), the modules are prepared to end with 70 and 90 mm flanges

on one or both sides. Parameters corresponding to the IDs are listed in Table 4.

Figure 4. ID numbers for the basic manipulator links.

Appl. Sci. 2021, 11, 2471 5 of 14

Table 4. Parameters of the basic links.

Link ID 1 2 3 4 5 6 7 8 9 10 11 12

Flange size
[mm] 70 70 70 70 70 90,70 90,70 90,70 90 90 90 90

Length [mm] 35 70 140 210 70 45 90 180 45 90 180 270

The linear link type is a straight link of variable length. In this case, there is also only
one parameter describing the link module. However, instead of selecting a link with a
predefined length, the link is generated according to the length parameter.

The rounded link type is defined by three parameters and has a semicircular shape.
This type of link module allows for bends and twists in the links; as such, the joint axes do
not have to be orthogonal and unconventional kinematic structures can be achieved.

The Hermite link type is built using a Hermite spline [25]. This allows for even more
control over the shape of the link than the other types and should be better suited to avoid
self-collisions. The drawback of this type of link is that it is described by 7 parameters, and
thus makes the problem computationally demanding for optimization algorithms.

Flange sizes for linear, rounded, and Hermite links are not prepared in advance, as in
the case of basic links. Instead, the thickness of the generated link object in the simulation
is adjusted accordingly based on the flange size.

These four types of manipulator links extend the commonly used straight links to
include rounded and curved links. They also highlight the differences between predefined
straight links and straight links with variable length.

2.4. Optimization

The genetic algorithm creates a population of chromosomes. Each chromosome
describes one manipulator structure. The chromosome combines links and joints, starting
with a link module. Then, the population is simulated. Before each simulation, the
chromosome is parsed into CoppeliaSim and a manipulator is built. The simulation starts
and measurements are performed for the position and orientation of the end-effector,
collisions between modules, and the torque in every joint. These values are used to
calculate the cost function, which is the input to our genetic algorithm. After simulating
every chromosome in the population, the algorithm sorts the chromosomes according to
their calculated cost, performs crossover and mutation, and creates a new generation of
chromosomes for testing.

2.4.1. Genetic Algorithm

The optimization algorithm is a basic genetic algorithm with single crossover and
mutation operators. We chose to implement a rather simple GA [26], since we were not
interested in the performance of the GA itself but rather how the complexity and flexibility
of various links perform under the same conditions.

The GA is set to run on a population of 25 chromosomes for 150 generations, while
keeping 3 chromosomes in an elite class. The chromosomes or potential solution candidates
are selected from the population based off their fitness, or in this case their cost score. They
are then subject to crossover and mutation to produce another generation of solutions until
the algorithm reaches the maximum generation count. The genetic algorithm is run ten
times for each link module type and each trajectory. We then look at the best results from
each run and the median of the best results for all runs and compare them.

2.4.2. Crossover and Mutation

Crossover and mutation are genetic operators that are used to create a new generation
of chromosomes (potential solutions for the specified problem). The crossover creates
a new child chromosome from parent chromosomes by splitting the parents into parts
and assembling the parts to produce a new offspring. The mutation introduces new

Appl. Sci. 2021, 11, 2471 6 of 14

genetic information into the chromosomes by randomly changing some of their genes. The
chromosomes are comprised of link genes and joint genes. We used a single crossover,
with the position of the cut located between the genes. Figure 5 shows a chromosome for a
manipulator with 3 degrees of freedom built from rounded links (3 parameters per link),
with a highlighted crossover point.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 15

parts and assembling the parts to produce a new offspring. The mutation introduces new

genetic information into the chromosomes by randomly changing some of their genes.

The chromosomes are comprised of link genes and joint genes. We used a single crossover,

with the position of the cut located between the genes. Figure 5 shows a chromosome for

a manipulator with 3 degrees of freedom built from rounded links (3 parameters per link),

with a highlighted crossover point.

Figure 5. An example of a chromosome with a highlighted crossover point.

Each link type is implemented in a similar fashion. When the link gene is selected for

mutation, it increases or decreases its parameters by a random number. The random

number is selected from a range, which is 1/10 of the range for the parameter (Figure 6).

Figure 6. Rounded link gene mutation: (a) before; (b) after.

During the mutation of a chromosome, there is a random chance for a gene to be

completely deleted or a new gene to be inserted into the chromosome. This allows the

algorithm to change the number of degrees of freedom of the manipulator.

2.4.3. Cost Functions

In this article, we describe tests with two different cost functions: cost1 and cost2

Value cost1 is defined as a weighted sum of the end-effector position, orientation errors,

and manipulator collisions (Equation (1)). Function for cost2 is adapted from the cost1 and

torque measurements are added (Equation (2)). The weights are handpicked so as to put

the members of the equation into the same range:

cost1 = col + εpos ⋅ wpos + εori ⋅ wori (1)

where col is a measure of collisions, εpos is the sum of positional errors, εori are the errors

in orientation, wpos is weight of the position part of the cost function, and wori is weight of

the orientation part:

cost2 = cost1 + Tsum ⋅ wT (2)

where cost1 is calculated according to Equation (1), the Tsum is a sum of torque

measurements for each joint during the simulation, and wT is the weight of the torque part

of the equation.

The detection and measurement of collisions, positions, and orientation errors and

torques are described in the following chapters.

2.4.4. Detecting Collisions

To increase the number of viable solutions, we checked for collisions between

individual parts of the manipulator. The script for checking collisions was implemented

in CoppeliaSim and uses a built-in function that checks for collisions between two objects.

This function takes two objects in the simulation scene as parameters and returns a true

Figure 5. An example of a chromosome with a highlighted crossover point.

Each link type is implemented in a similar fashion. When the link gene is selected
for mutation, it increases or decreases its parameters by a random number. The random
number is selected from a range, which is 1/10 of the range for the parameter (Figure 6).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 15

parts and assembling the parts to produce a new offspring. The mutation introduces new

genetic information into the chromosomes by randomly changing some of their genes.

The chromosomes are comprised of link genes and joint genes. We used a single crossover,

with the position of the cut located between the genes. Figure 5 shows a chromosome for

a manipulator with 3 degrees of freedom built from rounded links (3 parameters per link),

with a highlighted crossover point.

Figure 5. An example of a chromosome with a highlighted crossover point.

Each link type is implemented in a similar fashion. When the link gene is selected for

mutation, it increases or decreases its parameters by a random number. The random

number is selected from a range, which is 1/10 of the range for the parameter (Figure 6).

Figure 6. Rounded link gene mutation: (a) before; (b) after.

During the mutation of a chromosome, there is a random chance for a gene to be

completely deleted or a new gene to be inserted into the chromosome. This allows the

algorithm to change the number of degrees of freedom of the manipulator.

2.4.3. Cost Functions

In this article, we describe tests with two different cost functions: cost1 and cost2

Value cost1 is defined as a weighted sum of the end-effector position, orientation errors,

and manipulator collisions (Equation (1)). Function for cost2 is adapted from the cost1 and

torque measurements are added (Equation (2)). The weights are handpicked so as to put

the members of the equation into the same range:

cost1 = col + εpos ⋅ wpos + εori ⋅ wori (1)

where col is a measure of collisions, εpos is the sum of positional errors, εori are the errors

in orientation, wpos is weight of the position part of the cost function, and wori is weight of

the orientation part:

cost2 = cost1 + Tsum ⋅ wT (2)

where cost1 is calculated according to Equation (1), the Tsum is a sum of torque

measurements for each joint during the simulation, and wT is the weight of the torque part

of the equation.

The detection and measurement of collisions, positions, and orientation errors and

torques are described in the following chapters.

2.4.4. Detecting Collisions

To increase the number of viable solutions, we checked for collisions between

individual parts of the manipulator. The script for checking collisions was implemented

in CoppeliaSim and uses a built-in function that checks for collisions between two objects.

This function takes two objects in the simulation scene as parameters and returns a true

Figure 6. Rounded link gene mutation: (a) before; (b) after.

During the mutation of a chromosome, there is a random chance for a gene to be
completely deleted or a new gene to be inserted into the chromosome. This allows the
algorithm to change the number of degrees of freedom of the manipulator.

2.4.3. Cost Functions

In this article, we describe tests with two different cost functions: cost1 and cost2
Value cost1 is defined as a weighted sum of the end-effector position, orientation errors,
and manipulator collisions (Equation (1)). Function for cost2 is adapted from the cost1 and
torque measurements are added (Equation (2)). The weights are handpicked so as to put
the members of the equation into the same range:

cos t1 = col + εpos ·wpos + εori ·wori (1)

where col is a measure of collisions, εpos is the sum of positional errors, εori are the errors
in orientation, wpos is weight of the position part of the cost function, and wori is weight of
the orientation part:

cos t2 = cos t1 + Tsum ·wT (2)

where cost1 is calculated according to Equation (1), the Tsum is a sum of torque measure-
ments for each joint during the simulation, and wT is the weight of the torque part of
the equation.

The detection and measurement of collisions, positions, and orientation errors and
torques are described in the following chapters.

2.4.4. Detecting Collisions

To increase the number of viable solutions, we checked for collisions between indi-
vidual parts of the manipulator. The script for checking collisions was implemented in
CoppeliaSim and uses a built-in function that checks for collisions between two objects.
This function takes two objects in the simulation scene as parameters and returns a true
result if there is a collision between them, i.e., the two parts are overlapping. In this way
we detected collisions between all objects and incremented a collision count each time two

Appl. Sci. 2021, 11, 2471 7 of 14

objects collided (Figure 7). The script returns a value marked as “col”. This collision check
is done at each simulation step (50 ms). Therefore, if some parts collided for only a short
amount of time, the resulting “col” value will be a smaller number.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15

result if there is a collision between them, i.e., the two parts are overlapping. In this way

we detected collisions between all objects and incremented a collision count each time two

objects collided (Figure 7). The script returns a value marked as “col”. This collision check

is done at each simulation step (50 ms). Therefore, if some parts collided for only a short

amount of time, the resulting “col” value will be a smaller number.

Figure 7. Flowchart of the collision calculation.

The objects that form the manipulator are allowed to pass through one another and

their collisions are measured. Disabling dynamic interactions between objects helps to

avoid local minima during optimization.

The collisions are counted inside the script in CoppeliaSim and the result is parsed

to the C# program at the end of the simulation. A potential hurdle in this method could

be the indifference between two parts touching or directly passing through one another.

2.4.5. Position and Orientation Errors

The end-effector of the manipulator has a coordinate system (CS) placed inside the

gripper. There is a target CS that moves along the task trajectory during the simulation.

Inverse kinematics in CoppeliaSim are set up so that the CS of gripper follows the target

CS. Depending on the simulated manipulator, the inverse kinematics are either able or

unable to converge to the target CS and errors in position and orientation may occur. The

errors are measured at each simulation step and summed according to the following

Equations (3) and (4):

εpos = ∑(|xef − xtar| + |yef − ytar| + |zef − ztar|)

n

i=0

(3)

εori = ∑(|αrel| + |βrel| + |γrel|)

n

i=0

(4)

where i is a simulation step; n is a total number of simulation steps; xef, yef, and zef are

coordinates of the end-effector; xtar, ytar, and ztar are coordinates of the target; αrel, βrel, and

γrel stand for the relative orientations between the end-effector and the target coordinate

frames.

2.4.6. Torque Measurements

The torque on each joint is measured at every simulation step and the results are

summed (Equation (5)). This torque sum is then used to calculate cost2. Measuring the

torque as a sum of all joint torques should make the algorithm prefer lighter manipulators

with lower energy consumption:

Tsum = ∑∑|T|j

k

j=0

n

i=0

(5)

where i is a simulation step, n is the total number of simulation steps, j is a joint, k is the

total number of joints in a manipulator, and Tj is a torque measurement for joint j.

2.4.7. Tasks

Figure 7. Flowchart of the collision calculation.

The objects that form the manipulator are allowed to pass through one another and
their collisions are measured. Disabling dynamic interactions between objects helps to
avoid local minima during optimization.

The collisions are counted inside the script in CoppeliaSim and the result is parsed to
the C# program at the end of the simulation. A potential hurdle in this method could be
the indifference between two parts touching or directly passing through one another.

2.4.5. Position and Orientation Errors

The end-effector of the manipulator has a coordinate system (CS) placed inside the
gripper. There is a target CS that moves along the task trajectory during the simulation.
Inverse kinematics in CoppeliaSim are set up so that the CS of gripper follows the target
CS. Depending on the simulated manipulator, the inverse kinematics are either able or
unable to converge to the target CS and errors in position and orientation may occur.
The errors are measured at each simulation step and summed according to the following
Equations (3) and (4):

εpos =
n

∑
i=0

(
|xef − xtar|+

∣∣yef − ytar

∣∣+ |zef − ztar|
)

(3)

εori =
n

∑
i=0

(|αrel|+ |βrel|+ |γrel|) (4)

where i is a simulation step; n is a total number of simulation steps; xef, yef, and zef
are coordinates of the end-effector; xtar, ytar, and ztar are coordinates of the target; αrel,
βrel, and γrel stand for the relative orientations between the end-effector and the target
coordinate frames.

2.4.6. Torque Measurements

The torque on each joint is measured at every simulation step and the results are
summed (Equation (5)). This torque sum is then used to calculate cost2. Measuring the
torque as a sum of all joint torques should make the algorithm prefer lighter manipulators
with lower energy consumption:

Tsum =
n

∑
i=0

k

∑
j=0
|T|j (5)

where i is a simulation step, n is the total number of simulation steps, j is a joint, k is the
total number of joints in a manipulator, and Tj is a torque measurement for joint j.

Appl. Sci. 2021, 11, 2471 8 of 14

2.4.7. Tasks

We tested the algorithm on three different tasks. In all three cases, the robots’ base was
positioned at the origin of the coordinate system. Each task is described by a trajectory that
is placed approximately 0.5 m in the direction of the X axis. The trajectories are defined
as 6D curves, e.g., each point on the curve has 3 positional degrees of freedom (DOF) and
3 DOF in orientation. Task 1 (Figure 8) is a trajectory formed by a curve of the fourth
degree called trifolium. This curve was used by Brandstöter [27] to optimize positional
error on a modular manipulator. The curve lies in the horizontal plane and the orientation
does not change throughout the whole trajectory. Task 2 (Figure 9) simulates a welding
task, where the end tool of the robot needs to traverse a rounded trajectory with changing
orientation. The trajectory is in the vertical plane, with the normal oriented towards the
robot base. In this case, the orientation changes in one axis along the whole trajectory.
Task 3 (Figure 10) was created to provide the manipulators with a difficult trajectory. It
is formed by connecting several curves together. It curves in all directions and passes
above and below the robots’ base. The horizontal axis in the orientation plot is a position
parameter, which goes from 0 to 1 and corresponds to the start and end of the trajectory.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15

We tested the algorithm on three different tasks. In all three cases, the robots’ base

was positioned at the origin of the coordinate system. Each task is described by a trajectory

that is placed approximately 0.5 m in the direction of the X axis. The trajectories are

defined as 6D curves, e.g., each point on the curve has 3 positional degrees of freedom

(DOF) and 3 DOF in orientation. Task 1 (Figure 8) is a trajectory formed by a curve of the

fourth degree called trifolium. This curve was used by Brandstöter [27] to optimize

positional error on a modular manipulator. The curve lies in the horizontal plane and the

orientation does not change throughout the whole trajectory. Task 2 (Figure 9) simulates

a welding task, where the end tool of the robot needs to traverse a rounded trajectory with

changing orientation. The trajectory is in the vertical plane, with the normal oriented

towards the robot base. In this case, the orientation changes in one axis along the whole

trajectory. Task 3 (Figure 10) was created to provide the manipulators with a difficult

trajectory. It is formed by connecting several curves together. It curves in all directions

and passes above and below the robots’ base. The horizontal axis in the orientation plot is

a position parameter, which goes from 0 to 1 and corresponds to the start and end of the

trajectory.

Figure 8. Task 1: (a) position; (b) orientation.

Figure 9. Task 2: (a) position; (b) orientation.

Figure 8. Task 1: (a) position; (b) orientation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15

We tested the algorithm on three different tasks. In all three cases, the robots’ base

was positioned at the origin of the coordinate system. Each task is described by a trajectory

that is placed approximately 0.5 m in the direction of the X axis. The trajectories are

defined as 6D curves, e.g., each point on the curve has 3 positional degrees of freedom

(DOF) and 3 DOF in orientation. Task 1 (Figure 8) is a trajectory formed by a curve of the

fourth degree called trifolium. This curve was used by Brandstöter [27] to optimize

positional error on a modular manipulator. The curve lies in the horizontal plane and the

orientation does not change throughout the whole trajectory. Task 2 (Figure 9) simulates

a welding task, where the end tool of the robot needs to traverse a rounded trajectory with

changing orientation. The trajectory is in the vertical plane, with the normal oriented

towards the robot base. In this case, the orientation changes in one axis along the whole

trajectory. Task 3 (Figure 10) was created to provide the manipulators with a difficult

trajectory. It is formed by connecting several curves together. It curves in all directions

and passes above and below the robots’ base. The horizontal axis in the orientation plot is

a position parameter, which goes from 0 to 1 and corresponds to the start and end of the

trajectory.

Figure 8. Task 1: (a) position; (b) orientation.

Figure 9. Task 2: (a) position; (b) orientation. Figure 9. Task 2: (a) position; (b) orientation.

In real applications, in addition to the position and orientation, the description of a
task would also include other motion data, such as the motion type, speed, and zones. In
our simulations, we simplified the tasks to have a constant speed of 0.25 m/s. The points
on the trajectory have no specified zones for corner paths or defined position accuracies.
The generated robot attempts to follow the path as precisely as possible and the position
and orientation errors are measured.

Appl. Sci. 2021, 11, 2471 9 of 14
Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 15

Figure 10. Task 3: (a) position; (b) orientation.

In real applications, in addition to the position and orientation, the description of a

task would also include other motion data, such as the motion type, speed, and zones. In

our simulations, we simplified the tasks to have a constant speed of 0.25 m/s. The points

on the trajectory have no specified zones for corner paths or defined position accuracies.

The generated robot attempts to follow the path as precisely as possible and the position

and orientation errors are measured.

3. Results

The optimization procedure was run ten times for all combinations of the 3

trajectories, 4 link types, and 2 fitness functions. In total, 240 runs of the genetic algorithm

were performed. Each run took approximately 2 h on a mid-range PC (Intel® i7-7700HQ,

16 GM ram, Nvidia GTX 1060), so we had to divide the work across several computers

and multiple days.

The stochastic nature of the genetic algorithms can be seen in Figure 11. The

algorithm almost never finds the same configuration. It is, however, rather consistent in

getting to the same fitness values. In this case, the manipulators with linear links perform

with the lowest cost values.

Figure 11. All runs for trajectory task 1 and cost function cost1: with (a) basic links; (b) linear links; (c) rounded links; (d)

Hermite spline links.

All 40 runs in Figure 11 are for task 1 and cost1. Putting the two together in one plot

for comparison would result in an overcrowded graph; therefore, rather than showing

them side-by-side as in Figure 11, we took the median values and presented them as single

plots, as in Figures 12–14. The dispersion is shown as an area between the 25th and 75th

percentile.

Figure 10. Task 3: (a) position; (b) orientation.

3. Results

The optimization procedure was run ten times for all combinations of the 3 trajectories,
4 link types, and 2 fitness functions. In total, 240 runs of the genetic algorithm were
performed. Each run took approximately 2 h on a mid-range PC (Intel® i7-7700HQ, 16 GM
ram, Nvidia GTX 1060), so we had to divide the work across several computers and
multiple days.

The stochastic nature of the genetic algorithms can be seen in Figure 11. The algorithm
almost never finds the same configuration. It is, however, rather consistent in getting to
the same fitness values. In this case, the manipulators with linear links perform with the
lowest cost values.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 15

Figure 10. Task 3: (a) position; (b) orientation.

In real applications, in addition to the position and orientation, the description of a

task would also include other motion data, such as the motion type, speed, and zones. In

our simulations, we simplified the tasks to have a constant speed of 0.25 m/s. The points

on the trajectory have no specified zones for corner paths or defined position accuracies.

The generated robot attempts to follow the path as precisely as possible and the position

and orientation errors are measured.

3. Results

The optimization procedure was run ten times for all combinations of the 3

trajectories, 4 link types, and 2 fitness functions. In total, 240 runs of the genetic algorithm

were performed. Each run took approximately 2 h on a mid-range PC (Intel® i7-7700HQ,

16 GM ram, Nvidia GTX 1060), so we had to divide the work across several computers

and multiple days.

The stochastic nature of the genetic algorithms can be seen in Figure 11. The

algorithm almost never finds the same configuration. It is, however, rather consistent in

getting to the same fitness values. In this case, the manipulators with linear links perform

with the lowest cost values.

Figure 11. All runs for trajectory task 1 and cost function cost1: with (a) basic links; (b) linear links; (c) rounded links; (d)

Hermite spline links.

All 40 runs in Figure 11 are for task 1 and cost1. Putting the two together in one plot

for comparison would result in an overcrowded graph; therefore, rather than showing

them side-by-side as in Figure 11, we took the median values and presented them as single

plots, as in Figures 12–14. The dispersion is shown as an area between the 25th and 75th

percentile.

Figure 11. All runs for trajectory task 1 and cost function cost1: with (a) basic links; (b) linear links; (c) rounded links;
(d) Hermite spline links.

All 40 runs in Figure 11 are for task 1 and cost1. Putting the two together in one plot
for comparison would result in an overcrowded graph; therefore, rather than showing
them side-by-side as in Figure 11, we took the median values and presented them as
single plots, as in Figures 12–14. The dispersion is shown as an area between the 25th and
75th percentile.

With all tasks and cost functions, we saw better performance with simpler links (basic,
linear, and rounded) and worse performance with the Hermite spline links. The differences
between basic, linear and rounded links were task-dependent. Linear links performed
well during task 1, however basic links were able to achieve lower cost values in the more
geometrically complex task 3.

Slower convergence of Hermite spline links can be expected, since they are described
with more parameters, which dramatically increases the search space. They are more
adaptable, therefore they should be able to achieve better cost values across a longer run.
To test this hypothesis, we selected task 2 and increased the number of generations from
100 to 1000. Figure 15 shows the results of this test.

Appl. Sci. 2021, 11, 2471 10 of 14Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 15

Figure 12. Results for task 1: (a) cost1; (b) cost2.

Figure 13. Results for task 2: (a) cost1; (b) cost2 .

Figure 14. Results for task 3: (a) cost1; (b) cost2.

With all tasks and cost functions, we saw better performance with simpler links

(basic, linear, and rounded) and worse performance with the Hermite spline links. The

differences between basic, linear and rounded links were task-dependent. Linear links

Figure 12. Results for task 1: (a) cost1; (b) cost2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 15

Figure 12. Results for task 1: (a) cost1; (b) cost2.

Figure 13. Results for task 2: (a) cost1; (b) cost2 .

Figure 14. Results for task 3: (a) cost1; (b) cost2.

With all tasks and cost functions, we saw better performance with simpler links

(basic, linear, and rounded) and worse performance with the Hermite spline links. The

differences between basic, linear and rounded links were task-dependent. Linear links

Figure 13. Results for task 2: (a) cost1; (b) cost2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 15

Figure 12. Results for task 1: (a) cost1; (b) cost2.

Figure 13. Results for task 2: (a) cost1; (b) cost2 .

Figure 14. Results for task 3: (a) cost1; (b) cost2.

With all tasks and cost functions, we saw better performance with simpler links

(basic, linear, and rounded) and worse performance with the Hermite spline links. The

differences between basic, linear and rounded links were task-dependent. Linear links

Figure 14. Results for task 3: (a) cost1; (b) cost2.

Appl. Sci. 2021, 11, 2471 11 of 14

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 15

performed well during task 1, however basic links were able to achieve lower cost values

in the more geometrically complex task 3.

Slower convergence of Hermite spline links can be expected, since they are described

with more parameters, which dramatically increases the search space. They are more

adaptable, therefore they should be able to achieve better cost values across a longer run.

To test this hypothesis, we selected task 2 and increased the number of generations from

100 to 1000. Figure 15 shows the results of this test.

Figure 15. Results for a longer run of Hermite spline links for task 2 and function cost1.

As is visible from Figure 15, even a 10x increase in generations did not produce

manipulators with cost values low enough to be comparable to our previous test. One run

of the algorithm with 1000 generations takes about 22 h, which makes any practical use

difficult.

To inspect how significantly different each link type performs during the different

tasks, we performed a one-way ANOVA analysis on the results of each GA run. Figure 16

shows mean estimates and comparison intervals at a significance level of 0.05. In the

graphs, if the lines overlap vertically, the link types did not perform with significant

difference.

Figure 16. ANOVA results. The links with lowest cost value are shown in blue, links that are not

significantly different from the best one are shown in gray, and links that are significantly

different are shown in red: (a) task 1, cost1; (b) task 2, cost1; (c) task 3, cost1; (d) task 1, cost2; (e) task

2, cost2; (f) task 3, cost2.

The best manipulators for each link type optimized with function cost2 are shown in

Figures 17–19.

Figure 15. Results for a longer run of Hermite spline links for task 2 and function cost1.

As is visible from Figure 15, even a 10x increase in generations did not produce
manipulators with cost values low enough to be comparable to our previous test. One
run of the algorithm with 1000 generations takes about 22 h, which makes any practical
use difficult.

To inspect how significantly different each link type performs during the different
tasks, we performed a one-way ANOVA analysis on the results of each GA run. Figure 16
shows mean estimates and comparison intervals at a significance level of 0.05. In the graphs,
if the lines overlap vertically, the link types did not perform with significant difference.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 15

performed well during task 1, however basic links were able to achieve lower cost values

in the more geometrically complex task 3.

Slower convergence of Hermite spline links can be expected, since they are described

with more parameters, which dramatically increases the search space. They are more

adaptable, therefore they should be able to achieve better cost values across a longer run.

To test this hypothesis, we selected task 2 and increased the number of generations from

100 to 1000. Figure 15 shows the results of this test.

Figure 15. Results for a longer run of Hermite spline links for task 2 and function cost1.

As is visible from Figure 15, even a 10x increase in generations did not produce

manipulators with cost values low enough to be comparable to our previous test. One run

of the algorithm with 1000 generations takes about 22 h, which makes any practical use

difficult.

To inspect how significantly different each link type performs during the different

tasks, we performed a one-way ANOVA analysis on the results of each GA run. Figure 16

shows mean estimates and comparison intervals at a significance level of 0.05. In the

graphs, if the lines overlap vertically, the link types did not perform with significant

difference.

Figure 16. ANOVA results. The links with lowest cost value are shown in blue, links that are not

significantly different from the best one are shown in gray, and links that are significantly

different are shown in red: (a) task 1, cost1; (b) task 2, cost1; (c) task 3, cost1; (d) task 1, cost2; (e) task

2, cost2; (f) task 3, cost2.

The best manipulators for each link type optimized with function cost2 are shown in

Figures 17–19.

Figure 16. ANOVA results. The links with lowest cost value are shown in blue, links that are not
significantly different from the best one are shown in gray, and links that are significantly different
are shown in red: (a) task 1, cost1; (b) task 2, cost1; (c) task 3, cost1; (d) task 1, cost2; (e) task 2, cost2;
(f) task 3, cost2.

The best manipulators for each link type optimized with function cost2 are shown in
Figures 17–19.

It is apparent from the resulting structures that Hermite spline links occupy a larger
volume, which might bring additional disadvantages. Additional tests with obstacles in
the workspace might provide evidence that more adaptable links, such as Hermite spline
links, can adapt to more complex environments. We considered optimizing manipulators
with obstacles in the workplace to be outside of the scope of this article, however it is
something we are planning to work on in the future.

Appl. Sci. 2021, 11, 2471 12 of 14Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15

Figure 17. Best results for task 1: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

Figure 18. Best results for task 2: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

Figure 19. Best results for task 3: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

It is apparent from the resulting structures that Hermite spline links occupy a larger

volume, which might bring additional disadvantages. Additional tests with obstacles in

the workspace might provide evidence that more adaptable links, such as Hermite spline

links, can adapt to more complex environments. We considered optimizing manipulators

with obstacles in the workplace to be outside of the scope of this article, however it is

something we are planning to work on in the future.

4. Discussion

We implemented a method to test the performance of a genetic algorithm in terms of

optimizing a manipulator with various mechanical links. Four different types of

mechanical links located between the manipulator joints were implemented. The

performance of the genetic algorithm was tested with various tasks and two cost

functions.

We observed that optimizing a manipulator with a simple (basic, linear, or rounded)

link type led to better results in all of our tests. The Hermite spline links underperformed

even after a 10-fold increase in evaluations. It is possible that the increased search space

caused by more parameters creates a combinatorial explosion and that increasing the

generation count 10 times is not enough. There also could be certain fundamental

disadvantages of spline-shaped links between joints. Further investigations with different

types of splines could confirm this phenomenon.

When comparing the differences between the simpler types of joints, we observed

that both rounded and linear links performed better than the basic links in task 1.

Figure 17. Best results for task 1: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15

Figure 17. Best results for task 1: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

Figure 18. Best results for task 2: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

Figure 19. Best results for task 3: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

It is apparent from the resulting structures that Hermite spline links occupy a larger

volume, which might bring additional disadvantages. Additional tests with obstacles in

the workspace might provide evidence that more adaptable links, such as Hermite spline

links, can adapt to more complex environments. We considered optimizing manipulators

with obstacles in the workplace to be outside of the scope of this article, however it is

something we are planning to work on in the future.

4. Discussion

We implemented a method to test the performance of a genetic algorithm in terms of

optimizing a manipulator with various mechanical links. Four different types of

mechanical links located between the manipulator joints were implemented. The

performance of the genetic algorithm was tested with various tasks and two cost

functions.

We observed that optimizing a manipulator with a simple (basic, linear, or rounded)

link type led to better results in all of our tests. The Hermite spline links underperformed

even after a 10-fold increase in evaluations. It is possible that the increased search space

caused by more parameters creates a combinatorial explosion and that increasing the

generation count 10 times is not enough. There also could be certain fundamental

disadvantages of spline-shaped links between joints. Further investigations with different

types of splines could confirm this phenomenon.

When comparing the differences between the simpler types of joints, we observed

that both rounded and linear links performed better than the basic links in task 1.

Figure 18. Best results for task 2: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15

Figure 17. Best results for task 1: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

Figure 18. Best results for task 2: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

Figure 19. Best results for task 3: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

It is apparent from the resulting structures that Hermite spline links occupy a larger

volume, which might bring additional disadvantages. Additional tests with obstacles in

the workspace might provide evidence that more adaptable links, such as Hermite spline

links, can adapt to more complex environments. We considered optimizing manipulators

with obstacles in the workplace to be outside of the scope of this article, however it is

something we are planning to work on in the future.

4. Discussion

We implemented a method to test the performance of a genetic algorithm in terms of

optimizing a manipulator with various mechanical links. Four different types of

mechanical links located between the manipulator joints were implemented. The

performance of the genetic algorithm was tested with various tasks and two cost

functions.

We observed that optimizing a manipulator with a simple (basic, linear, or rounded)

link type led to better results in all of our tests. The Hermite spline links underperformed

even after a 10-fold increase in evaluations. It is possible that the increased search space

caused by more parameters creates a combinatorial explosion and that increasing the

generation count 10 times is not enough. There also could be certain fundamental

disadvantages of spline-shaped links between joints. Further investigations with different

types of splines could confirm this phenomenon.

When comparing the differences between the simpler types of joints, we observed

that both rounded and linear links performed better than the basic links in task 1.

Figure 19. Best results for task 3: (a) basic links; (b) linear links; (c) rounded links; (d) Hermite spline links.

4. Discussion

We implemented a method to test the performance of a genetic algorithm in terms of
optimizing a manipulator with various mechanical links. Four different types of mechanical
links located between the manipulator joints were implemented. The performance of the
genetic algorithm was tested with various tasks and two cost functions.

We observed that optimizing a manipulator with a simple (basic, linear, or rounded)
link type led to better results in all of our tests. The Hermite spline links underperformed
even after a 10-fold increase in evaluations. It is possible that the increased search space
caused by more parameters creates a combinatorial explosion and that increasing the gener-
ation count 10 times is not enough. There also could be certain fundamental disadvantages
of spline-shaped links between joints. Further investigations with different types of splines
could confirm this phenomenon.

When comparing the differences between the simpler types of joints, we observed that
both rounded and linear links performed better than the basic links in task 1. However,
in task 3, the linear links performed significantly better than linear or rounded links,
depending on the used cost function. This could mean that the right choice of link type
is task-specific or that basic links perform better on tasks with unchanging orientation of
the end-effector. During task 2, the base, linear, and rounded links showed no statistically
significant differences.

Including torque in the cost function did not have a significant effect on the results.
This could be caused by the combined cost function, which was defined as a weighted sum
of all of its parts. A multiobjective optimization method might be more effective in showing

Appl. Sci. 2021, 11, 2471 13 of 14

how much the torque measurements affect the results. This was considered outside the
scope of this article, since we wanted to compare different types of links.

When examining the resulting kinematic structures for each task, we noticed that the
solutions for task 1 with basic links resulted in more degrees of freedom. This could be
caused by the distance between the trajectory and the robot base in combination with the
length of the predefined links. Optimization produced manipulators with more DOF, and
consequently a greater number of smaller links instead of longer links. The other types of
links that were length-adjustable resulted in 3 or 4 DOF with longer links.

Overall, the simplicity of the genotype seems to be a significant factor when optimizing
a manipulator for a specific task. Assembling the manipulator with curved links does not
seem to provide any significant advantage, although we think that there still might be
certain advantages in using curved links if a different optimization algorithm is used and
there are obstacles in the environment.

5. Conclusions

In this work, we implemented a method to optimize and measure the performance of
various mechanical links of an open-chain manipulator in task-specific conditions. Four
different types of mechanical links connecting joints of the manipulator were implemented.
These links included simple predefined links and links of variable length and curvature.
The links were the basis for task-specific manipulators, which were optimized for three
different tasks with varying levels of geometrical complexity.

Our initial assumption that the links with more configurable parameters would be
able to better adapt to the task trajectory was disproven by the conducted tests. The simpler
links were able to achieve significantly better performance in every task than the more
complex Hermite spline links. The different simple links (either predefined basic links,
linear links with adjustable length, or rounded links with adjustable length and curvature)
generally showed similar performance, with notable differences depending on a given task.

Author Contributions: Conceptualization, Z.B.; methodology, Z.B. and R.P.; software, Z.B. and
R.P.; validation, R.P., S.G., and D.H.; formal analysis, R.P.; investigation, S.G.; resources, D.H.; data
curation, R.P.; writing—original draft preparation, R.P.; writing—review and editing, D.H. and
S.G.; visualization, R.P.; supervision, Z.B.; project administration, Z.B.; funding acquisition, Z.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Regional Development Fund in the Research
Center of Advanced Mechatronic Systems, project number CZ.02.1.01/0.0/0.0/16_019/0000867,
within the Operational Program for Research, Development, and Education.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to project restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brandstötter, M.; Angerer, A.; Hofbaur, M. The curved manipulator (Cuma-type arm): Realization of a serial manipulator with

general structure in modular design. In Proceedings of the 2015 IFToMM World Congress, Taipei, Taiwan, 25–30 October 2015;
pp. 403–409. [CrossRef]

2. Nolfi, S.; Floreano, D. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines, Book. 2000.
Available online: https://books.google.cz/books?hl=cs&lr=&id=v300ui_1eZ4C&oi=fnd&pg=PP13&dq=evolutionary+robotics&
ots=VPAzouWCOZ&sig=z3UPwz3PesFYzqATehtr-sa1hKI&redir_esc=y#v=onepage&q=evolutionaryrobotics&f=false (accessed
on 21 October 2020).

3. Back, T.; Hoffmeister, F. A survey of evolution strategies. In Proceedings of the Fourth International Conference on Genetic
Algorithms, San Diego, CA, USA, 13–16 July 1991; Volume 2. Available online: http://www.academia.edu/download/47286951
/A_Survey_of_Evolution_Strategies20160716-6237-p0d56x.pdf (accessed on 21 October 2020).

http://doi.org/10.6567/IFToMM.14TH.WC.OS2.037
https://books.google.cz/books?hl=cs&lr=&id=v300ui_1eZ4C&oi=fnd&pg=PP13&dq=evolutionary+robotics&ots=VPAzouWCOZ&sig=z3UPwz3PesFYzqATehtr-sa1hKI&redir_esc=y#v=onepage&q=evolutionaryrobotics&f=false
https://books.google.cz/books?hl=cs&lr=&id=v300ui_1eZ4C&oi=fnd&pg=PP13&dq=evolutionary+robotics&ots=VPAzouWCOZ&sig=z3UPwz3PesFYzqATehtr-sa1hKI&redir_esc=y#v=onepage&q=evolutionaryrobotics&f=false
http://www.academia.edu/download/47286951/A_Survey_of_Evolution_Strategies20160716-6237-p0d56x.pdf
http://www.academia.edu/download/47286951/A_Survey_of_Evolution_Strategies20160716-6237-p0d56x.pdf

Appl. Sci. 2021, 11, 2471 14 of 14

4. Li, Z.; Lin, X.; Zhang, Q.; Liu, H. Evolution strategies for continuous optimization: A survey of the state-of-the-art. Swarm Evol.
Comput. 2020, 56, 100694. [CrossRef]

5. Chen, J.-C. Continual Learning for Addressing Optimization Problems with a Snake-Like Robot Controlled by a Self-Organizing
Model. Appl. Sci. 2020, 10, 4848. [CrossRef]

6. Respall, V.M.; Nolfi, S. Development of Multiple Behaviors in Evolving Robots. Robotics 2020, 10, 1. [CrossRef]
7. Hauenstein, J.D.; Wampler, C.W.; Pfurner, M. Synthesis of three-revolute spatial chains for body guidance. Mech. Mach. Theory

2017, 110, 61–72. [CrossRef]
8. Hornby, G.; Lipson, H.; Pollack, J. Generative representations for the automated design of modular physical robots. IEEE Trans.

Robot. Autom. 2003, 19, 703–719. [CrossRef]
9. Alattas, R.J.; Patel, S.; Sobh, T.M. Evolutionary Modular Robotics: Survey and Analysis. J. Intell. Robot. Syst. 2018, 95, 815–828.

[CrossRef]
10. Chung, W.K.; Han, J.; Youm, Y.; Kim, S.H. Task based design of modular robot manipulator using efficient genetic algorithm.

In Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 20–25 April 1997;
Volume 1, pp. 507–512. [CrossRef]

11. Chocron, O.; Bidaud, P. Evolutionary algorithms in kinematic design of robotic systems. In Proceedings of the 1997 IEEE/RSJ
International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS ’97, Grenoble,
France, 11 September 1997; Volume 2, pp. 1111–1117. [CrossRef]

12. Valsamos, C.; Moulianitis, V.; Aspragathos, N. Index based optimal anatomy of a metamorphic manipulator for a given task.
Robot. Comput. Manuf. 2012, 28, 517–529. [CrossRef]

13. Valsamos, C.; Moulianitis, V.C.; Aspragathos, N. Metamorphic Structure Representation: Designing and Evaluating Anatomies
of Metamorphic Manipulators. In Advances in Reconfigurable Mechanisms and Robots I; Springer: London, UK, 2012; pp. 3–11.
[CrossRef]

14. Katrantzis, E.F.; Aspragathos, N.A.; Valsamos, C.D.; Moulianitis, V.C. Anatomy Optimization and Experimental Verification of
a Metamorphic Manipulator. In Proceedings of the 2018 International Conference on Reconfigurable Mechanisms and Robots
(ReMAR), Delft, The Netherlands, 20–22 June 2018; pp. 1–7. [CrossRef]

15. Patel, S.; Sobh, T. Task based synthesis of serial manipulators. J. Adv. Res. 2015, 6, 479–492. [CrossRef] [PubMed]
16. Ha, S.; Coros, S.; Alspach, A.; Bern, J.M.; Kim, J.; Yamane, K. Computational Design of Robotic Devices from High-Level Motion

Specifications. IEEE Trans. Robot. 2018, 34, 1–12. [CrossRef]
17. Whitman, J.; Choset, H. Task-Specific Manipulator Design and Trajectory Synthesis. IEEE Robot. Autom. Lett. 2018, 4, 301–308.

[CrossRef]
18. Dogra, A.; Padhee, S.S.; Singla, E. An Optimal Architectural Design for Unconventional Modular Reconfigurable Manipulation

System. J. Mech. Des. 2020, 1–29. [CrossRef]
19. Liu, C.; Liu, J.; Moreno, R.; Veenstra, F.; Faíña, A. The impact of module morphologies on modular robots. In Proceedings of the

2017 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, 10–12 July 2017; pp. 237–243. [CrossRef]
20. Moreno, R.; Faina, A. Using Evolution to Design Modular Robots: An Empirical Approach to Select Module Designs. In Lecture

Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Cham, Switzerland, 2020; Volume 12104, pp. 276–290. [CrossRef]

21. Denavit, J.; Hartenberg, R.S. A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME E J. Appl. Mech.
1955, 22, 215–221.

22. Ceccarelli, M.; Lanni, C. A multi-objective optimum design of general 3R manipulators for prescribed workspace limits. Mech.
Mach. Theory 2004, 39, 119–132. [CrossRef]

23. Singla, E.; Tripathi, S.; Rakesh, V.; Dasgupta, B. Dimensional synthesis of kinematically redundant serial manipulators for
cluttered environments. Robot. Auton. Syst. 2010, 58, 585–595. [CrossRef]

24. Rohmer, E.; Singh, S.P.N.; Freese, M. V-REP: A versatile and scalable robot simulation framework. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1321–1326. [CrossRef]

25. Lipow, P.R.; Schoenberg, I. Cardinal interpolation and spline functions. III. Cardinal Hermite interpolation. Linear Algebra Appl.
1973, 6, 273–304. [CrossRef]

26. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 2020.
27. Brandstötter, M. Adaptable Serial Manipulators in Modular Design. Ph.D. Dissertation, UMIT, Institute of Automation and

Control Engineering, Hall in Tirol, Austria, November 2016. [CrossRef]

http://doi.org/10.1016/j.swevo.2020.100694
http://doi.org/10.3390/app10144848
http://doi.org/10.3390/robotics10010001
http://doi.org/10.1016/j.mechmachtheory.2016.12.008
http://doi.org/10.1109/TRA.2003.814502
http://doi.org/10.1007/s10846-018-0902-9
http://doi.org/10.1109/robot.1997.620087
http://doi.org/10.1109/IROS.1997.655148
http://doi.org/10.1016/j.rcim.2011.11.006
http://doi.org/10.1007/978-1-4471-4141-9_1
http://doi.org/10.1109/REMAR.2018.8449880
http://doi.org/10.1016/j.jare.2014.12.006
http://www.ncbi.nlm.nih.gov/pubmed/26257946
http://doi.org/10.1109/TRO.2018.2830419
http://doi.org/10.1109/LRA.2018.2890206
http://doi.org/10.1115/1.4048821
http://doi.org/10.1109/ICAR.2017.8023524
http://doi.org/10.1007/978-3-030-43722-0_18
http://doi.org/10.1016/S0094-114X(03)00109-5
http://doi.org/10.1016/j.robot.2009.12.005
http://doi.org/10.1109/IROS.2013.6696520
http://doi.org/10.1016/0024-3795(73)90029-3
http://doi.org/10.13140/RG.2.2.16537.62565

	Introduction
	Materials and Methods
	The Manipulator
	Manipulator Joints
	Manipulator Links
	Optimization
	Genetic Algorithm
	Crossover and Mutation
	Cost Functions
	Detecting Collisions
	Position and Orientation Errors
	Torque Measurements
	Tasks

	Results
	Discussion
	Conclusions
	References

