7,087 research outputs found

    System Optimisation for Multi-access Edge Computing Based on Deep Reinforcement Learning

    Get PDF
    Multi-access edge computing (MEC) is an emerging and important distributed computing paradigm that aims to extend cloud service to the network edge to reduce network traffic and service latency. Proper system optimisation and maintenance are crucial to maintaining high Quality-of-service (QoS) for end-users. However, with the increasing complexity of the architecture of MEC and mobile applications, effectively optimising MEC systems is non-trivial. Traditional optimisation methods are generally based on simplified mathematical models and fixed heuristics, which rely heavily on expert knowledge. As a consequence, when facing dynamic MEC scenarios, considerable human efforts and expertise are required to redesign the model and tune the heuristics, which is time-consuming. This thesis aims to develop deep reinforcement learning (DRL) methods to handle system optimisation problems in MEC. Instead of developing fixed heuristic algorithms for the problems, this thesis aims to design DRL-based methods that enable systems to learn optimal solutions on their own. This research demonstrates the effectiveness of DRL-based methods on two crucial system optimisation problems: task offloading and service migration. Specifically, this thesis first investigate the dependent task offloading problem that considers the inner dependencies of tasks. This research builds a DRL-based method combining sequence-to-sequence (seq2seq) neural network to address the problem. Experiment results demonstrate that our method outperforms the existing heuristic algorithms and achieves near-optimal performance. To further enhance the learning efficiency of the DRL-based task offloading method for unseen learning tasks, this thesis then integrates meta reinforcement learning to handle the task offloading problem. Our method can adapt fast to new environments with a small number of gradient updates and samples. Finally, this thesis exploits the DRL-based solution for the service migration problem in MEC considering user mobility. This research models the service migration problem as a Partially Observable Markov Decision Process (POMDP) and propose a tailored actor-critic algorithm combining Long-short Term Memory (LSTM) to solve the POMDP. Results from extensive experiments based on real-world mobility traces demonstrate that our method consistently outperforms both the heuristic and state-of-the-art learning-driven algorithms on various MEC scenarios

    EdgeAISim: A Toolkit for Simulation and Modelling of AI Models in Edge Computing Environments

    Get PDF
    To meet next-generation Internet of Things (IoT) application demands, edge computing moves processing power and storage closer to the network edge to minimize latency and bandwidth utilization. Edge computing is becoming increasingly popular as a result of these benefits, but it comes with challenges such as managing resources efficiently. Researchers are utilising Artificial Intelligence (AI) models to solve the challenge of resource management in edge computing systems. However, existing simulation tools are only concerned with typical resource management policies, not the adoption and implementation of AI models for resource management, especially. Consequently, researchers continue to face significant challenges, making it hard and time-consuming to use AI models when designing novel resource management policies for edge computing with existing simulation tools. To overcome these issues, we propose a lightweight Python-based toolkit called EdgeAISim for the simulation and modelling of AI models for designing resource management policies in edge computing environments. In EdgeAISim, we extended the basic components of the EdgeSimPy framework and developed new AI-based simulation models for task scheduling, energy management, service migration, network flow scheduling, and mobility support for edge computing environments. In EdgeAISim, we have utilized advanced AI models such as Multi-Armed Bandit with Upper Confidence Bound, Deep Q-Networks, Deep Q-Networks with Graphical Neural Network, and Actor-Critic Network to optimize power usage while efficiently managing task migration within the edge computing environment. The performance of these proposed models of EdgeAISim is compared with the baseline, which uses a worst-fit algorithm-based resource management policy in different settings. Experimental results indicate that EdgeAISim exhibits a substantial reduction in power consumption, highlighting the compelling success of power optimization strategies in EdgeAISim. The development of EdgeAISim represents a promising step towards sustainable edge computing, providing eco-friendly and energy-efficient solutions that facilitate efficient task management in edge environments for different large-scale scenarios

    Online Service Migration in Edge Computing with Incomplete Information: A Deep Recurrent Actor-Critic Method

    Get PDF
    Multi-access Edge Computing (MEC) is an emerging computing paradigm that extends cloud computing to the network edge (e.g., base stations, MEC servers) to support resource-intensive applications on mobile devices. As a crucial problem in MEC, service migration needs to decide where to migrate user services for maintaining high Quality-of-Service (QoS), when users roam between MEC servers with limited coverage and capacity. However, finding an optimal migration policy is intractable due to the highly dynamic MEC environment and user mobility. Many existing works make centralized migration decisions based on complete system-level information, which can be time-consuming and suffer from the scalability issue with the rapidly increasing number of mobile users. To address these challenges, we propose a new learning-driven method, namely Deep Recurrent Actor-Critic based service Migration (DRACM), which is user-centric and can make effective online migration decisions given incomplete system-level information. Specifically, the service migration problem is modeled as a Partially Observable Markov Decision Process (POMDP). To solve the POMDP, we design an encoder network that combines a Long Short-Term Memory (LSTM) and an embedding matrix for effective extraction of hidden information. We then propose a tailored off-policy actor-critic algorithm with a clipped surrogate objective for efficient training. Results from extensive experiments based on real-world mobility traces demonstrate that our method consistently outperforms both the heuristic and state-of-the-art learning-driven algorithms, and achieves near-optimal results on various MEC scenarios

    Edge Offloading in Smart Grid

    Full text link
    The energy transition supports the shift towards more sustainable energy alternatives, paving towards decentralized smart grids, where the energy is generated closer to the point of use. The decentralized smart grids foresee novel data-driven low latency applications for improving resilience and responsiveness, such as peer-to-peer energy trading, microgrid control, fault detection, or demand response. However, the traditional cloud-based smart grid architectures are unable to meet the requirements of the new emerging applications such as low latency and high-reliability thus alternative architectures such as edge, fog, or hybrid need to be adopted. Moreover, edge offloading can play a pivotal role for the next-generation smart grid AI applications because it enables the efficient utilization of computing resources and addresses the challenges of increasing data generated by IoT devices, optimizing the response time, energy consumption, and network performance. However, a comprehensive overview of the current state of research is needed to support sound decisions regarding energy-related applications offloading from cloud to fog or edge, focusing on smart grid open challenges and potential impacts. In this paper, we delve into smart grid and computational distribution architec-tures, including edge-fog-cloud models, orchestration architecture, and serverless computing, and analyze the decision-making variables and optimization algorithms to assess the efficiency of edge offloading. Finally, the work contributes to a comprehensive understanding of the edge offloading in smart grid, providing a SWOT analysis to support decision making.Comment: to be submitted to journa
    • …
    corecore