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Abstract

Multi-access edge computing (MEC) is an emerging and important distributed computing
paradigm that aims to extend cloud service to the network edge to reduce network traffic
and service latency. Proper system optimisation and maintenance are crucial to maintaining
high Quality-of-service (QoS) for end-users. However, with the increasing complexity of
the architecture of MEC and mobile applications, effectively optimising MEC systems is
non-trivial. Traditional optimisation methods are generally based on simplified mathematical
models and fixed heuristics, which rely heavily on expert knowledge. As a consequence,
when facing dynamic MEC scenarios, considerable human efforts and expertise are required
to redesign the model and tune the heuristics, which is time-consuming.

This thesis aims to develop deep reinforcement learning (DRL) methods to handle sys-
tem optimisation problems in MEC. Instead of developing fixed heuristic algorithms for
the problems, this thesis aims to design DRL-based methods that enable systems to learn
optimal solutions on their own. This research demonstrates the effectiveness of DRL-based
methods on two crucial system optimisation problems: task offloading and service migration.
Specifically, this thesis first investigate the dependent task offloading problem that considers
the inner dependencies of tasks. This research builds a DRL-based method combining
sequence-to-sequence (seq2seq) neural network to address the problem. Experiment results
demonstrate that our method outperforms the existing heuristic algorithms and achieves
near-optimal performance. To further enhance the learning efficiency of the DRL-based
task offloading method for unseen learning tasks, this thesis then integrates meta reinforce-
ment learning to handle the task offloading problem. Our method can adapt fast to new
environments with a small number of gradient updates and samples. Finally, this thesis
exploits the DRL-based solution for the service migration problem in MEC considering
user mobility. This research models the service migration problem as a Partially Observable
Markov Decision Process (POMDP) and propose a tailored actor-critic algorithm combining
Long-short Term Memory (LSTM) to solve the POMDP. Results from extensive experiments
based on real-world mobility traces demonstrate that our method consistently outperforms
both the heuristic and state-of-the-art learning-driven algorithms on various MEC scenarios.
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Chapter 1

Introduction

In recent years, mobile devices including smartphones, tablets, wearable devices, smart
sensors, etc. have infiltrated every aspect of individuals’ life, work, and entertainment. The
rapidly increasing number of modern mobile devices and the emerging diverse applications
raise an inevitable requirement for more processing, operation, and optimisation of future
computing and networking systems. When facing mobile applications, the centralized
Cloud computing systems are encountering noticeable challenges including lagged data
transmission, security vulnerability, low coverage, so on and so forth. To address the above
challenges, Multi-access edge computing (MEC) [104] is proposed to provide high Quality-
of-Service (QoS) to the end devices by providing computing and storage resources to the
network edges.

MEC provides many fundamental functionalities (e.g., task offloading [105, 74] and con-
tent caching [154]) to improve the QoS of end-users. However, optimisation and maintenance
for MEC systems are non-trivial due to the growing complexity of the MEC architecture.
Traditional optimisation solutions for MEC systems rely heavily on expert knowledge. For
example, due to the NP-hardness of most of the optimisation problems in MEC systems,
many solutions are based on heuristic algorithms. Typical steps for those heuristic-based
solutions include: 1) building a simplified model by analysing the problem and optimisation
target; 2) designing heuristics/rules to achieve the target based on the simplified models; 3)
extensively tuning those heuristics/rules to achieve good performance in real systems. Some
researchers decompose the original optimisation problems into several sub-problems and
solve all/parts of sub-problems by using convex optimisation [130, 66, 161]. However, those
methods do not directly optimise for the global objective, and the optimisation results are
often far from optima. In a nutshell, when facing ever-changing MEC scenarios, traditional
optimisation solutions require considerable human efforts and expertise to redesign the model
or decomposition methods. Besides, they need to tune the heuristics/rules to adapt to new



2 Introduction

scenarios, which is time-consuming and sometimes unrealistic due to the various mobile
applications and complicated architecture of MEC systems.

To address the above challenges, a natural way is to enable the systems to learn effective
optimisation policies on their own. Deep Reinforcement Learning (DRL) [63], which
combines Reinforcement Learning (RL) [118] with Deep Neural Networks (DNN) [59],
delivers a promising solution to achieve the goal. DRL learns an effective policy (i.e., a
mapping from environment states to actions) through interacting with the environment so
as to maximize numerical rewards. With the help of the powerful representation ability of
DNNs, DRL can effectively solve complex decision-making problems with large and high-
dimensional state/action spaces. Recent breakthroughs in DRL have led to many successful
applications in a wide range of areas including gaming [111, 112], robotics [65], networking
[159, 24], etc., which inspired us to develop DRL-based methods for system optimisation
problems that generally includes sequential decision-making processes. In this thesis, I focus
on developing tailored DRL-based solutions for two vital and challenging problems in MEC:
task offloading and service migration [102]. In the next section, I first give a brief review of
the basic concept of MEC.

1.1 Multi-access Edge Computing

Over the past decades, the evolution of wireless communication networks has brought huge
changes to every aspect of our lives, society, culture, politics, and economics. Back in the
1980s, the first generation (1G) of wireless cellular networks was developed with compliance
of analogue modulation and mobility support and continued until being replaced by 2G
digital telecommunications that were entirely digital. Next, 3G was proposed to provide
better data transfer rate and multimedia application coherence by using radio access networks
(RAN) [99]. By addressing the speed and network congestion issues of 3G networks, 4G can
provide higher wireless speed and QoS [51]. In a nutshell, the main target of wireless systems
from 1G to 4G is to pursue higher wireless speed to support the transition from voice-centric
to multimedia-centric traffic. When it comes to 5G that has a similar transmission speed as
its wireline counterparts, the mission becomes much more complex, aiming at supporting the
explosive evolution of Information and Communications Technology (ICT) and the Internet.
Specifically, 5G systems need to support multiple functionalities including communications,
computing, control, and content delivery (4C) [77] and various emerging applications and
services such as real-time online gaming, VR, AR, and ultra-high-definition video streaming.
Therefore, 5G systems require unprecedented high access speed, computation and storage
capability, and low latency.
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Cloud computing is an important computing paradigm, which provides powerful central-
ized computing and storage capability for big data processing. Specifically, Cloud computing
offers elastic resources and on-demand services for end-users over a Wide Area Network
(WAN) without direct active management by users. Therefore, users can easily have seem-
ingly unlimited resources without building and maintaining their computing infrastructures.
Despite the remarkable benefits of cloud computing, it still has difficulties in satisfying the
service demands of the new trend of delay-sensitive applications in 5G networks. First,
end-users need to directly communicate with the centralised Cloud through a WAN that
generally has high latency and is unlikely to improve in the foreseeable future [106]. Second,
since the mobile users need to upload the data to the central Cloud for analysis, the volume
of traffic data can bring a huge burden to the backhaul network. For example, there are
thousands of video cameras deploying in an airport for security purposes, each of which
produces data at 12 Mbps. If all video data is sent to the central Cloud, hundreds of Gbps
bandwidth is required, which far exceeds the traffic capacity of current WANs. Last but not
least, the long-distance data exchange between end-users and the central Cloud may carry a
data security risk.

To address the above issues, MEC is proposed to offer Cloud capabilities and an IT
service environment in the proximity of end-users [104]. MEC utilizes powerful servers
deployed at the network edge for running applications and computation tasks. Typically,
the MEC servers provide computing resources, storage capacity, connectivity and access
to the Internet, thus it can significantly alleviate network congestion and reduce service
latency. Fig. 1.1 shows the architecture of an emerging MEC system composed of the user
level, edge level, and remote level. Here, the user level includes heterogeneous user devices
(e.g., smartphone, camera, Virtual Reality (VR) glasses, and smart vehicle), the edge level
contains MEC servers that provide edge computing services, and the remote level consists of
Cloud servers. Specifically, user devices communicate with MEC servers through the RAN
while MEC servers incorporate virtualisation infrastructures that provide computing, storage,
and network resources. With the help of network function visualization (NFV), [38] and
software-defined network (SDN) [54], MEC systems can offer various flexible and reliable
services to end-users with high QoS guarantee.

MEC is a key enabling technology in the 5G network and beyond [153]. The trend of
pushing cloud computing services to the network edge is expected to continue to accelerate
in years to come. There are lots of challenges and open issues related to MEC systems
including resource management, service orchestration, data management, and security. To
overcome those challenges, numerous solutions have been proposed by both academia and
industry to enhance the performance of MEC, such as modelling [110], multi-user resource
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Fig. 1.1 Architecture of Multi-access Edge Computing.

allocation [130, 125], and system implementation [50], and so on and so forth. As the system
architecture of MEC systems becomes increasingly sophisticated, it brings huge challenges
for effectively optimising and maintaining the systems by human experts. To address the
challenges, embedding machine learning to MEC systems becomes a trending solution
[139, 160] because of the significant success achieved by modern artificial intelligence. In
the next section, I give a brief overview of DRL, which is one of the flagships of machine
learning.

1.2 Deep Reinforcement Learning

RL is a learning paradigm that learns through trial-and-error for sequential decision-making
problems [118]. In the RL paradigm, a learning agent observes states from the environment
and tries to make smart actions based on the observed states to maximise the total rewards as
shown in Fig. 1.2. Although traditional RL methods have achieved some success in various
areas [48], they are limited in domains where useful features can be extracted with expert
knowledge, or to domains with fully observed, low-dimensional state spaces. To broaden the
application of RL, DRL integrates DNNs, which have strong representation abilities towards
high-dimensional datasets, for feature extraction. Learning with DNNs enables automatic
feature engineering and end-to-end training via gradient descent, thus reliance on domain
knowledge is significantly reduced or even removed.
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Fig. 1.2 An agent interacts with the environment, learning to make smart actions so that it
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Fig. 1.3 The number of publications related to RL and edge computing systems from 2016 to
2020. (Source: google scholar)

The successes of DRL in multiple areas such as gaming [83, 112], robotics [164, 5],
natural language processing [62, 64] have inspired researchers in the field of computer
systems and networks to developed DRL-based methods for system optimisation [72, 160, 76].
Fig 1.3 illustrates the number of publications related to RL and edge computing from 2016 to
2020, showing a clear trend of the integration of RL and edge computing systems. Perusing
recent studies in the field of MEC system optimisation, this thesis summarises the benefits of
DRL-based solutions compared to traditional methods as follows:

• DRL can obtain effective solutions to sophisticated system optimisation problems by
continuously learning from the real experiences of interacting with a system environ-
ment without complete system information and accurate analytical models.



6 Introduction

• With the powerful representation abilities of DNNs, DRL is able to handle high-
dimensional raw data collected from MEC systems (e.g., traffic data, mobile application
structures, system logs, etc.) to improve decisions across heterogeneous system
environments.

• Many system optimisation problems involve inherent properties of combinatorial
optimisation. For example, the task offloading problem in MEC can be approximated
by the knapsack problem [134]. However, traditional solutions highly rely on heuristics
designed by human experts, which lack generic methods. On the contrary, DRL can
automatically discover the hidden heuristics through learning thus reduce the reliance
on expert knowledge.

Despite the above benefits of DRL-based solutions, efficiently applying DRL for system
optimisation problems in MEC still face several challenges. In many cases, directly using
off-the-peg DRL methods to address the system optimisation problems generally leads
to unsatisfactory results. Efficient DRL problem formulations (i.e., proper definitions of
the state, action spaces, and the reward function of DRL) are keys to achieve sufficiently
good performance. Besides, the high sample complexity of DRL (i.e., many existing DRL
methods require a large number of training samples to achieve good performance) hinders
the application of existing DRL methods for system optimisation problems, since obtaining
samples in real-world MEC systems can be costly. To address the above challenges, this
thesis develops efficient RL problem formulation for different problems and tailors the DRL
methods to better fit the properties of the MEC systems. In the following section, I will
overview the research problems and the proposed novel DRL-based solutions for concrete
system optimisation problems in MEC.

1.3 Research Problems, Challenges, and Objectives

System optimisation problems in MEC generally include sequential decision-making pro-
cesses while DRL is one of the promising technologies to address these problems. However,
effectively combining DRL methods with MEC systems still face some key challenges. This
thesis focuses on address two crucial system optimisation problems in MEC: task offloading
and service migration.

1.3.1 Problems and Challenges

Dependent Task Offloading based on Deep Reinforcement Learning
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Task offloading (aka, computation offloading) is one of the key functionalities of MEC,
which enables user devices to offload computation-intensive tasks of applications to MEC
servers, thus reducing latency and energy consumption at user devices during the processing
of the application. A crucial part of task offloading is to decide whether to offload or not.
Typically, the offloading decisions for a mobile application can result in three schemes: 1)
local execution: the whole application is done locally at the mobile device. 2) full offloading:
the whole application is offloaded and processed by edge servers. 3) partial offloading:
a part of the mobile application is processed locally while the rest is offloaded to edge
servers. This thesis considers partial offloading scheme which is a very complex process
affected by various factors including radio and backhaul connection quality, users’ preference,
workloads of mobile devices and cloud servers [92]. Specifically, many mobile applications
are composed of dependent tasks where the outputs of some tasks are the input of others.
In task offloading, we must decide whether a task should be offloaded to an MEC server,
depending on the task profile (i.e., the required CPU cycles and input/output data size)
and the MEC environment. Many existing studies [67, 28, 20, 29, 1] developed heuristic
or approximation algorithms, since the above offloading problem is NP-hard. However,
they rely heavily on expert knowledge or accurate analytical models. As a consequence,
considerable human efforts and expertise are required to tune these heuristics or analytical
models to adapt to new scenarios, which is time-consuming and even unrealistic due to the
increasing complexity of applications and system architecture of MEC. To address the above
issue, DRL has been adopted to handle task offloading problems in MEC [45, 131, 159, 168].
However, these methods assume the offloading tasks are independent without considering the
inherent dependencies among tasks of real-world applications. In practice, many applications
are composed of dependent tasks where the outputs of some tasks are the inputs of others.
Ignoring the task dependencies when making task offloading decisions will severely affect
the QoS of applications and waste the edge resources. How to designing DRL-based methods
to learn effective offloading strategies? More specifically, how to extract the representative
features of the tasks for better decision-making?

Fast Adaptive Task Offloading with Meta Reinforcement Learning

Although DRL-based methods can automatically learn effective offloading policy through
interacting with the environment, the learned policy might have weak adaptability for unex-
pected perturbations or unseen situations (i.e., new environments). Full retraining to learn an
updated policy is required for conventional DRL-based methods, which is time-consuming.
Meta learning [127] is a promising method to address the aforementioned issues by leverag-
ing previous experiences across a range of learning tasks to significantly accelerate learning
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of new tasks. In the context of RL problems, meta reinforcement learning (MRL) aims to
learn policies for new tasks within a small number of interactions with the environment
by building on previous experiences. In general, MRL conducts two “loops” of learning,
an “outer loop” which uses its experiences over many task contexts to gradually adjust
parameters of the meta policy that governs the operation of an “inner loop”. Based on the
meta policy, the “inner loop” can adapt fast to new tasks through a small number of gradient
updates [15].

There are significant benefits of adapting MRL to solving the computation offloading
problem. Firstly, specific policies for new mobile users can be fast learned based on their
local data and the meta policy. Secondly, MRL training in the MEC system can leverage
resources from both the MEC servers and user devices. More specifically, training for the
meta policy (outer loop) is run on the MEC server, and training for the specific offloading
policy (inner loop) is processed on user devices. Normally, the “inner loop” training only
needs several training steps and a small amount of sampling data, thus the user devices with
limited computation resources and data are able to complete the training process. Finally,
MRL can significantly improve the training efficiency in learning new tasks and make the
offloading algorithm more adaptive to the dynamic MEC environment. However, how to
effectively integrate the MRL method in MEC systems to achieve fast adaptive learning
process for dynamic scenarios remains a big challenge.

Online Service Migration with Incomplete System Information

Another crucial problem in MEC is service migration. In general, a mobile application
includes two parts: a front-end component running on mobile devices, and a back-end service
that runs the tasks offloaded from the application on MEC servers [102]. When considering
the user mobility along with the limited coverage of MEC servers, the communications
between a mobile user and the user service running on an edge server may go through
multiple hops, which would severely affect the QoS and even interrupt the ongoing services.
To address this problem, the service could be dynamically migrated to a more suitable MEC
server so that the QoS is maintained. Unfortunately, finding an optimal migration policy
for such a problem is non-trivial, due to the complex system dynamics and user mobility.
Many existing works [94, 135, 147, 137, 91] proposed service migration solutions based on
MDP or Lyapunov optimisation under the assumption of knowing the complete system-level
information (e.g., available computation resources of MEC servers, profiles of offloaded
tasks, and backhaul network conditions). Thus, they designed centralized controllers (i.e.,
controllers are placed on edge servers or central cloud) that make migration decisions for
mobile users in the MEC system.
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The aforementioned methods have two potential drawbacks: 1) in a real-world MEC
system, gathering complete system-level information can be difficult and time-consuming;
2) the centralized control approach will have the scalability issue since its time complexity
rapidly increases with the number of mobile users. To address the above issues, some works
proposed decentralized service migration methods based on contextual Multi-Armed Bandit
(MAB) [116, 93, 115], where the migration decisions are made by the user side with partially
observed information. However, they did not consider the intrinsically large state space
and complex dynamics in the MEC system, which may lead to unsatisfactory performance.
Therefore, we need a new online service migration framework based on incomplete system
information to address the above challenges.

1.3.2 Objectives

The goal of this thesis is to develop learning-based system optimisation methods for MEC
systems, letting machine “learn to optimise on its own”. In particular, this research aims
to 1) build a policy gradient method for the dependent task offloading problem, 2) enhance
the proposed task offloading method with meta reinforcement learning for fast adaptive
learning, 3) build a DRL-based method combining recurrent neural network (RNN) to tackle
the service migration problem with incomplete system information. Further details will be
outlined in Section 1.4.

1.4 Thesis Organisation and Contributions

The rest of the thesis is organised as follows. Chapter 2 first gives a brief review of RL, DRL,
MRL, and RL with partially observable environments and then discusses the state-of-the-art
related work about task offloading, service migration, and learning-based combinatorial
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optimisation. As shown in Fig 1.4, from Chapter 3 to Chapter 5, I present the detailed
learning-based methods to address the task offloading and service migration problems in
MEC. In Chapter 6, I summarise the thesis with a list of suggestions for future research
directions. The outlines of contributions of each chapter are illustrated as follows:

• Chapter 2 gives a thorough review of deep reinforcement learning methods including
conventional RL, value-based DRL, policy-based DRL, MRL, and RL with partially
observable environments. Besides, the state-of-the-art solutions for task offloading
and service migration are discussed. Furthermore, since both task offloading and
service migration can be seen as combinatorial optimisation problems, I present the
state-of-the-art learning-based combinatorial optimisation algorithms at the end of this
chapter.

• In Chapter 3, I propose a new DRL-based Task Offloading (DRLTO) scheme leverag-
ing off-policy RL empowered by a tailored Sequence-to-Sequence (seq2seq) neural
network. The DRLTO is able to reduce the latency of running applications and the
energy consumption at user devices [131]. In DRLTO, the task offloading problem
is modelled as a Markov Decision Process (MDP). Applications are represented by
Directed Acyclic Graphs (DAG), where vertices and edges denote tasks and their
dependencies, respectively. To effectively extract the key features of task dependen-
cies, a tailored seq2seq neural network is developed to represent the policy and value
function of the MDP. Specifically, the input of the seq2seq neural network is the DAG
represented by a sequence of embedding vectors, while the output is the offloading
plan for the DAG. To improve the training efficiency, I develop an off-policy DRL
algorithm with a clipped surrogate objective that can prevent the training from getting
stuck in local optima and stabilize the training process. The DRLTO learns to make
efficient offloading decisions through directly interacting with the environment and
only requires minimal expert knowledge.

• In Chapter 4, I propose an MRL-based method that synergizes the first-order MRL
algorithm with a seq2seq neural network [132]. The proposed method learns a meta
offloading policy for all user devices and fast obtains the effective policy for each user
device based on the meta policy and local data. There are three major benefits of my
method: 1) personalized offloading policies for new mobile users can be fast learned
based on their local data and the meta policy. 2) the training of my method in the MEC
system can leverage resources from both the MEC servers and the mobile devices. 3)
my method can significantly improve the training efficiency facing new environments
and make the offloading algorithm more adaptive to the dynamic MEC scenarios.
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• Chapter 5 investigates the service migration in MEC systems. I develop a new learning-
driven method that is user-centric and can make effective online migration decisions
given incomplete system-level information. In particular, the service migration problem
is modelled as a Partially Observable Markov Decision Process (POMDP). To solve
the POMDP, I design an encoder network that combines a Long Short-Term Memory
(LSTM) and an embedding matrix for the effective extraction of hidden information.
I then propose a tailored off-policy actor-critic algorithm with a clipped surrogate
objective for efficient training. Results from extensive experiments based on real-world
mobility traces demonstrate that my method consistently outperforms both the heuristic
and state-of-the-art learning-driven algorithms while achieving near-optimal results on
various MEC scenarios.

To summarise the key contents, this thesis researches the system optimisation problems in
MEC, especially task offloading and service migration problems. The proposed DRL-based
solutions are expected to contribute positively to the system optimisation and maintenance
in MEC. In the next chapter, a comprehensive review of DRL backgrounds, and existing
solutions for task offloading and service migration is provided. In addition to this, each
primary chapter also makes some extra efforts to explain its contributions and most related
works to make clear the contents in the chapter.



Chapter 2

Backgrounds

In this chapter, I first give a brief review of deep reinforcement learning (DRL) including
conventional reinforcement learning (RL) methods, model-free DRL, meta reinforcement
learning (MRL), and DRL with partial observable environments. Next, I present the state-of-
the-art work related to task offloading, service migration, and learning-based combinatorial
optimisation methods.

2.1 Primer of Deep Reinforcement Learning

RL can solve sequential decision-making problems by learning from interaction with the
environment. In general, RL models a learning task T as a Markov Decision Process (MDP),
which is defined by a tuple (S,A,P,P0,R, 𝛾), to represent the interaction between a learning
agent and its environment. Specifically, S is the state space, A denotes the action space,
P(·|𝑆𝑡 , 𝐴𝑡) is the environment dynamics that gives the probability distribution of the next
state given the current state and action, P0 is the distribution of the initial state, R(𝑆𝑡 , 𝐴𝑡)
represents the reward function, and 𝛾 ∈ [0,1] is the discounted factor. The policy, 𝜋(·|𝑠𝑡),
represents the distribution over actions given a state 𝑠𝑡 . I define a trajectory sampled from the
environment according to the policy 𝜋 as, the The return from state 𝑠0 following policy 𝜋,
which is defined as 𝐺 𝑡 (𝜏𝜋) =

∑𝑇
𝑖=𝑡 𝛾

𝑖−𝑡𝑟𝑡 , is the sum of discounted rewards along a trajectory
𝜏𝜋 := {𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, ..., 𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇 }. The goal of RL is to find an optimal policy 𝜋∗, so
that the expected return, E𝜏∼𝑝(𝜏 |𝜋∗) [𝐺0(𝜏)], is maximal. The value functions (i.e., state-value
function and action-value function) are used to describe how good a state or state-action pair
is in RL. The sate-value function is defined as the expected total reward starting from state 𝑠,
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which is formally given by

𝑉𝜋 (𝑠) = E𝜋

[ ∞∑
𝑡=0
𝛾𝑘𝑅(𝑆𝑡 , 𝐴𝑡)

����𝑆0 = 𝑠

]
. (2.1)

Likewise, the action-value function is defined by the expected return after taking an action 𝑎
in state 𝑠 and thereafter following policy 𝜋, which is formally denoted as

𝑄𝜋 (𝑠, 𝑎) = E𝜋

[ ∞∑
𝑡=0
𝛾𝑡𝑅(𝑆𝑡 , 𝐴𝑡)

����𝑆0 = 𝑠, 𝐴0 = 𝑎

]
. (2.2)

An optimal state-value function 𝑉∗(𝑠) is the maximum state value achievable by any
policy for state 𝑠, which is defined as 𝑉∗(𝑠) = max𝜋𝑉𝜋 (𝑠) = max𝑎𝑄𝜋∗ (𝑠, 𝑎). The optimal
state-value function can be decomposed into the Bellman equation:

𝑉∗(𝑠) = max
𝑎

∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 +𝛾𝑉∗(𝑠′)] . (2.3)

Here, 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) is the joint distribution of dynamics P and the reward function R (we
can treat the reward function as a conditional distribution given current state and action), 𝑠′

denotes the next state of the current state 𝑠 after taking action 𝑎.
Similarly, the optimal action-value function, 𝑄∗(𝑠, 𝑎) = max𝜋𝑄𝜋 (𝑠, 𝑎), is the maximum

action value achievable by any policy for state 𝑠 and action 𝑎. The Bellman optimality
equation for 𝑄∗(𝑠, 𝑎) is

𝑄∗(𝑠, 𝑎) =
∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎)
[
𝑟 +𝛾max

𝑎′
𝑄∗(𝑠′, 𝑎′)

]
, (2.4)

where 𝑎′ is the next-step action. Specifically, the Bellman optimality equations of 𝑉∗ and 𝑄∗

express that the value of a state under an optimal policy must equal the expected return for
the best action from that state:

𝑉∗(𝑠) = max
𝑎∈A

𝑄∗(𝑠, 𝑎)

= max
𝑎
E𝜋∗

[
𝐺 𝑡

��𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]
= max

𝑎
E𝜋∗

[
𝑅𝑡+1 +𝛾𝐺 𝑡+1

��𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]
= max

𝑎
E
[
𝑅𝑡+1 +𝛾𝑉∗(𝑆𝑡+1)

��𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]
= max

𝑎

∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 +𝛾𝑉∗(𝑠′)] .

(2.5)
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𝑄∗(𝑠, 𝑎) = max
𝑎
E

[
𝑅𝑡+1 +𝛾max

𝑎′
𝑄∗(𝑆𝑡+1, 𝑎′)

��𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]
=
∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎)
[
𝑟 +𝛾max

𝑎′
𝑄∗(𝑠′, 𝑎′)

]
.

(2.6)

Fig. 2.1 shows graphically the spans of future states and actions considered the Bellman
optimality equations for 𝑉∗(𝑠) and 𝑄∗(𝑠, 𝑎), where each open circle represents a state and
each solid circle represents a state–action pair. Starting from the root node 𝑠, the agent could
take an action 𝑎 ∈ A following the policy 𝜋. From each of these actions, the environment
returns one of several next states, 𝑠′, along with reward 𝑟, based on the system dynamics.
The optimal Bellman equations 𝑉∗ and 𝑄∗ recursively choose the branch with maximal
discounted accumulated reward over all the possibilities.
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Fig. 2.1 Backup diagrams for 𝑉∗ and 𝑄∗.

Conventional RL algorithms aim to get the optimal value function of every state in
the environment. When the model is known ahead, due to the Bellman optimality of the
value function, obtaining the optimal value function becomes a planning problem which can
be solved by Dynamic Programming (DP) [12]. When the model is unknown, sampling
methods can be instead used. One common method is Monte Carlo (MC) method [39]
which solves reinforcement learning problem based on averaging sample returns. Another
common method is Temporal Difference (TD) [122] which learns by bootstrapping from
the current estimate of the value function. However, all of these methods use the tabular way
to store the state values. Hence, it is intractable for them to solve problems with extremely
large or high dimensional state space.

In the past decade, deep learning (DL) has achieved remarkable successes in various
areas, due to the advance of modern computing technologies and the strong representation
ability of deep neural network (DNN). To address the curse of dimensionality in conventional
RL algorithms, DRL integrates DNN to handle large and high-dimensional state space. From
the perspective of the model dynamics, DRL methods can be roughly classified into model-
based technologies [47, 84], which build a predictive model of an environment and derive a



2.1 Primer of Deep Reinforcement Learning 15

controller from it, and model-free approaches [83, 37], which learns a direct mapping from
states to actions. In the following subsection, I give an overview of existing model-free DRL
algorithms.

2.1.1 Model-free Deep Reinforcement Learning

This thesis focuses on developing model-free DRL methods that learn effective policies
without relying on a model, which generally falls into one of two categories: value-based
methods and policy-based methods.

Value-based method: the valued-based DRL methods (e.g., deep Q-learning (DQL)
[83] and double DQL [126]) use the deep neural network to approximate the optimal action-
value function, 𝑄∗(𝑠𝑡 , 𝑎𝑡;\𝑄) where \𝑄 are parameters of the deep neural network. They
obtain the optimal policy by greedily selecting the action with maximal action value, where
𝑎𝑡 = argmax𝑎𝑄∗(𝑠𝑡 , 𝑎;\𝑄). In DQL, experiences 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) at each time step 𝑡 are
stored in the replay buffer 𝐷. The Q-network (i.e., a neural network that is used approxi-
mate the action-value function) is trained based on samples (or minibatches) of experience
(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) ∼𝑈 (𝐷), drawn uniformly at random from the replay buffer. Formally, the
training objective of the DQL is expressed as

𝐿𝑄 (\𝑄) = E(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1)∼𝑈 (𝐷)

[(
𝑟𝑡 +𝛾max

𝑎𝑡+1
𝑄(𝑠𝑡+1, 𝑎𝑡+1;\𝑄) −𝑄(𝑠𝑡 , 𝑎𝑡 ;\𝑄)

)2
]
. (2.7)

However, since valued-based methods indirectly obtain a deterministic policy by training the
Q-network, it generally has a low convergence rate [82]. The complex state space and large
action space of the MEC environment exacerbate this issue. Besides, the training targets of
value-based methods are generally obtained by one-step bootstrapping of the Q-network,
which can be a highly biased estimation of the true action values. Introducing bias may harm
the convergence of the algorithm, or cause converging to sub-optimal solutions. the above
issues make value-based methods unfit to solve the system optimisation problems in MEC
since the learned policies may lead to unsatisfied performance.

Policy-based methods: This thesis builds the system optimisation methods for MEC
based on the policy-based methods. In contrast to the value-based methods, the policy-based
methods (e.g., asynchronous actor-critic [82] and proximal policy optimization [108]) directly
optimise the target (i.e., discounted total reward) and provide good convergence property
for dealing with the complex state and action space of the environment. They parametrised
the stochastic policy with a deep neural network rather than using a deterministic policy
derived from the action-value function. The parameters of the policy network are updated by
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performing gradient ascent on E[𝐺0(𝜏)], which is formally defined by

∇\E𝜏∼𝑝(𝜏 |𝜋\ )

[
𝑇∑
𝑡=0
𝛾𝑡𝑟𝑡

]
= E𝜏∼𝑝(𝜏 |𝜋\ )

[
𝑇∑
𝑡=0
∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡)𝑄𝜋\ (𝑠𝑡 , 𝑎𝑡)

]
. (2.8)

The core idea is of the policy-based methods is to estimate the gradient based on the
trajectories sampled by the current policy. To estimate the state-action value function
𝑄𝜋\ (𝑠𝑡 , 𝑎𝑡), one solution is to apply MC method which samples multiple trajectories and
use the return, 𝐺 𝑡 , as an unbiased estimate of 𝑄𝜋\ (𝑠𝑡 , 𝑎𝑡). The update rule of the policy is
defined by

\← \ +𝛼
𝑇∑
𝑡=0
∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡)𝐺 𝑡 , (2.9)

where 𝛼 is the learning rate. Eq. (2.9) leads to a typical policy-based method, REINFORCE
[144].

Although, REINFORCE has good theoretical convergence properties since it is a stochas-
tic gradient method. The Monte Carlo estimation of the state-action value function introduces
high variance and thus produces slow learning. To address this problem, a standard solution
is to add an arbitrary baseline 𝑏(𝑠) [143]:

\← \ +𝛼
𝑇∑
𝑡=0
∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡) (𝐺 𝑡 − 𝑏(𝑠𝑡)). (2.10)

Here, the baseline 𝑏(𝑠𝑡) can be any function that it does not vary with action 𝑎. The baseline
leaves the average value of the update unchanged, but it can significantly reduce the variance.
There are some common choices of the baseline functions. For example, the time-based
baseline aligns multiple trajectories on the same time step and calculates the average return
at each time step as the baseline. Another natural choice for the baseline is an estimate of
the state value function, 𝑉 (𝑠𝑡;\𝑉 ), which is approximated by another neural network with
parameters \𝑉 [82]. This results in a new update equation as:

\← \ +𝛼
𝑇∑
𝑡=0
∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡)𝐴(𝑠𝑡 , 𝑎𝑡), (2.11)

where 𝐴(𝑠𝑡 , 𝑎𝑡) :=𝑄(𝑠𝑡 , 𝑎𝑡) −𝑉 (𝑠𝑡 ;\𝑉 ) is the advantage function, which measures whether
or not the action is better or worse than the policy’s default behaviour.
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Fig. 2.2 Schematic of MRL, showing the two loops of training.

2.1.2 Meta Reinforcement Learning

The concept of meta learning, or learning to learn, has recently become a hot research topic
[43]. In contrast to the conventional DL methods which solve complex tasks from scratch,
meta learning provides a new learning paradigm that learns how to adapt new tasks faster by
reusing previous experience. More specifically, a typical meta learning algorithm includes
two loops of training, where the “inner loop” training solves a task defined by a dataset
and objective, while the “outer loop” learns a meta model by using experiences across a
distribution of learning tasks. The learned meta model can be used to speed up the training
of the “inner loop”. This new paradigm provides a variety of benefits. For example, meta
learning can fast adapt to new learning tasks with few training samples and update steps,
which has higher sample and computation efficiency than conventional DL methods.

MRL enhances the conventional RL methods with meta learning, which aims to learn
a learning algorithm that can quickly find the policy for a learning task T𝑖 drawn from a
distribution of tasks 𝜌(T ). Each learning task T𝑖 corresponds to a different environment,
and these environments typically share the same state and action spaces but may differ in
reward functions or their dynamics (i.e., P and P0). Similar to meta learning, the training
of MRL generally contains two loops of optimisation, as illustrated in Fig. 2.2. The “outer
loop” samples a new environment in every iteration and adjusts parameters \ that are used to
determine the agent’s behaviour. In the inner loop, the agent interacts with the environment
and optimizes for the maximal reward based on the parameters \. Here, \ represents the
common experience that is extracted from multiple learning tasks.
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Recent years have brought a wealth of methods focused on different aspects of the
learning process of MRL. One typical example is context-based MRL [30, 133], which uses
the recurrent neural network (RNN) to aggregate experiences of a range of learning tasks into
a latent representation and quickly adapts new task learning conditioned on the aggregated
experience. A second approach is gradient-based MRL [31, 103], which aims to learn initial
parameters \ of policy neural network so that performing a single or few steps of policy
gradient over \ with the given new task can lead to the optimal policy for that task. This
research follows the formulations of model-agnostic meta-learning (MAML) [31], giving the
target of gradient-based MRL as

𝐽 (\) = ET𝑖∼𝜌(T )
[
𝐽T𝑖 (\′)

]
,with \′ :=𝑈 (\,T𝑖), (2.12)

where 𝐽T𝑖 denotes the objective function of task T𝑖. For example, when using vanilla policy
gradient (VPG), 𝐽T𝑖 (\) = E𝜏∼𝑃T𝑖 (𝜏 |\)

∑
𝑡=0

(
𝛾𝑡𝑟𝑡 − 𝑏(𝑠𝑡)

)
, where 𝑏(𝑠𝑡) denotes an arbitrary

baseline. 𝑈 denotes the update function which depends on 𝐽T𝑖 and the optimization method.
For instance, if we conduct 𝑘-step gradient ascent for T𝑖, then𝑈 (\,T𝑖) = \ +𝛼

∑𝑘
𝑡=1 𝑔𝑡 , where

𝑔𝑡 denotes the gradient of 𝐽T𝑖 at time step 𝑡 and 𝛼 is the learning rate. Therefore, the optimal
parameters of policy network and update rules are

\∗ = argmax
\

ET𝑖∼𝜌(T )
[
𝐽T𝑖 (𝑈 (\,T𝑖)

]
,

\← \ + 𝛽ET𝑖∼𝜌(T )
[
∇\𝐽T𝑖 (𝑈 (\,T𝑖)

]
,

(2.13)

where 𝛽 is the learning rate of “outer loop” training. The gradient-based MRL has good
generalization ability. However, the second-order derivative in MAML may bring huge
computation costs during training, which is inefficient. In addition, when combining with a
complex neural network architecture (e.g., a seq2seq neural network), the implementation of
second-order MAML becomes intractable. To address these challenges, some algorithms
[31, 90] use the first-order approximation to MAML target.

2.1.3 Reinforcement Learning with Partially Observable Environments

MDP assumes that states include complete information for decision-making. However, in
many real-world scenarios, observing such states is intractable. Therefore, the Partially
observable Markov Decision Process (POMDP), an extension of MDP, is proposed as
a general model for the sequential decision-making problem with a partially observable
environment, which is defined by a tuple (O,S,A,P,R,U, 𝛾). Fig. 2.3 shows the graphical
model of POMDP. Specifically, the state 𝑠𝑡 ∈ S is latent and the observation 𝑜𝑡 ∈ O contains
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partial information of the latent state 𝑠𝑡 . U(𝑜𝑡 |𝑎𝑡−1, 𝑠𝑡) represents the observation distribution,
which gives the probability of observing 𝑜𝑡 if action 𝑎𝑡−1 is performed and the resulting state
is 𝑠𝑡 .
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Fig. 2.3 Graphical model of POMDP.

Since the state is latent, the learning agent cannot choose its action directly based
on the state. Alternatively, it has to consider a complete history of its past actions and
observations to choose its current action. Specifically, the history up to time step 𝑡 is defined
by 𝐻𝑡 = {𝑜0, 𝑎0, ..., 𝑜𝑡−1, 𝑎𝑡−1, 𝑜𝑡}. Therefore, the key for RL-based methods to solve the
POMDP is how to effectively infer the latent state based on the history, which is defined
by 𝑝(𝑠𝑡 |𝑜≤𝑡 , 𝑎<𝑡). In the literature, some RL methods [40, 166] assume the latent states
as deterministic states, which encode the whole history by RNN and use the hidden state
of RNN as input to the policy. Other works [142, 46, 163] explicitly infer the filtering
distribution, 𝑏𝑡 := 𝑝(𝑠𝑡 |𝑜≤𝑡 , 𝑎<𝑡), named the belief state, which is defined by the distribution
over latent states (i.e., stochastic latent state) given the history and sampling latent state from
the distribution as input to the policy. Formally, the update rule of the belief state is given by

𝑏𝑡+1 =

∫
𝑏𝑡U(𝑜𝑡+1 |𝑠𝑡+1, 𝑎𝑡)P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)d𝑠𝑡∫ ∫
𝑏𝑡U(𝑜𝑡+1 |𝑠𝑡+1, 𝑎𝑡)P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)d𝑠𝑡d𝑠𝑡+1

. (2.14)

Due to the fact that deriving the belief state requires the model dynamicsU and P, I mainly
apply RNN for the latent information extraction, which can achieve excellent performance
and is much easier to be implemented in MEC scenarios compared to methods based on
inferring the belief state.
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2.2 Related work

One of the fundamental functionality of MEC systems is to offer computing services to the
network edge. To improve the Quality of Service (QoS), appropriate task offloading and
service migration strategies are of vital importance. In recent years, task offloading and
service migration have been receiving intensive research interests from both the academic and
industrial fields. From the theoretical perspective, both task offloading and service migration
problems in MEC systems can be seen as the combinatorial optimisation problem. Machine
learning (ML) methods have been widely applied to solve the combinatorial optimisation
problem [78, 129, 19], which inspires us to apply DRL to address task offloading and service
migration problems. In the following subsections, I provide a holistic view of the broad
landscape of the contributions made so far in the literature related to the above topics.

2.2.1 Task Offloading in MEC

In MEC systems, due to the limited computation resources of mobile devices, it is crucial
to offload the computation-intensive tasks to the powerful edge servers, especially for those
delay-sensitive applications including virtual reality, augmented reality, and face recognition.
From the angle of the offloading task model, the existing works can be divided into two
groups: task model for binary offloading and that for partial offloading [77].
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Fig. 2.4 An example of DAG for the gesture recognition application.
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Binary Offloading: In the task model for binary offloading, the task cannot be partitioned
and has to be executed as a whole either locally at the mobile device or offloaded to the
MEC server. Note that, there is no inner dependency among tasks, thus a task is generally
represented by a tuple with three elements: the task input size, the computation density (in
CPU cycles per bit), and the task output size. These parameters are related to the nature
of the applications and can be estimated through task profiles [80]. These three parameters
can help capture the essential features (e.g., the computation and communication demands)
of mobile applications. Besides, to help design effective algorithms, these parameters can
facilitate a simple evaluation of the latency and energy consumption of the task.

Although this binary offloading model is seemingly simple, it is still NP-hard in most
MEC scenarios. Hence, many existing works are highly based on heuristic algorithms. Dinh
et al. [28] aimed to find an offloading plan for a set of tasks among different access points
and MEC hosts, in order to achieve the minimal joint target of latency and energy. Chen
et al. [20] focused on computation offloading for independent tasks in a software-defined
ultra-dense network. They formulated the task offloading problem as Mixed-Integer Non-
Linear Programming (MINLP) and solved it by using decomposition and heuristic methods.
Hong et al. [42] proposed an approximate dynamic programming algorithm for computation
offloading to achieve the optimal quality of experience. Zeng et al. [157] formulated the task
offloading problem with joint consideration of task scheduling and image placement as an
MINLP problem, and proposed a three-stage heuristic algorithm to solve it.

Despite the above heuristic-based solutions, convex-optimisation based methods are
widely applied to address the binary offloading problem. In general, most binary offloading
problems in MEC systems are non-convex. The core idea of many existing methods based on
convex optimisation is to apply approximation or relaxation methods to convert the original
problem into a convex optimisation problem and analyse the gap between the original
problem and the simplified one. For example, Li et al. [66] proposed a drift-plus-penalty
based Lyapunov optimisation approach to convert the original problem into an upper bound
optimisation problem, which is later relaxed to a convex problem and solved by a convex
optimisation method. Wang et al. [130] aimed at jointly tackling computation offloading,
content caching, and resource allocation problems. They convert the original problem as a
convex problem by using some relaxation and solve it based on decomposition and alternating
direction method.

Different from the above methods that rely heavily on expert knowledge, DRL has
recently been widely applied to solve the binary offloading problem. Li et al. [61] proposed a
DQL-based offloading method to jointly optimize the offloading decision and computational
resource allocation. Chen et al. [22] considered an ultra-dense network, where multiple base
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stations can be selected for offloading. They also adopted deep Q-Learning to obtain the
offloading strategy. Huang et al. [45] proposed a DRL-based offloading scheme in which
both offloading decisions and resource allocations are considered. Dinh et al. [27] focused
on multi-user multi-edge-node task offloading problem by using Q-learning in MEC. Zhan
[159] et al. formulated the task offloading problem as a partially observable Markov decision
process (POMDP) and applied a policy gradient DRL-based approach to solving the problem.
Zou et al. [168] proposed a DRL-based offloading method by utilizing the asynchronous
advantage actor-critic algorithm, to reduce the latency and energy consumption. Tan et al.
[120] proposed a DQL-based offloading method considering constraints of limited resources,
vehicle’s mobility, and delay. The task model for binary offloading assumes the tasks are
independent. However, most real-world applications consist of dependent tasks, ignoring
the task dependencies when making offloading decisions can lead to severe performance
degradation.

Partial Offloading: In the task model for partial offloading, applications were composed
of tasks with inner dependencies, which is able to achieve a fine granularity of computation
offloading, leading to better offloading performance. In general, those applications are
modelled as Directed Acyclic Graphs (DAGs), where vertices and edges represent tasks
and the inner dependencies, respectively. Fig 2.4 shows an example of DAG for the gesture
recognition application. To address the partial offloading problem, heuristic algorithms
have been widely applied. Wang et al. [138] modelled both the applications and the
computing system as graphs and proposed an approximation algorithm for finding the task
offloading plan to obtain the lowest cost. Neto et al. [88] implemented a user-level online
offloading framework for Android applications, aiming at minimizing the remote execution
overhead. Zanni et al. [156] proposed an innovative task selection algorithm for Android
applications, achieving method-level granularity of offloading. Lin et al. [67] represented
mobile applications as task graphs and proposed a heuristic-based algorithm to solve the task
offloading problem in MEC. Yang et al. [150] proposed two types of offloading algorithms
based on linear programming and group intelligence heuristic algorithm to handling task
offloading problems in the Industrial Internet. These existing solutions rely on hand-tuned
heuristic or approximation methods. However, turning heuristics for a given task offloading
scenario is an expensive job that requires considerable human expertise. Consequently,
facing the dynamic MEC scenarios, one might have to do this tuning repeatedly, which is
time-consuming and sometimes impractical.

To address the above issue, some recent works introduced DRL methods to solve the
partial offloading problems. As far as I know, our previous work [131] is the first to address
the offloading problem with dependent tasks by combining DRL algorithms and sequence
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to sequence (seq2seq) neural network. Very recently, Yan et al. proposed an actor-critic
method that jointly optimised the offloading decision and the resource allocation under
time-varying wireless fading channels and stochastic edge computing capability, considering
task dependencies. In Chapters 3 and 4, this thesis presents the proposed DRL-based and
MRL-based methods for partial offloading in detail.

2.2.2 Service Migration in MEC

Considering the users’ mobility and the limited coverage of the MEC server, the communi-
cation between user devices and the MEC server might need to go through multiple hops,
which may severely degrade the QoS. In order to mitigate the negative effects, services (e.g.,
virtual machines, containers, virtualized function, etc.) running on the MEC server must be
dynamically migrated to a better placement with minimal running cost. Such requirements
for migration in MEC systems can be observed in the advent of the “Follow Me” trend, where
the new notions such as Follow Me Cloud [119, 94], Follow Me Edge-Cloud [4], and Move
with Me [17] have recently emerged in the literature. However, finding an optimal migration
policy for such a problem is highly challenging since it depends on several aspects including
the distance between mobile devices and edge servers, the size of the service to be migrated,
the workloads of the edge servers, so on and so forth.

Service migration in MEC has attracted intensive research interests in recent years. Rejiba
et al. [102] published a comprehensive survey on mobility-induced service migration in fog,
edge, and related computing paradigms. Most existing methods solve the service migration
problem based on the time-slotted model which can be regarded as a sampled version of a
continuous-time model. At each time slot, the algorithm needs to decide the placements of the
services in the MEC system. Whenever a migration decision has to be taken, a trade-off has
to be made between the potential benefits after the migration (e.g., the improvement of QoS)
and the cost of migrating services. The key of service migration algorithms is to effectively
address and model these trade-offs. Existing methods use different approaches to handle
this issue including MDP [137], Markov chains [32], Mixed Integer Linear Programming
(MILP) [113], Mixed-Integer Quadratic Programming (MIQP) [151], etc. Based on the
placement of the decision-making logic, I roughly classify the related work into centralized
control approach (the central cloud or MEC servers make service migration decisions for all
mobile users) and decentralized control approach (each mobile user makes its own migration
decisions).

Centralized control approach: Plenty of works focused on making centralized migra-
tion decisions (i.e., the migration decisions are made by ether central cloud or edge servers)
based on the complete system-level information to minimize the total cost. Ouyang et al. [94]
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converted the service migration problem as an online queue stability control problem and
applied Lyapunov optimization to solve it. Ning et al. [91] formulate the service migration
problem by jointly considering the constraints of server storage capability and service execu-
tion latency. They utilize Lyapunov optimization and distributed Markov approximation to
enable dynamic service placement. Liu et al. [68] propose a multi-agent RL based method for
the service migration where agents represent the controllers of MEC servers. Xu et al. [149]
formulated the service migration problem as a multi-objective optimization framework and
proposed a method to achieve a weak Pareto optimal solution. Wang et al. [137] formulated
the service migration problem as a finite-state MDP and proposed an approximation of the
underlying state space. They solve the finite-state MDP by using a modified policy-iteration
algorithm. Other recent works tackled the service migration problem based on RL. Wang
et al. [135] proposed a Q-learning based micro-service migration algorithm in mobile edge
computing. Wu et al. [147] considered jointly optimizing the task offloading and service
migration, and proposed a Q-learning based method combing the predicted user mobility.
These works considered the case where the decision-making agent knows the complete
system-level information. However, in a practical MEC system, collecting complete system-
level information can be difficult and time-consuming. Moreover, the centralized control
approach may suffer from the scalability issue when facing a rapidly increasing number of
mobile users.

Decentralized control approach: some studies proposed to make migration decisions by
the user side based on incomplete system-level information. Ouyang et al. [93] formulated the
service migration problem as an MAB and proposed a Thompson-sampling based algorithm
that explores the dynamic MEC environment to make adaptive service migration decisions.
Sun et al. [115] proposed an MAB-based service placement framework for vehicle cloud
computing, which can enable the vehicle to learn to select effective neighbouring vehicles
for its service. Sun et al. [116] developed a user-centric service migration framework
using MAB and Lyapunov optimization to minimize the latency with constraints of energy
consumption. These methods simplify the system dynamics by modelling with MAB, which
ignores the inherently large state space and complex transitions among states in a real-world
MEC system. Distinguished from the above works, the proposed method models the service
migration problem as a POMDP that has a continuous state space and models complex
transitions between states. Moreover, the proposed method is model-free and adaptive
to different scenarios, which can learn to make online service migration decisions with
minimal expert knowledge. More recently, Yuan et al. [155] investigated the joint service
migration and mobility optimization problem for vehicular edge computing. They modelled
the MEC environment as a POMDP and proposed a multi-agent DRL method based on
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independent Q-learning to learn the policy. However, using Q-learning based method to
solve the environment with complex dynamics and continuous state space can be unstable
and inefficient. In this thesis, the proposed method is implemented based on the policy-based
method, which can achieve better performance than Q-learning based methods.

2.2.3 Learning-based Combinatorial Optimisation

Task offloading and service migration problems are generally modelled as combinatorial
problems that can be solved by heuristic algorithms. Such heuristics are designed by domain
experts, thus can be suboptimal due to the high complexity of the problems. To overcome this
issue, one of the emerging trends over the past years is to solve combinatorial optimisation
problems by using ML. An intuitive way is to train an ML model on the datasets that contain
solutions generated by different solvers. The trained ML model can then be used to solve new
problems with model inference. For example, Pointer networks [129] models the conditional
probability of an output sequence with elements that are discrete tokens corresponding to
positions in an input sequence, which can be trained to output satisfactory solutions to one
type of combinatorial optimization problem where the output elements are selected from
inputs, e.g., Travelling Salesman Problem (TSP).

Although Pointer networks can achieve good performance for some combinatorial opti-
misation problems, it still requires labeled data (i.e., solutions generated by existing solvers)
for training. To overcome this issue, Bello et al. [13] proposed a framework to tackle
combinatorial optimisation problems using Pointer networks and RL. Their method sig-
nificantly outperformed the supervised learning approach (i.e., training Pointer networks
with supervised learning) and obtained close to optimal results. Kool et al. [55] adopted
attention layers rather than Pointer Networks as the policy neural network for solving TSP
and obtained better performances compared to Pointer networks in multiple combinatorial
optimisation problems. Very recently, there is a surge of interest in using graph neural
networks (GNNs) [165] as a key building block for combinatorial tasks, either directly as
solvers or by enhancing exact solvers [19, 11]. Dai et al. [25] provided a different way to
solve TSP with RL by using graph embedding technology for learning an indirect policy. The
learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution.
Prates et al. [98] proposed a new method that trains a GNN with supervised learning to
predict the satisfiability of the decision version of TSP. All of the above works share the same
fundamental philosophy, that is solving the abstracted combinatorial optimisation problem in
an end-to-end pipeline that goes straight from raw inputs to general outputs. Among these
methods, the structure design of neural networks is the key to achieve good performance.
Specifically, the encoder-decoder architecture is widely used in these studies, which inspired
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us to design encoder-decoder neural network structures to tackle task offloading and service
migration problems in MEC.

2.3 Conclusion

In this chapter, I give an overview of the background knowledge related to this thesis. I
first summarise the basic concept of RL and give a brief introduction of DRL algorithms
including conventional model-free DRL (i.e., value-based and policy-based), MRL, and DRL
with partially observable environments. I then discuss the state-of-the-art related work about
task offloading and service migration in MEC systems. In addition, from the theoretical
perspective of task offloading and service migration problems, they can be converted to
combinatorial optimisation problems. I also present existing learning-based combinatorial
optimisation algorithms which provide useful insights for us to design DRL-based system
optimisation methods.



Chapter 3

Dependent Task Offloading Based on
Deep Reinforcement Learning

In this chapter, this research starts to investigate how to adapt deep reinforcement learning
(DRL) methods to address the dependent task offloading problem in MEC systems. In
general, many mobile applications are composed of dependent tasks where the outputs of
some tasks are the inputs of others. How to offload these tasks to the network edge is a
vital and challenging problem in MEC, which aims to determine the placement (i.e., local or
edge) of each running task of mobile applications to maximize the Quality-of-Service (QoS).
Different from the existing works, I propose an intelligent dependent task offloading scheme
leveraging off-policy reinforcement learning empowered by a tailored Sequence-to-Sequence
(seq2seq) neural network. In the following sections, I present the details of the proposed
method.

3.1 Introduction

One of the key functionalities of MEC is task offloading (aka, computation offloading), which
enables to offload computation-intensive tasks of mobile applications from user equipment
(UE) to MEC host at the network edge. A good task offloading strategy can save energy
on devices and reduce the response time of applications. On the contrary, an inappropriate
offloading policy can cause high energy consumption and poor response time. The existing
works generally consider independent tasks offloading [28, 36] or dependent tasks offloading
[67, 26]. For example, Lin et al. [67] propose an offloading method with task dependency
on different processors based on Heterogeneous Earliest Finish Time (HEFT). De Maio et
al. [26] propose a heuristic based approach to find a trade-off solution among application
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runtime, battery lifetime and user cost. Most of the existing works on offloading strategies
are based on heuristic algorithms, because of the NP-hardness of MEC offloading. However,
with the increasing complexity of MEC applications and wireless network architecture, it is
hard for any heuristic offloading strategy to fully adapt to the various scenarios in MEC.

DRL, which combines Reinforcement Learning (RL) with Deep Neural Networks (DNN),
is a promising approach to achieve flexible and adaptive task offloading without expert
knowledge. DRL learns an effective policy (i.e., a mapping from environment states to
actions) through interacting with the environment so as to maximize numerical rewards.
With the help of the powerful representation ability of DNNs, DRL can effectively solve
complex decision-making problems with large and high-dimensional state/action spaces.
Recent breakthroughs in DRL have led to many successful applications in a wide range of
areas including gaming [111], robotics [65], networking [159], etc. DRL has been adopted
to handle task offloading problems in MEC [45, 131, 159, 168]. However, these methods
assume the offloading tasks are independent without considering the inherent dependencies
among tasks of real-world applications. In practice, many applications are composed of
dependent tasks where the outputs of some tasks are the inputs of others. Ignoring the
task dependencies when making task offloading decisions will severely affect the QoS of
applications and waste the edge resources.

To fill this gap, we propose a new DRL-based Task Offloading (DRLTO) scheme lever-
aging off-policy RL empowered by a Sequence-to-Sequence (S2S) neural network. The
DRLTO is able to reduce the latency of running applications and the energy consumption
at UE. In DRLTO, the task offloading problem is modelled as a Markov Decision Process
(MDP). Applications are represented by Directed Acyclic Graphs (DAG), where vertices
and edges denote tasks and their dependency, respectively. To effectively extract the key
features of task dependency, an S2S neural network is applied to represent the policy and
value function of the MDP. Specifically, the input of the S2S neural network is the DAG
represented by a sequence of embedding vectors, while the output is the offloading plan
for the DAG. To improve the training efficiency, we combine an off-policy DRL algorithm
that includes a clipped surrogate objective and an entropy bonus to stabilize the training,
provide better sample efficiency, and alleviate the issue of getting stuck in local optima. The
DRLTO learns to make efficient offloading decisions through directly interacting with the
environment and only requires minimal expert knowledge. The major contributions of this
paper are summarized as follows:

• We develop an original DRL-based task offloading scheme, which leverages off-
policy reinforcement learning with an S2S neural network to capture the intrinsic task
dependency of applications. An MDP is designed to accurately model the dependent
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task offloading problem with well-designed state space, action space, and reward
function.

• We design a new embedding method that encodes vertices of the DAG representing
an application to a sequence of embeddings including both the task profiles and
dependency information. This method can convert the raw DAG as the input of the
S2S neural network without information loss.

• We combine an S2S neural network with an attention mechanism to capture the
long-term dependency of the input tasks. This S2S neural network can effectively
approximate the policy and value function of the MDP model for the dependent task
offloading problem. To effectively train the S2S neural network, we apply an off-policy
DRL algorithm with a clipped surrogate objective function and an entropy bonus. This
algorithm has a strong exploration ability and thus can prevent the training from getting
stuck in the local optima.

• Extensive simulation experiments were conducted using the synthetic DAGs, covering
a wide range of topologies, task numbers, and data rates that correspond to the char-
acteristics of real-world applications. The performance results show that our method
outperforms advanced heuristic baselines and can obtain near-optimal results under
dynamic MEC scenarios.

3.2 Problem formulation: Task Offloading

The section presents the formulation of the task offloading problem. First, we give the details
of the task offloading process in MEC. Next, the energy model and the optimization target
used for task offloading are described.

3.2.1 Task Offloading Process

In practice, many applications consist of multiple tasks with general dependency, which
should be considered when making decisions on task offloading. Fig. 3.1 gives an example
of computation offloading in MEC. This example considers a real-world application—face
recognition, which consists of dependent tasks such as tiler, detection, or feature mergence
[100]. Formally, let 𝐺 = (T ,E) denote a DAG, where a vertex 𝑡𝑖 ∈ T and a directed edge
𝑒(𝑡𝑖, 𝑡 𝑗 ) ∈ E represents a task 𝑡𝑖 and the dependency between 𝑡𝑖 and 𝑡 𝑗 , respectively. A task
can start to run only when all of its predecessors are finished. The exit tasks are those without
subsequent tasks.
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Fig. 3.1 An example of computation offloading in MEC.

We consider a block fading channel, where the fading coefficient remains unchanged
(i.e., the transmission rate is fixed) during the task offloading process. In general, the MEC
host runs multiple virtual machines (VMs) to process the offloaded tasks. In this work, we
consider that each UE is associated with a dedicated VM providing provide computing,
communications and storage resources to the UE as specified in many existing studies
[114, 14]. Any task in the DAG has two scheduling choices: offloaded to the MEC host or
run locally on the UE. If the task 𝑡𝑖 is offloaded, it has three phases of execution: 1) sending
phase: the UE sends 𝑡𝑖 to the MEC host through a wireless channel. 2) executing phase:
the MEC host executes the received task 𝑡𝑖. 3) receiving phase: the MEC host returns the
results to the UE. On the other hand, if 𝑡𝑖 is locally executed, there is no data transmission
between the UE and MEC host. The local processor of the UE directly processes the task
when it is ready. For all tasks in a DAG, let 𝐴1:𝑛 = [𝑎1, 𝑎2, . . . , 𝑎𝑖, . . . , 𝑎𝑛] denote an offloading
plan, where 𝑛 represents the total task number and 𝑎𝑖 represents the offloading decision of 𝑡𝑖.
Specially, 𝑎𝑖 = 1 denotes that 𝑡𝑖 is offloaded to the MEC host, otherwise, 𝑎𝑖 = 0 means that 𝑡𝑖
is scheduled to the local processor. Fig. 3.2 shows a simple computation offloading plan for
the face recognition application. Some tasks of the DAG run locally at the user equipment
(e.g., Source, Copy, and Display), and others run remotely on the MEC server (e.g., Tiler,
Detect, and Feature Merger). Note that the task dependency constraints the start time of task
execution. For example, the Feature Merger can only start running on the MEC server when
the Copy and all Detect tasks are finished. The goal of computation offloading is to find an
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Fig. 3.2 A simple example of computation offloading for the face recognition application.

optimal partitioning plan so that the total running cost for the DAG is minimal. Whenever a
computation offloading decision for a task has to be taken, a trade-off has to be made between
the potential benefit that would result from offloading a task (e.g., QoS improvement) and
the cost that may be incurred from doing so (e.g., introduce extra communication cost). In
the following paragraphs, I define the running cost of tasks.

Let Tul
𝑖

, Ts
𝑖
, and Tdl

𝑖
denote the latency of sending, executing and receiving phase, re-

spectively. Let Tl
𝑖

denote the local execution latency for 𝑡𝑖. Besides, 𝑓l and 𝑓s represent the
CPU clock speed of the UE and the VM in the MEC Host, respectively. 𝑅ul denotes the
uplink transmission rate while 𝑅dl denotes the downlink transmission rate. Let datas

𝑖 and
datar

𝑖 represent the data size of the task 𝑡𝑖 that is offloaded to the MEC host and the result
received, respectively. This research denotes the required CPU cycles for executing 𝑡𝑖 as 𝐶𝑖.
Therefore, all the above-defined latencies can be calculated by using the following equations:

Tul
𝑖 = datas

𝑖/𝑅ul, Ts
𝑖 = 𝐶𝑖/ 𝑓s,

Tdl
𝑖 = datar

𝑖/𝑅dl, Tl
𝑖 = 𝐶𝑖/ 𝑓l.

(3.1)

This research also assumes the available time of the uplink wireless channel, the MEC host,
the downlink wireless channel, and the local processor, asMul

𝑖
,Ms

𝑖
,Mdl

𝑖
,Ml

𝑖
, respectively.

Given a scheduling plan 𝐴1:𝑛, the available time of the resource depends on the finish time
(FT) of the task scheduled immediately before 𝑡𝑖 on that resource. If the task scheduled
immediately before 𝑡𝑖 does not utilize the resource, the FT on that resource is set as 0. I next
analyse the local executing and remote offloading process in detail.
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Local Executing: In this case, 𝑡𝑖 is scheduled to the local processor. Note that 𝑡𝑖 can only
start execution until all its immediate predecessors are finished and the local processor is
available to run. Besides, the immediate predecessors of 𝑡𝑖 can be either run on the MEC host
or the local processor. Therefore, the FT of task 𝑡𝑖 on the local processor, FTl

𝑖, can be defined
as

FTl
𝑖 =max

{
Ml

𝑖 , max
𝑗∈pre(𝑡𝑖)

{
FTl

𝑗 ,FTdl
𝑗

}}
+Tl

𝑖,

Ml
𝑖 =max

{
Ml

𝑖−1,FTl
𝑖−1

}
.

(3.2)

where pre(𝑡𝑖) denotes the set of immediate predecessors of 𝑡𝑖. FTdl
𝑗 denotes the FT of

transmitting a task 𝑡 𝑗 over the wireless downlink channel.
Remote Offloading: In this case, 𝑡𝑖 is offloaded to the MEC host. As mentioned above,

the offloading process for 𝑡𝑖 includes three phases. In the sending phase, let FTul
𝑗 denote the

FT of transmitting the task 𝑡 𝑗 over the wireless uplink channel, where 𝑡 𝑗 is an immediate
predecessor of 𝑡𝑖. If 𝑡 𝑗 is locally scheduled, 𝑡𝑖 can only start its sending phase after 𝑡 𝑗 has
finished local execution. Otherwise, if 𝑡 𝑗 is offloaded, 𝑡𝑖 can only start sending after 𝑡 𝑗 has
completed its sending phase. Therefore, the FT of task 𝑡𝑖 on the wireless uplink channel can
be calculated as:

FTul
𝑖 = max

{
Mul

𝑖 , max
𝑗∈pred(𝑡𝑖)

{
FTl

𝑗 ,FTdl
𝑗

}}
+Tul

𝑖 ,

Mul
𝑖 = max

{
Mul

𝑖−1,FTul
𝑖−1

}
.

(3.3)

In the executing phase, three conditions must be met before 𝑡𝑖 can start running on the MEC
host. First, 𝑡𝑖 should finish its sending phase. Second, all predecessors of 𝑡𝑖 should finish
executing. Third, the MEC host is available to run the task. 𝐹𝑇ul

𝑖
is the FT of transmitting

the task 𝑡𝑖 over the wireless uplink channel and 𝐹𝑇 s
𝑗

is the FT of running task 𝑡 𝑗 on the MEC
host. Let FTs

𝑖 define the FT of 𝑡𝑖 on the MEC host, we have:

FTs
𝑖 = max

{
Ms

𝑖 ,max
{
FTul

𝑖 , max
𝑗∈pred(𝑡𝑖)

FTs
𝑗

}}
+Ts

𝑖 ,

Ms
𝑖 = max

{
Ms

𝑖−1,FTs
𝑖−1

}
.

(3.4)

Similarly, let FTdl
𝑖 define the FT of 𝑡𝑖 on the downlink wireless channel. Note thatMdl

𝑖
and

𝑇dl
𝑖

are the available time and latency of task 𝑡𝑖 on the downlink channel, respectively. Hence,
we have:

FTdl
𝑖 = max

{
Mdl

𝑖 ,FTs
𝑖

}
+Tdl

𝑖 ,

Mdl
𝑖 = max

{
Mdl

𝑖−1,FTdl
𝑖−1

}
.

(3.5)
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3.2.2 Energy Model

Energy consumption of the UE is another important factor that this research should consider
in MEC. In general, the energy consumption of an UE mainly consists of computation and
transmission cost. Executing task locally or offloading task to the MEC host result in different
energy costs.

When the task is locally executed, no transmission is needed, thus the energy consumption
is mainly contributed by the computation process, which is defined as

El
𝑖 = 𝜌 𝑓

Z

l Tl
𝑖, (3.6)

where 𝜌 𝑓 Zl represents the computational power of the mobile device. 𝜌 is a power coefficient
while Z is a constant (usually close to 3) [28].

When the task is offloaded, there is no computation process on the local device, thus the
energy consumption is mainly contributed by wireless transmission, which is defined as

Es
𝑖 = 𝑃

TxTul
𝑖 +𝑃RxTdl

𝑖 , (3.7)

where 𝑃Tx and 𝑃Rx are the sending and receiving power, respectively.

3.2.3 Optimisation Target

Based on the above definitions, giving the offloading plan, 𝐴1:𝑛, of a DAG, the latency and
energy consumption can be calculated as

T𝑐𝐴1:𝑛
= max
𝑡𝑖∈K

{
max{FTl

𝑖,FTdl
𝑖 }

}
, (3.8)

E𝑐𝐴1:𝑛
=

∑
𝑡𝑖∈T ,𝑎𝑖=1

Es
𝑖 +

∑
𝑡 𝑗∈T ,𝑎 𝑗=0

El
𝑗 , (3.9)

where K denotes the set of exit tasks.
QoS can be used to measure how good an offloading plan is, considering both latency and

energy consumption. As in [158, 18], we use a similar definition of QoS as the optimization
objective, which is a weighted sum of the normalized differences in latency and energy
consumption between the offloading plan and local execution:

𝐽𝐴1:𝑛 = _𝑡
T𝑐
𝑙
−T𝑐

𝐴1:𝑛

T𝑐
𝑙

+_𝑒
E𝑐
𝑙
−E𝑐

𝐴1:𝑛

E𝑐
𝑙

, (3.10)
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where T𝑐
𝑙

and E𝑐
𝑙

are the latency and energy consumption of executing all tasks locally on the
UE. _𝑡 and _𝑒 ∈ [0,1] are scalar weights. Eq. (3.10) represents a weighted sum approach
of a multi-objective optimization problem. The weighted-sum approach is extensively used
since it is generally effective and easy to implement. Besides, the weights reflect the relative
importance of energy and latency, which can be set based on the user’s preference. For
general DAGs, the scheduling problem is NP-hard [58]. Therefore, it is extremely hard to
find the optimal offloading plan with reasonable time complexity.

3.3 The DRLTO Scheme

This section presents the proposed DRLTO in detail. This research first presents the overall
design of the DRLTO architecture is described. Next, the offloading model, the proposed
seq2seq neural network, and the training algorithm are presented in detail.

3.3.1 The DRLTO Design
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Local 
Processing 

Unit

Task Graph 
Pool

Offloading
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…
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Fig. 3.3 The proposed DRL-based task offloading scheme.
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The DRLTO can be integrated into an emerging MEC platform defined by ETSI [104].
As shown in Fig. 3.3, the MEC system consists of three levels: UE level, edge level, and
cloud level. UE level includes various user devices (such as smartphones, tablets, vehicles)
and software applications. In edge level, each MEC host contains the computing, storage
and network resources for processing applications on its virtual machines (VMs). In cloud
level, cloud servers are hired to process computation-intensive and resource hungry jobs.
The DRLTO scheme contains three major components: offloading scheduler, task graph
pool, and offloading trainer. Each UE has an offloading scheduler, which makes offloading
decisions for user applications. Specifically, the trained seq2seq neural network is included
in the offloading scheduler. The MEC host contains a task graph pool and an offloading
trainer, which are used to gather DAGs from UE and conduct periodical training process,
respectively.

The training for the seq2seq neural network is based on periodically gathered DAGs. At
the off-peak time (e.g. midnight), the offloading trainer runs the training procedure. After
training, the MEC host sends the parameters of the trained seq2seq neural network back to
UE. The UE can then make the offloading decision via forward-propagation of the trained
seq2seq neural network. The MEC host executes the offloaded tasks and returns the results to
the UE. For those locally executed tasks, the local processing unit of the UE executes them
when ready.

3.3.2 The Task Offloading Model

In order to adapt DRL to solve the task offloading problem, I model the problem as an MDP,
where the state space, action space, and reward function of the MDP are defined as follows.

• State Space: When scheduling the task 𝑡𝑖, the state of the MEC system depends
on the scheduling results of the previous tasks of 𝑡𝑖 (i.e., the partial offloading plan).
Hence, I define the state space as a combination of the DAG information (including
DAG topology and task profiles) and the partial offloading plan. Formally, let 𝐺 denote
the encoded DAG and 𝐴1:𝑖 denote the offloading plan for the sequence of tasks from 𝑡1

to 𝑡𝑖. The state space is thus denoted as

S := {𝑠 |𝑠 = (𝐺, 𝐴1:𝑖)}. (3.11)

Specifically, 𝐺 is comprised of a sequence of task embeddings. Each embedding con-
sists of three elements: 1) a vector that includes an index of the task and the estimated
task costs Tl

𝑖
, Tul

𝑖
, Ts

𝑖
, and Tdl

𝑖
; 2) a vector of indices of immediate previous tasks; 3) a

vector of indices of immediate subsequent tasks. The length of previous/subsequent
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task indices vector is limited to 𝑝 (𝑝 = 12 in the experiments). I pad the vector with -1,
in case the number of previous/subsequent tasks is less than 𝑝. These three vectors are
concatenated together to form the embedding vector. The embedding vector is then
fed into the seq2seq neural network to obtain an offloading plan.

• Action Space: A task could be either offloaded to an MEC host or run locally on
the UE. Let 𝑎𝑖 = 1 represent offloading to an MEC host and 𝑎𝑖 = 0 represent local
execution for task 𝑡𝑖. Therefore, the action space can be defined as A := {1,0}.

• Reward Function: The objective of the proposed method is to maximize the QoS. In
order to reach this objective, I define the reward function at each step as the estimated
increment of the QoS:

𝑅(𝑠𝑖, 𝑎𝑖) = _𝑡
T𝑐
𝑙
−ΔT𝑖
T𝑐
𝑙

+_𝑒
E𝑐
𝑙
−ΔE𝑖
E𝑐
𝑙

,

ΔT𝑖 = T𝑐𝐴1:𝑖
−T𝑐𝐴1:𝑖−1

,

ΔE𝑖 = E𝑐𝐴1:𝑖
−E𝑐𝐴1:𝑖−1

,

(3.12)

where T𝑐
𝑙

and E𝑐
𝑙

are the average latency and energy consumption for a task in the
DAG, which are given by T𝑐

𝑙
= T𝑐

𝑙
/𝑛 and E𝑐

𝑙
= E𝑐

𝑙
/𝑛, respectively.

3.3.3 The S2S Neural Network for DRLTO

According to the definition of our MDP model, the offloading problem can be converted to an
S2S prediction problem where the input is the sequence of task embeddings and the output is
a scheduling plan for those tasks. The policy 𝜋(𝑎𝑖 |𝐺, 𝐴1:𝑖−1) is denoted as the probability
of selecting action 𝑎𝑖 for task 𝑡𝑖 under the state 𝑠 = (𝐺, 𝐴1:𝑖−1). Moreover, 𝜋(𝐴1:𝑛 |𝐺) is the
probability of having the offloading plan 𝐴1:𝑛 given the graph 𝐺 with 𝑛 tasks. Applying the
chain rules of probability, we have

𝜋(𝐴1:𝑛 |𝐺) =
𝑛∏
𝑖=1

𝜋(𝑎𝑖 |𝐺, 𝐴1:𝑖−1). (3.13)

To effectively approximate the policy defined in Eq. (3.13), an S2S neural network is a
good option. As shown in Fig. 3.4, we combine an S2S neural network with the attention
mechanism to approximate both the policy and the value function of the DRLTO. Formally,
denote the sequence of task embeddings as t = [𝑡1, 𝑡2, ...𝑡𝑛] and the function of encoder
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network as 𝑓enc, then the hidden state of the encoder network can be obtained by:

𝑒𝑖 = 𝑓enc(𝑒𝑖−1, 𝑡𝑖;\enc), (3.14)

where 𝑒𝑖 is the hidden state for encoding step 𝑖 and \enc are the parameters of the encoder
network. Let 𝑓dec be the function of the decoder network. The hidden state of the decoder
network 𝑑 𝑗 for decoding step 𝑗 is calculated by:

𝑑 𝑗 = 𝑓dec(𝑑𝑖−1, 𝑎 𝑗−1, 𝑐 𝑗 ;\dec), (3.15)

where \dec are the parameters of the decoder network. 𝑐 𝑗 is the context vector of the attention
mechanism, which is defined by a weighted sum of the hidden states of the encoder network:

𝑐 𝑗 =

𝑛∑
𝑖=1
𝛼 𝑗𝑖𝑒𝑖 . (3.16)

The weight 𝛼 𝑗𝑖 of each hidden state of the encoder network, 𝑒𝑖, is computed by

𝛼 𝑗𝑖 =
𝑒 𝑓score (𝑑 𝑗−1,𝑒𝑖)∑𝑛
𝑘=1 𝑒

𝑓score (𝑑 𝑗−1,𝑒𝑘 )
(3.17)

where the score function, 𝑓score(𝑑 𝑗−1, 𝑒𝑖), is used to measure how well the input of the encoder
network at position 𝑖 matches the output of the decoder network at position 𝑗 . In this paper,
we define the score function as a trainable neural network as in the work [10].

The policy and value networks share most of the parameters (encoder and decoder) except
for the top layer of the decoder. For the policy neural network, we add a fully connected
layer on the output of the decoder, 𝑑 𝑗 , and use softmax function to convert the output into
the distribution over actions, 𝜋(𝑎 𝑗 |𝑠 𝑗 ). For the value neural network, we add another fully
connected layer on 𝑑 𝑗 and use the output to represent the state value, 𝑣(𝑠 𝑗 ). The shared
parameters in the S2S architecture are used to extract common features in DAGs, therefore
training the policy neural network that can accelerate the training of the value neural network
and vice versa.

The offloading decision for each task is made by the trained S2S neural network. Overall
the steps for offloading process are follows:
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Fig. 3.4 Structure of the S2S neural network for DRLTO.

Step 1: A topological sorting is conducted to sort tasks of the DAG according to the rank
values of tasks by decreasing order, which is defined as

𝑟𝑎𝑛𝑘 (𝑡𝑖) =


To
i if 𝑡𝑖 ∈ K,

max𝑡 𝑗∈succ(ti) (𝑟𝑎𝑛𝑘 (𝑡 𝑗 )) +To
i if 𝑡𝑖 ∉K,

(3.18)

where succ(ti) represents the set of immediate successors of 𝑡𝑖 and To
i = Tul

𝑖
+Ts

𝑖
+Tdl

𝑖
.

Step 2: Tasks are then embedded into a sequence of vectors as the input of the encoder
(the details of the embedded vectors are presented in Section 3.3.2). Next, the output sequence
of the encoder will be used to calculate the context vector. At the 𝑗 th decoding step, the
offloading decision can be generated through 𝑎 𝑗 = argmax𝑎 𝑗

𝜋(𝑎 𝑗 |𝑠 𝑗 ).
Step 3: The UE and MEC host cooperatively finish executing all tasks according to the

offloading decisions.

3.3.4 The Training Process of the DRLTO

The training goal is to find an optimal policy so that the accumulated reward is maximal,
which is expressed as

max
\
𝐿 (\) = E

[
max
\
𝜋\ (𝐴1:𝑛 |𝐺)

𝑛∑
𝑡

𝑅(𝑠𝑡 , 𝑎𝑡)
]
, (3.19)
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where \ are the parameters of the seq2seq neural network, 𝑛 is the task number of the DAG,
𝑅(𝑠𝑡 , 𝑎𝑡) is the reward function, 𝑠𝑡 and 𝑎𝑡 is the observed state and offloading decision for
the 𝑡th task, respectively.

To improve the performance and training efficiency, the training target function is modi-
fied based on PPO [108], which generates trajectories using the old policy 𝜋\old and updates
the current policy 𝜋\ whose initial value equals 𝜋\old for several epochs. In order to avoid
a large update of the policy, PPO penalizes changes to the policy via a clip function. The
modified clipped target function for the proposed seq2seq neural network is given by

𝐿C(\) = E
[
𝑛∑
𝑡=1

min
(
pr𝑡 (\) �̂�𝑡 ,clip(pr𝑡 (\),1− 𝜖,1+ 𝜖) �̂�𝑡

)]
, (3.20)

where �̂�𝑡 is the estimator of the advantage function at time step 𝑡 and 𝜖 is a hyperparameter
to control the clip range. pr𝑡 (\) is the policy probability ratio that is given by

pr𝑡 (\) =
𝜋\ (𝑎𝑡 |𝐺, 𝐴1:𝑡)
𝜋\old (𝑎𝑡 |𝐺, 𝐴1:𝑡)

. (3.21)

The clip function clip(pr𝑡 (\),1− 𝜖,1+ 𝜖) aims to limit the value of pr𝑡 (\), which removes the
incentive for moving pr𝑡 (\) outside of the interval [1− 𝜖,1+ 𝜖]. Finally, taking the minimum
of the clipped and unclipped objective restricts the final objective as a lower bound on the
unclipped objective.

As discussed in the previous subsection, a shared parameter S2S neural network is crafted
for both policy and value function approximation. To train this neural network, the clipped
objective function and the value function loss are integrated into the target function. Besides,
adding an entropy bonus can ensure efficient exploration. The use of entropy bonus is
designed to help keep the search alive by preventing convergence to a single choice of output,
especially when several choices all lead to roughly the same results [145, 82]. Following the
suggestion in work [108], we combine these terms and obtain the following function as the
final training target:

𝐿PPO(\) = E
[
𝐿C(\) − 𝑐1𝐿

VF(\) + 𝑐2𝑆[𝜋\] (𝑠𝑡)
]
, (3.22)

where 𝑐1 and 𝑐2 are coefficients, 𝑆 denotes an entropy bonus, and 𝐿VF is a squared-error loss
between predicted state values 𝑣𝜋 (𝑠) and target state values �̂�𝜋 (𝑠):

𝐿VF(\) = E
[
𝑛∑
𝑡=1
(𝑣𝜋 (𝑠𝑡) − �̂�𝜋 (𝑠𝑡))2

]
, (3.23)
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Algorithm 1: Off-policy Training for the seq2seq Neural Network
1 Create two seq2seq neural networks with \old and \ for the old policy 𝜋\old and target

policy 𝜋\ with randomly generated initial values.
2 \old← \

3 for 𝑖 = 1,2, ..., 𝑙 do
4 /** Exploration stage **/
5 Collect set of trajectories 𝐷𝑖 on policy 𝜋\old .

6 for each trajectory 𝜏 ∈ 𝐷𝑖 do
7 Compute advantage estimates �̂�1, . . . , �̂�𝑛 according to Eq. (3.24).
8 Compute the target state values �̂�𝜋 (𝑠1), . . . , �̂�𝜋 (𝑠𝑛) following the equation:

�̂�𝜋 (𝑠𝑡) =
∑𝑛−𝑡+1
𝑘=0 𝛾𝑘𝑟𝑡+𝑘 .

9 Store advantage estimates and target state values in 𝐷𝑖.
10 end
11 /** Exploitation stage **/
12 for 𝑘 = 1,2, ...,𝑚 do
13 Optimize the target function 𝐿PPO w.r.t. \𝑘 by taking minibatch SGD (via

𝐴𝑑𝑎𝑚) using the sampled minibatches from 𝐷𝑖.
14 end
15 Synchronise old and new parameters: \old← \.

16 end

where �̂�𝜋 (𝑠𝑡) =
∑𝑛−𝑡+1
𝑘=0 𝛾𝑘𝑟𝑡+𝑘 .

Training the S2S neural network with RL is quite different from training DNN with RL,
which can use transition segments (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) for back propagation. When training the
S2S neural network, the entire trajectory should be divided into sequences which are then
fed into the network. For example, two components of trajectories are firstly sampled from
the environment, which are defined by a scheduling plan 𝐴1:𝑛 and a sequence of state values
[𝑣𝜋 (𝑠1), 𝑣𝜋 (𝑠2), . . . , 𝑣𝜋 (𝑠𝑛)] obtained from conducting a forward propagation of the S2S neu-
ral network with the tasks embedding sequence. Next, the reward sequences [𝑟1, 𝑟2, . . . , 𝑟𝑛]
can be obtained by applying the scheduling plan to the environment. Furthermore, the
TD-error term 𝛿 at time step 𝑡 can be calculated by 𝛿𝑡 = 𝑟𝑡 +𝛾𝑣𝜋 (𝑠𝑡+1) − 𝑣𝜋 (𝑠𝑡). Finally, the
generalized advantage estimator (GAE) [107] is used to obtain the advantage function at
time step 𝑡 as

�̂�𝑡 =

𝑛−𝑡+1∑
𝑘=0
(𝛾_)𝑘 (𝛿𝑡+𝑘 ), (3.24)

where _ (0 < _ < 1) is used to control the trade-off between bias and variance.
The training algorithm is formally presented in Algorithm 1. First, the sampling and

updating neural networks are initialized with the same parameters. In each loop, the sampling
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neural network is used to sample a set of trajectories which are stored in 𝐷𝑖. Next, the
sequence of advantage estimates �̂� and the estimated state values �̂�𝜋 are calculated and stored
in 𝐷𝑖. Since then, 𝐷𝑖 consists of the tasks embedding sequences [𝑡1, 𝑡2, . . . , 𝑡𝑛], sampled
scheduling plans 𝐴1:𝑛, reward sequences [𝑟1, 𝑟2, . . . , 𝑟𝑛], sampled state values sequences
[𝑣𝜋 (𝑠1), 𝑣𝜋 (𝑠2), . . . , 𝑣𝜋 (𝑠𝑛)], advantage estimates sequences [ �̂�1, �̂�2, . . . , �̂�𝑛], and estimated
state values sequences [�̂�𝜋 (𝑠1), �̂�𝜋 (𝑠2), . . . , �̂�𝜋 (𝑠𝑛)]. At the exploitation stage, the updating
neural network is improved by conducting minibatch Stochastic Gradient Descent (SGD)
on 𝐷𝑖 with the target function defined in Eq. (3.22) for 𝑚 epochs. Adam is adopted as the
optimization method for its efficiency and stability.

3.4 Results and Discussion

This section presents the experimental results and performance evaluation of the DRLTO. We
first present how to set the simulation environment and hyperparameters. Next, the training
results of the DRLTO are presented, including the average reward, value loss, and policy loss.
Finally, we analyse the performance results of the DRLTO through comparing it with eight
existing algorithms.

3.4.1 Simulation Environment and Hyperparameters

In our simulation experiments, we consider that the UE is in a small cell network with
different transmission rates dependent on the distance between the UE and MEC host. The
transmission rate of real-world 5G network (e.g., VZ and T-Mobile) is typically less than 60
Mbps, while for Sprint it is around 30 Mbps [87]. Hence, we set the set of transmission rate
is {3 Mbps, 7 Mbps, 11 Mbps, 15 Mbps, 19 Mbps}, which covers the most area of a cell from
a distal end to a proximal end. We set the constants in the energy model 𝜌 = 1.25×10−26 and
Z = 3 according to [28]. The CPU clock speed of the UE 𝑓l is set to be 1 GHz. We set the
total computation capacity of the edge server as 10 GHz. Moreover, 𝑃Tx and 𝑃Rx are 1.258
W and 1.181 W, respectively [28].

In MEC system, The task dependency can be obtained through parsing the programme
of the mobile application. For example, we can use the compiler to parse the Android apk
file or jar file into a syntax tree. The task dependency information is included in the syntax
tree. We can then convert mobile applications into DAGs based on the parsed syntax tree.
Different DAGs can have various topologies, for example, a data compression application
is composed of multiple tasks with linear dependency, while face recognition and gesture
capture applications involve more complex inner dependency among tasks (as shown in Fig.



42 Dependent Task Offloading Based on Deep Reinforcement Learning

Low fat and density High fat and density

Fig. 3.5 The examples of synthetic DAGs from low fat and density to high fat and density.

3.1). Our scheme aims to obtain an effective offloading policy for general purpose, which
can adapt to any DAG topologies. To effectively train our DRL-based algorithm, we need
the information of task profiles and dependency for many different mobile applications. The
current real datasets for mobile applications only contain information of a very limited number
of applications [100]. Therefore, we use a synthetic DAG generator [8] to generate various
DAGs representing heterogeneous applications. The properties of DAGs are controlled by
several parameters including fat, density, and ccr. Here, fat is used to control the width
and the height of a DAG. density determines the number of edges between two levels of a
DAG. ccr denotes the communication-to-computation ratio, which is the ratio between the
communication cost and the computation cost. Using a simulator to generate synthetic DAGs
has many benefits. For example, it can fast generate a large number of DAGs representing
various mobile applications. In addition, it is easy to control the features of generated DAGs
by tuning simulator parameters.

For the DAG generation, we randomly pick fat from {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, density
from {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and ccr from {0.3, 0.4, 0.5}. It is reasonable to set ccr
less than 0.5, since many emerging applications are computation-intensive. Fig. 3.5 shows
an example of DAG topologies from low fat and density to high fat and density. For the
settings of task profile, the transmission data size of a task is set between 5 KB and 50 KB.
The required CPU cycles for a task is set between 107 and 108 cycles/sec. The task number n
of the generated DAG ranges from 10 to 50 with a step size of 5. According to the above
setting, we randomly generate 500 graphs for each task number as the training dataset and
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additional 100 graphs for each task number as testing dataset. Specifically, the parameters of
our simulation environment are listed in Table 3.1.

The S2S neural network is implemented via Tensorflow. Specifically, the encoder is set
as a two-layer bi-directed Long Short-Term Memory (LSTM) with 256 hidden units while
the decoder is set as a two-layer dynamic LSTM also with 256 hidden units. Besides, the
layer normalization [9] is added for both encoder and decoder. During the training process,
the learning rate is set as 10−4, the coefficients is set as 𝑐1 = 0.5, 𝑐2 = 0.01, and the batch size
is set as 500. Hyperparameters can affect the training results and the convergence speed of
DRLTO. We initially set the hyperparameters according to [108], and then run grid search on
learning rate, batch size, discount factor, etc., to find the optimal hyperparameters (given in
Table 3.2) for our algorithm. These hyperparameters have been applied to all scenarios in
our experiments.

Table 3.1 The Parameters of Simulation Environment

Notation Parameter Value
𝑅ul, 𝑅dl UL/DL Transmission Rate {3,7,11,15,19} Mbps
𝑓l CPU Clock Speed of UE 1 GHz
𝑓s CPU Clock Speed of a VM in MEC Host 4×2.5 GHz
Z , 𝜌 Constants in Energy Model Z = 3, 𝜌 = 1.25×10−26

𝑃Tx Avg. Wireless Sending Power 1.258 W
𝑃Rx Avg. Wireless Receiving Power 1.181 W
fat Width of a DAG {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

density Density of Dependencies of a DAG {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
ccr Comm. to Comp. Ratio of a DAG 0.3 to 0.5

data𝑠𝑖 , data𝑟𝑖 Sending/Receiving Data Size for a Task 5 KB to 50 KB
𝐶 Required CPU Cycles for a Task 107 to 108 cycles/sec
𝑝 Length of Task Indices Vector 12

3.4.2 Compared Algorithms

We compare the performance between the DRLTO and the following eight existing algorithms:

• Optimal: The exhaustive search is applied to list all possible solutions and find the
optimal one with the highest QoS.

• Local: All tasks of the DAG are run on the local processor.
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Table 3.2 The Neural Network and Training Hyperparameters

Hyperparameter Value Hyperparameter Value
Encoder Layers 2 Encoder Layer Type Bi-LSTM

Encoder Hidden Units 256 Encoder Layer Norm. On
Decoder Layers 2 Decoder Layer Type LSTM

Decoder Hidden Units 256 Decoder Layer Norm. On
Learning Rate 10−4 Activation function Tanh

Optimization Method Adam Loss Coefficient 𝑐1 0.5
Discount Factor 𝛾 0.99 Entropy Coefficient 𝑐2 0.01

Adv. Discount Factor _ 0.95 Clipping Constant 𝜖 0.2

• Remote: All tasks of the DAG are offloaded to the MEC host.

• Random: Each task of the DAG is randomly assigned to the local processor or the
MEC host.

• Greedy: Each task of the DAG is greedily assigned locally or remotely based on the
estimated finish time on the local processor and the MEC host.

• Round-Robin (RR): Tasks of the DAG are alternately scheduled to the local processor
and MEC host.

• HEFT-based: Tasks are firstly prioritized according to Heterogeneous Earliest Finish
Time (HEFT) as in [67, 124]. The prioritized tasks are then scheduled to the resource
with earliest estimated finish time. This algorithm is an advanced heuristic algorithm
and can be an important baseline to show the gap between learning-based algorithm
and the heuristic algorithm.

• Double Deep-Q Network based Task Offloading (DDQNTO): Tang et al. [121] com-
bined LSTM, dueling deep Q-network (DQN), and double-DQN techniques to handle
the task offloading problem without considering the inner dependency. Specifically,
we use the same exploration-exploitation strategy as in the work [121] to train the
Q-networks. This algorithm is a state-of-the-art learned-based algorithm without con-
sidering the dependency. I include this algorithm as a baseline to show the importance
of the task dependency.
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3.4.3 Training Performance and Convergence

We first investigate the training overheads, convergence property, and inference latency in
our algorithm. In our experiments, we set two different targets: latency-optimal (LO) and
energy-efficient (EE). The LO target aims at minimizing the latency, thus we set _𝑡 = 1.0 and
_𝑒 = 0.0. The EE target aims to jointly optimize the latency and energy consumption, so we
set _𝑡 = _𝑒 = 0.5. We conduct the training process for the DRLTO and record the average
reward, the policy loss (i.e., 𝐿C as defined in Eq. (3.20)), and the value loss (i.e., 𝐿VF as
defined in Eq. (3.23)). We train DRLTO on our workstation with GeForce RTX 2080. Each
episode involves 40 mini-batch updates for the S2S neural network with the time overheads
around 30 s/episode. Fig. 3.6 depicts the training results with the LO target. We notice that
the average reward increases sharply at the beginning and steadily grows after 500 episodes.
Our experimental results show that the training converges at around 1200 episodes. The
total training overheads for a converged policy is around 10 hours. As the training dose not
happen very frequently, the training overheads are acceptable. For the training loss, both
the value loss and the policy loss approximate to zero after 500 episodes, which shows the
good convergence property of the DRLTO. After training, we obtain two trained S2S neural
networks, one of which is used for the LO target and the other is used for the EE target.
Those trained networks will then be deployed back to the UE. To evaluate the inference
speed, we use our laptop with CPU only (2.6 GHz 6-Core Intel Core i7) to do the inference.
We feed 100 DAGs with 𝑛 = 15 to the trained S2S neural networks for network inference. As
a result, the total inference latency is around 108 ms with 1.08 ms per DAG. Compared to
the time overheads of offloading tasks (as shown in Table 3.3), the inference overhead can be
neglect. Note that, we do not involve any inference optimisation method to our trained model.
However, many existing works show that the inference speed can be further improved on
mobile devices. In the following sections, we evaluate DRLTO among different scenarios.

3.4.4 Evaluation with Different Task Numbers

First, we investigate the latency, energy consumption, and QoS of different offloading
algorithms with varying numbers of tasks. In this case, we fix the transmission rate at 7 Mbps.
When aiming at the LO target, we focus on the latency. Table 3.3 lists the average latency of
executing a DAG with different numbers of tasks. The Optimal (LO) is implemented using
exhaustive search to find the optimal solution. However, the Optimal (LO) has exponential
time complexity, thus it is unable to find optimum in a reasonable amount of time when
𝑛 ≥ 20. The Local and the Remote both perform poorly in this scenario, which are even worse
than the Random. DDQNTO (LO) cannot learn effective policy, which obtains higher average
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Fig. 3.6 The values of average total reward, policy loss, and value loss in the training process
of the DRLTO.

latency than the heretic search algorithm HEFT-based. Compared to the existing algorithms,
DRLTO with the LO target significantly outperforms all heuristic baselines (from the Local to
the HEFT-based) and the advanced DRL-based methods (i.e., DDQNTO). Moreover, DRLTO
(LO) approximates the optimal solution when 𝑛 ≤ 20.

When aiming at the EE target, we jointly consider the latency and energy consumption.
The comparison results of the energy consumption and QoS with different numbers of tasks
are presented in Fig. 3.7 and Table 3.4, respectively. Offloading computation-intensive
applications to the MEC host can help reduce the energy consumption on UE, therefore
the Remote achieves the lowest energy consumption. However, the Remote has the highest
latency as shown in Table 3.3. DDQNTO (EE) learns offloading policies that have similar
energy consumption and latency as Remote in all cases. It seems that DDQNTO (EE) fails to
learn a good trade-off between energy consumption and latency. On the contrary, DRLTO
with the EE target can learn the optimal policy by taking both the latency and energy into
account. Comparing the results in Table 3.3 and Fig. 3.7, we find that DRLTO with the EE
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Fig. 3.7 The comparison of the DRLTO and existing algorithms in terms of average energy
consumption (targeting at EE) with different numbers of tasks. EE denotes energy-efficient
target.

target achieves the lowest energy consumption bar Remote and DDQNTO (EE), while it still
obtains acceptable latencies (close to the Greedy). Furthermore, Table 3.4 gives explicit
results related to the QoS of all evaluated algorithms. Obviously, the QoS of the Local
is always zero because we define QoS as a measurement of the gain/loss of an algorithm
compared to the Local. Moreover, DRLTO with the EE target achieves the maximal QoS
compared to all baseline algorithms (i.e., from Local to DDQNTO) and approximates the
optimal solution.
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Fig. 3.8 The comparison of the DRLTO and existing algorithms in terms of average latency
with different transmission rates. LO and EE denote latency-optimal and energy-efficient
targets, respectively.

3.4.5 Evaluation with Different Transmission Rates

Next, we evaluate the performance of the DRLTO with different transmission rates. We
first target at LO, and the results are shown in Fig. 3.8. When the transmission rate is low
(meaning that the UE is far away from the MEC host), offloading tasks to the MEC host
will result in high latency. On the contrary, if the transmission rate is high, offloading tasks
can significantly reduce the latency. An efficient algorithm should automatically adapt its
offloading policy to various transmission rates. As shown in Fig. 3.8, DDQNTO (LO) cannot
learn effective policy, which achieves the worse performance than HEFT-based when the
transmission rate increases from 3 Mbps to 15 Mbps. In contrast, DRLTO (LO) has high
adaptability, which outperforms all baseline algorithms (i.e., from Local to DDQNTO) and
approximates the optimal solution with various transmission rates.

When the target is EE, we need take energy consumption into consideration. Figs.
3.9 and 3.10 show the energy consumptions and QoS of various algorithms with different
transmission rates, respectively. As expected, Remote consumes the least energy on UE
since all tasks are run remotely. However, the latency of the Remote could be high and
unacceptable under low or medium transmission rates. As shown in Fig. 3.10, the Remote,
Random, and RR even achieve negative QoS when the transmission rate is 3 Mbps, meaning
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Fig. 3.9 The comparison of the DRLTO and existing algorithms in terms of average energy
consumption (targeting at EE) with different transmission rates. EE denotes energy-efficient
target.

that they are worse than the local. DRLTO with the EE target achieves the lowest energy
consumption bar the Remote and DDQNTO when transmission rate is greater or equal than 7
Mbps, while it still leads to acceptable latencies. For example, when the transmission rate
is 7 Mbps, DRLTO with the EE target obtains a similar latency as the Greedy but 50% less
energy consumption than the latter, while both DDQNTO and Remote achieve the higher
latency than Random. Fig. 3.10 demonstrates that the QoS of all algorithms (except the
Local) increases with the transmission rate. This is because the communication cost declines
as the transmission rate grows, offloading tasks to remote servers can be beneficial. In
addition, DRLTO with the EE target obtains the maximal QoS compared with all baselines
and approximates the optimal solution.

3.4.6 Evaluation with/without Dependency

The task dependency reflects that some tasks of the mobile application require input from
others. This means that the offloaded tasks and tasks executed on the user equipment might
not process in parallel. For example, in Fig. 3.2, Detect1 is assigned to local user equipment
while Detect2 is offloaded to the MEC server. Since there is no dependency between Detect1
and Detect2, thus they can run in parallel. In contrast, Feature Merger can only start running
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Fig. 3.10 The comparison of the DRLTO and existing algorithms in terms of QoS (targeting
at EE) with different transmission rates. EE denotes energy-efficient target.

when Detect1 is finished due to the task dependency. Taking this dependency information
into consideration or not can severely affect the task offloading performance. In the following
content, I give the detailed evaluation results with/without dependency information.

We embed the dependent information into the task embeddings and use the encoder
network with the attention mechanism to extract features from the task embedding. In order
to show how the dependent information influences the results. As shown in Fig. 3.11, we
remove the encoder network with attention mechanism from the S2S neural network and
directly input the task embeddings to the decoder network. The output of the decoder network
remains the same (i.e., the policy and the value function). More specifically, we remove the
adjacent information from the task embeddings. We then train this policy network on the
same training dataset as DRLTO targeting at LO and use the same hyperparameters (i.e.,
learning rate, batch size, and the number of gradient steps per episode). During the training,
we evaluate the trained policy at each episode on the testing dataset with 𝑛 = 15. Fig. 3.12
shows the evaluation results. We find that the training process cannot converge without
considering the dependency information. Note that DDQNTO proposed in [121] does not
involve the dependency information either. The above experiment results show that DRLTO
can learn better policies than DDQNTO in all scenarios. Therefore, dependency information
is one of the crucial factors in achieving good performance.
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Fig. 3.11 The neural network architecture without considering the dependency among tasks.

3.5 Conclusion

In this chapter, I investigate the task offloading problem in MEC considering task dependency,
with the aim of jointly optimizing the latency and energy consumption. To effectively adapt
to dynamic scenarios, I propose a new offloading scheme that embeds DRL training and
inference procedures into the MEC system. Specifically, I model the offloading problem
as an MDP and combine an S2S neural network to approximate both the policy and value
function of the MDP. An efficient policy gradient method is then applied for training the
S2S neural network. The training results show that the DRLTO achieves excellent stability
and convergence with reasonable training and inference overheads. Through comparing
with the existing state-of-the-art heuristic and DRL-based algorithms, I demonstrate that the
DRLTO has strong adaptability among different MEC scenarios and can obtain near-optimal
solutions.
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Chapter 4

Fast Adaptive Meta Reinforcement
Learning based Task Offloading

In this chapter, I continue the investigation of learning-based task offloading in Multi-access
Edge Computing (MEC) systems. In Chapter 3, I present a new method to tackle the
dependent task offloading problem by combining Deep Reinforcement Learning (DRL) and
Sequence to Sequence (seq2seq) neural network. However, it has low sample efficiency and
weak adaptability to new learning tasks (e.g., obtaining an offloading policy for newly joined
mobile users). When facing new learning tasks, full retraining is required to learn updated
policies. To overcome this weakness, I propose a task offloading method based on meta
reinforcement learning, which can adapt fast to new environments with a small number of
gradient updates and samples. Similar to the previous work in Chapter 3, I model mobile
applications as Directed Acyclic Graphs (DAGs) and the offloading policy by a custom
seq2seq neural network.

4.1 Introduction

In real-world scenarios, many mobile applications (e.g., face recognition [100], gesture
recognition [100], and augmented reality[6]) are composed of dependent tasks, which can be
modelled as a Directed Acyclic Graph (DAG). Thus, offloading dependent tasks in a DAG
with the minimum latency is a crucial problem in MEC. Since this problem is NP-hard, many
existing solutions are based on heuristic or approximation algorithms [67, 28, 148]. However,
these solutions rely heavily on expert knowledge or accurate mathematical models for the
MEC system. Whenever the environment of the MEC system changes, the expert knowledge
or mathematical models may need to be updated accordingly. Therefore, it is difficult for
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one specific heuristic/approximation algorithm to fully adapt to the dynamic MEC scenarios
arisen from the increasing complexity of applications and architectures of MEC.

Recently, researchers studied the application of DRL to various MEC task offloading
problems [27, 23, 131, 44], including the previous work in Chapter 3. All these methods
considered the MEC system including UE, wireless channels, and MEC host as one stationary
RL environment and learn an offloading policy through interacting with the environment.
However, these methods have weak adaptability for unexpected perturbations or unseen
situations (i.e., new environments) like changes of applications, task numbers, or data rates.
Because they have low sample efficiency and need full retraining to learn an updated policy
for the new environment, they are time-consuming.

Meta learning [127] is a promising method to address the aforementioned issues by
leveraging previous experiences across a range of learning tasks to significantly accelerate
learning of new tasks. In the context of RL problems, meta reinforcement learning (MRL)
aims to learn policies for new tasks within a small number of interactions with the envi-
ronment by building on previous experiences. In general, MRL conducts two “loops” of
learning, an “outer loop” which uses its experiences over many task contexts to gradually
adjust parameters of the meta policy that governs the operation of an “inner loop”. Based
on the meta policy, the “inner loop” can adapt fast to new tasks through a small number of
gradient updates [15].

There are significant benefits of adapting MRL to solving the computation offloading
problem. Firstly, specific policies for new mobile users can be fast learned based on their
local data and the meta policy. Secondly, MRL training in the MEC system can leverage
resources from both the MEC host and UE. More specifically, training for the meta policy
(outer loop) is run on the MEC host and training for the specific offloading policy (inner
loop) is processed on UE. Normally, the “inner loop” training only needs several training
steps and a small amount of sampling data, thus the UE with limited computation resources
and data is able to complete the training process. Finally, MRL achieves strong adaptability
by leveraging the previously learned knowledge and can significantly improve the training
efficiency in learning new tasks. Specifically, for the computation offloading problem, the
“outer loop” training is used to extract common features (e.g., the user preferences for mobile
applications) from the existing mobile users. Note that, the common features can be treated
as a good initialisation for the “inner loop” training so that it can help speed up the learning
of the offloading policy for the new mobile user.

I propose an MRL-based method that synergizes the first-order MRL algorithm with
a sequence-to-sequence (seq2seq) neural network. The proposed method learns a meta
offloading policy for all UE and fast obtains the effective policy for each UE based on the
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meta policy and local data. To evaluate the performance of the MRLCO under dynamic
scenarios, this research considers the following scenarios: 1) Heterogeneous users with
personal preferences of mobile applications which are represented as DAGs with different
heights, widths, and task numbers. 2) Varying transmission rates according to the distance
between the UE and the MEC host.

The major contributions of this chapter can be summarized as follows:

• As far as I known, I am the first of its kind to propose an MRL-based method (MRLCO)
to address the computation offloading problem, achieving fast adaptation to dynamic
offloading scenarios. MRLCO has high sample efficiency towards new learning tasks,
thus it enables UE to run the training process by using its own data even with limited
computation resources.

• I propose a new idea to model the dynamic computation offloading process as multiple
MDPs, where the learning of offloading policies is decomposed into two parts: effec-
tively learning a meta policy among different MDPs, and fast learning a specific policy
for each MDP based on the meta policy.

• I convert the offloading decision process as a sequence prediction process and design
a custom seq2seq neural network to represent the offloading policy. An embedding
method is also proposed to embed the vertices of a DAG considering both its task pro-
files and dependencies. In addition, I propose a new training method which combines
the first-order approximation and clipped surrogate objective to stabilize the training
of the seq2seq neural network.

• I conduct simulation experiments using generated synthetic DAGs according to real-
world applications, covering a wide range of topologies, task numbers, and transmission
rates. The results show that MRLCO achieves the lowest latency within a small number
of training steps compared to three baseline algorithms including a fine-tuning DRL
method, a greedy algorithm, and a heterogeneous earliest finish time (HEFT) based
heuristic algorithm.

4.2 Problem Formulation

This research shares a similar problem formulation as in Chapter 3 but consider minimal
latency as the goal. In MEC systems, the UE makes offloading decisions for those tasks
according to the system status and task profiles, thus some tasks are run locally on the UE
while others are offloaded to the MEC host via wireless channels. In general, each MEC host
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runs multiple virtual machines (VMs) processing the tasks. In this work, I consider that each
UE is associated with a dedicated VM providing private computing, communications and
storage resources to the UE, the same as in works [114, 14]. The computation capacity (i.e.,
the number of CPU cores times the clock speed of each core) of an MEC host is denoted as
𝑓𝑠. I consider an equal resource allocation for VMs, i.e., all VMs evenly share the computing
resource of the MEC host. Therefore, assuming there are 𝑘 users in the MEC systems, the
computation capacity for each VM is 𝑓s = 𝑓𝑠/𝑘 . Formally, I model mobile applications as
DAGs, 𝐺 = (𝑇,𝐸), where the vertex set 𝑇 represents the tasks and the directed edge set 𝐸
represents the dependencies among tasks, respectively. Each directed edge is denoted by
−→𝑒 = (𝑡𝑖, 𝑡 𝑗 ), corresponding to the dependency between task 𝑡𝑖 and 𝑡 𝑗 , where 𝑡𝑖 is an immediate
parent task of 𝑡 𝑗 , and 𝑡 𝑗 is an immediate child task of 𝑡𝑖. With the constraint of dependency, a
child task cannot be executed until all of its parent tasks are completed. In 𝐺 = (𝑇,𝐸), this
research calls a task without any child task as an exit task.

In computation offloading, a computation task can either be offloaded to the MEC host or
executed locally on the UE. If task 𝑡𝑖 is offloaded, there are three steps to execute 𝑡𝑖. First,
the UE sends 𝑡𝑖 to an MEC host through a wireless channel. Second, the MEC host runs the
received task. Finally, the running result of 𝑡𝑖 is returned to the UE. The latency at each step
is related to the task profile and the MEC system state. Here, the task profile of 𝑡𝑖 includes
required CPU cycles for running the task, 𝐶𝑖, data sizes of the task sent, data𝑠𝑖 , and the result
received, data𝑟𝑖 . Besides, the MEC system state contains the transmission rate of wireless
uplink channel, 𝑅ul, and rate of downlink channel, 𝑅dl. Therefore, the latency for sending
data, 𝑇ul

𝑖
, executing on the MEC host, 𝑇 s

𝑖
, and receiving result, 𝑇dl

𝑖
, of task 𝑡𝑖 can be calculated

as:
𝑇ul
𝑖 = data𝑠𝑖 /𝑅ul, 𝑇

s
𝑖 = 𝐶𝑖/ 𝑓s, 𝑇dl

𝑖 = data𝑟𝑖 /𝑅dl. (4.1)

If task 𝑡𝑖 runs locally on the UE, there is only running latency on the UE, which can be
obtained by 𝑇 l

𝑖
= 𝐶𝑖/ 𝑓l where 𝑓l denotes the computation capacity of the UE. The end-to-end

latency of a task offloading process includes local processing, uplink, downlink, and remote
processing latency, as shown in Fig. 3.1.

The scheduling plan for a DAG, 𝐺 = (𝑇,𝐸), is denoted as 𝐴1:𝑛 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, where
|𝑇 | = 𝑛 and 𝑎𝑖 represents the offloading decision of 𝑡𝑖. Tasks are scheduled in a sequence
based on the scheduling plan, where all parent tasks are scheduled before their child tasks. I
denote 𝐹𝑇ul

𝑖
, 𝐹𝑇 s

𝑖
, 𝐹𝑇dl

𝑖
, and 𝐹𝑇 l

𝑖
as the finish time of task 𝑡𝑖 on the uplink wireless channel,

the MEC host, the downlink wireless channel, and the UE, respectively. I also denote the
available time of these resources when scheduling task 𝑡𝑖 asMul

𝑖
,Ms

𝑖
,Mdl

𝑖
, andMl

𝑖
. The

resource available time depends on the finish time of the task scheduled immediately before
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𝑡𝑖 on that resource. If the task scheduled immediately before 𝑡𝑖 does not utilize the resource, I
set the finish time on the resource as 0.

If task 𝑡𝑖 is offloaded to the MEC host, 𝑡𝑖 can only start to send its data when its parent
tasks are all completed and the uplink channel is available. Therefore, the finish time on the
uplink channel, 𝐹𝑇ul

𝑖
, can be defined by

𝐹𝑇ul
𝑖 = max

{
Mul

𝑖 , max
𝑗∈pre(𝑡𝑖)

{
𝐹𝑇 l

𝑗 , 𝐹𝑇
dl
𝑗

}}
+𝑇ul

𝑖 ,

Mul
𝑖 = max

{
Mul

𝑖−1, 𝐹𝑇
ul
𝑖−1

}
,

(4.2)

where pre(𝑡𝑖) denotes the set of immediate predecessors of 𝑡𝑖. Similarly, the finish time of 𝑡𝑖
on the MEC host, 𝐹𝑇 s

𝑖
, and that on the downlink channel, 𝐹𝑇dl

𝑖
, are given by

𝐹𝑇 s
𝑖 = max

{
Ms

𝑖 ,max
{
𝐹𝑇ul

𝑖 , max
𝑗∈pre(𝑡𝑖)

𝐹𝑇 𝑠𝑗

}}
+𝑇 s

𝑖 ,

𝐹𝑇dl
𝑖 = max

{
Mdl

𝑖 , 𝐹𝑇
s
𝑖

}
+𝑇dl

𝑖 ,

Ms
𝑖 = max

{
Ms

𝑖−1, 𝐹𝑇
s
𝑖−1

}
,

Mdl
𝑖 = max

{
Mdl

𝑖−1, 𝐹𝑇
dl
𝑖−1

}
.

(4.3)

If 𝑡𝑖 is scheduled on the UE, the start time of 𝑡𝑖 depends on the finish time of its parent
tasks and the available time of the UE. Formally, the finish time of 𝑡𝑖 on the UE, 𝐹𝑇 l

𝑖
, is

defined as

𝐹𝑇 l
𝑖 =max

{
Ml

𝑖 , max
𝑗∈pre(𝑡𝑖)

{
𝐹𝑇 l

𝑗 , 𝐹𝑇
dl
𝑗

}}
+𝑇 l

𝑖 ,

Ml
𝑖 =max

{
Ml

𝑖−1, 𝐹𝑇
l
𝑖−1

}
.

(4.4)

Overall, the objective is to find an effective offloading plan for the DAG to obtain the
minimal total latency. Formally, the total latency of a DAG given a scheduling plan 𝐴1:𝑛,
𝑇 𝑐
𝐴1:𝑛

, is given by

𝑇 𝑐𝐴1:𝑛
= max

[
max
𝑡𝑘∈K

(
𝐹𝑇 l

𝑘 , 𝐹𝑇
dl
𝑘

)]
, (4.5)

where K is the set of exit tasks. The problem in Eq. (4.5) is NP-hard, so finding the optimal
offloading plan can be extremely challenging due to the highly dynamic DAG topologies and
MEC system states. In the next section, I present the details of MRLCO for handling this
problem.

Different from the problem defined in Chapter 3, I consider a more complex and dynamic
environment where multiple mobile users involve in the MEC system. Specifically, different
mobile users have different preferences for mobile applications and positions. Hence, mobile
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Fig. 4.1 The system architecture of the MRLCO empowered MEC system. The data flows
in this architecture include: 1© mobile applications, 2© parsed DAGs, 3© parameters of the
policy network, 4© the trained policy network, 5© tasks scheduled to local executor, 6© tasks
offloaded to the MEC host, 7© results from the offloaded tasks.

users can have different distributions of DAG topologies and wireless transmission rates. In
this Chapter, the goal is to fast learn an effective personalised offloading policy for each user
without requiring uploading DAGs from local mobile devices to MEC servers.

4.3 MRLCO: An MRL-based Computation Offloading So-
lution

In this section, I first give an overview of the architecture of the MRLCO and explain how it
works with the MEC system. Next, I present the detailed MDP modelling for the computation
offloading problem. Finally, I describe the implementation of the MRLCO algorithm.

4.3.1 The MRLCO Empowered MEC System Architecture

The MRLCO aims to leverage the computation resources from both the UE and the MEC
host for the training process. There are two loops of training — “inner loop” training for the
task-specific policy and “outer loop” training for the meta policy. The “inner loop” training
is conducted on the UE while the “outer loop” training on the MEC host.

Fig. 4.1 shows an architecture that integrates the MRLCO into an emerging MEC system
[104] composed of the user level, edge level, and remote level. Here, the user level includes
heterogeneous UE, the edge level contains MEC hosts that provide edge computing services,
and the remote level consists of cloud servers. Specifically, mobile users communicate with
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an MEC host through the local Transmission unit. The MEC host incorporates an MEC
platform and a virtualization infrastructure that provides the computing, storage, and network
resources. The MEC platform provides Traffic management (i.e., traffic rules control and
domain name handling) and offers edge services. The five key modules of MRLCO (parser,
local trainer, offloading scheduler, global training service, and remote execution service) can
be deployed at the user and edge levels of the MEC system separately, as described below:

• At the user level, the parser aims to convert mobile applications into DAGs. The
local trainer is responsible for the “inner loop” training, which receives the parsed
DAGs from the parser as training data and uploads/downloads parameters of the policy
network to/from the MEC host through local transmission unit. Once the training
process is finished, the trained policy network will be deployed to the offloading
scheduler that is used to make offloading decisions through policy network inference.
After making decisions for all tasks of a DAG, the locally scheduled tasks will run on
the local executor and the offloaded tasks will be sent to the MEC host for execution.

• At the edge level, the global training service and remote execution service modules
are deployed to the MEC platform. The global training service is used to manage the
“outer loop” training, which sends/receives parameters of the policy network to/from
the UE and deploys the global training process on the virtualization infrastructure in
the MEC host. The remote execution service is responsible for managing the tasks
offloaded from the UE, assigning these tasks to associated VMs, and sending the results
back to the UE.

Next, I describe the detailed training process of the MRLCO in the MEC system, as
shown in Fig. 4.2. The training process for MRLCO includes four steps. First, the UE
downloads the parameters of the meta policy from the MEC host. Next, an “inner loop”
training is run on every UE based on the meta policy and the local data, in order to obtain the
task-specific policy. The UE then uploads the parameters of the task-specific policy to the
MEC host. Finally, the MEC host conducts an “outer loop” training based on the gathered
parameters of task-specific policies, generates the new meta policy, and starts a new round of
training. Once obtaining the stable meta policy, I can leverage it to fast learn a task-specific
policy for new UE through “inner loop” training. Notice that the “inner loop” training only
needs few training steps and a small amount of data, thus can be sufficiently supported by
the UE. I will present the algorithmic details of the “outer loop” and “inner loop” training in
Section 4.3.3.
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Fig. 4.2 The training process of the MRLCO empowered MEC system includes four steps:
1) the UE downloads the parameters of meta policy, \, from the MEC host; 2) “inner loop”
training is conducted on the UE based on \ and the local data, obtaining the parameters of
task-specific policy, \′; 3) the UE uploads \′ to the MEC host; 4) the MEC host conducts
“outer loop” training based on the gathered updated parameters \′.

4.3.2 Modelling the Computation Offloading Process as Multiple MDPs

To adapt MRL to solve the computation offloading problem, I firstly model the process of
computation offloading under various MEC environments as multiple MDPs, where learning
an effective offloading policy for one MDP is considered as a learning task. Formally, I
consider a distribution over all learning tasks in MEC as 𝜌(T ), where each task T𝑖 ∼ 𝜌(T )
is formulated as a different MDP, T𝑖 = (S,A,P,P0,R, 𝛾). In order to obtain the adaptive
offloading policy for all learning tasks, I decompose the learning process into two parts:
effectively learning a meta policy among all MDPs and fast learning a specific offloading
policy for one MDP based on the meta policy. The definitions of the state, action, and reward
for the MDP are listed as follows:

• State: When scheduling a task 𝑡𝑖, the latency of running the task depends on the
task profile (i.e., required CPU cycles, data sizes), DAG topologies, the wireless
transmission rate, and the state of MEC resources. According to Eqs. (4.2), (4.3),
and (4.4), the state of MEC resources is related to the offloading decisions of task
scheduled before 𝑡𝑖. Therefore, I define the state as a combination of the encoded DAG
and the partial offloading plan:

S := {𝑠𝑖 |𝑠𝑖 = (𝐺 (𝑇,𝐸), 𝐴1:𝑖)} where 𝑖 ∈ [1, |𝑇 |] , (4.6)

where 𝐺 (𝑇,𝐸) is comprised of a sequence of task embeddings and 𝐴1:𝑖 is the partial
offloading plan for the first 𝑖 tasks. To convert a DAG into a sequence of task embed-
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dings, I first sort and index tasks according to the ascending order of the rank value of
each task, which is defined as

𝑟𝑎𝑛𝑘 (𝑡𝑖) =

𝑇𝑜
𝑖

if 𝑡𝑖 ∈ K,
𝑇𝑜
𝑖
+ max
𝑡 𝑗∈𝑐ℎ𝑖𝑙𝑑 (𝑡𝑖)

(
𝑟𝑎𝑛𝑘 (𝑡 𝑗 )

)
if 𝑡𝑖 ∉K,

(4.7)

where 𝑇𝑜
𝑖
= 𝑇ul

𝑖
+𝑇 s

𝑖
+𝑇dl

𝑖
denotes the latency for task 𝑖 from starting offloading to

finishing execution, 𝑐ℎ𝑖𝑙𝑑 (𝑡𝑖) represents the set of immediate child tasks of 𝑡𝑖. Each
task is converted into an embedding that consists of three elements: 1) a vector that
embeds the current task index and the normalized task profile, 2) a vector that contains
the indices of the immediate parent tasks, 3) a vector that contains the indices of the
immediate child tasks. The size of vectors that embed parent/child task indices is
limited to 𝑝. I pad the vector with -1, in case the number of child/parent tasks is less
than 𝑝.

• Action: The scheduling for each task is a binary choice, thus the action space is
defined as A := {0,1}, where 0 stands for execution on the UE and 1 represents
offloading.

• Reward: The objective is to minimize 𝑇 𝑐
𝐴1:𝑛

given by Eq. (4.5). In order to achieve this
goal, I define the reward function as the estimated negative increment of the latency
after making an offloading decision for a task. Formally, when taking action for the
task 𝑡𝑖, the increment is defined as Δ𝑇 𝑐

𝑖
= 𝑇 𝑐

𝐴1:𝑖
−𝑇 𝑐

𝐴1:𝑖−1
.

Based on the above MDP definition, I denote the policy when scheduling 𝑡𝑖 as 𝜋(𝑎𝑖 |𝐺 (𝑇,𝐸), 𝐴1:𝑖−1).
For a DAG with 𝑛 tasks, let 𝜋 (𝐴1:𝑛 |𝐺 (𝑇,𝐸)) denote the probability of having the offloading
plan 𝐴1:𝑛 given the graph 𝐺 (𝑇,𝐸). Therefore, 𝜋(𝐴1:𝑛 |𝐺 (𝑇,𝐸)) can be obtained by applying
chain rules of probability on each 𝜋(𝑎𝑖 |𝐺 (𝑇,𝐸), 𝐴1:𝑖−1) as

𝜋(𝐴1:𝑛 |𝐺 (𝑇,𝐸)) =
𝑛∏
𝑖=1

𝜋(𝑎𝑖 |𝐺 (𝑇,𝐸), 𝐴1:𝑖−1). (4.8)

I use the similar seq2seq neural network architecture as in Chapter 3 to represent the
policy defined in Eq. (4.8). Fig. 4.3 shows the design of a custom seq2seq neural network,
which can be divided into two parts: encoder and decoder. In this work, both encoder and
decoder are implemented by recurrent neural networks (RNN). The input of the encoder is the
sequence of task embeddings, [𝑡1, 𝑡2, ..., 𝑡𝑛], while the output of the decoder is the offloading
decisions of each tasks, [𝑎1, 𝑎2, ..., 𝑎𝑛]. To improve the performance, I include the attention
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Fig. 4.3 Architecture of the seq2seq neural network in MRLCO. The architecture consists of
an encoder and a decoder, where the input of the encoder is the sequence of task embeddings
and the output of the decoder is used to generate both policy and value function.

mechanism [10] into the custom seq2seq neural network. Attention mechanism allows the
decoder to attend to different parts of the source sequence (i.e., the input sequence of the
encoder) at each step of the output generation, thus it can alleviate the issue of information
loss caused by the original seq2seq neural network that encodes the input sequence into a
vector with fixed dimensions.

Formally, I define the functions of the encoder and decoder as 𝑓𝑒𝑛𝑐 and 𝑓𝑑𝑒𝑐, respectively.
In this work, I use the Long Short-Term Memory (LSTM) as 𝑓𝑒𝑛𝑐 and 𝑓𝑑𝑒𝑐. At each step of
encoding, the output of the encoder, 𝑒𝑖, is obtained by

𝑒𝑖 = 𝑓𝑒𝑛𝑐 (𝑡𝑖, 𝑒𝑖−1). (4.9)

After encoding all the input task embeddings, I have the output vector as e = [𝑒1, 𝑒2, ..., 𝑒𝑛].
At each decoding step, I define the output of the decoder, 𝑑 𝑗 , as

𝑑 𝑗 = 𝑓𝑑𝑒𝑐 (𝑑 𝑗−1, 𝑎 𝑗−1, 𝑐 𝑗 ), (4.10)

where 𝑐 𝑗 is the context vector at decoding step 𝑗 and is computed as a weighted sum of the
outputs of the encoder:

𝑐 𝑗 =

𝑛∑
𝑖=0
𝛼 𝑗𝑖𝑒𝑖 . (4.11)
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The weight 𝛼 𝑗𝑖 of each output of encoder, 𝑒𝑖, is computed by

𝛼 𝑗𝑖 =
exp

(
score(𝑑 𝑗−1, 𝑒𝑖)

)∑𝑛
𝑘=1 exp

(
score(𝑑 𝑗−1, 𝑒𝑘 )

) , (4.12)

where the score function, score(𝑑 𝑗−1, 𝑒𝑖), is used to measure how well the input at position 𝑖
and the output at position 𝑗 match. I define the score function as a trainable feedforward neural
network according to the work [10]. I use the seq2seq neural network to approximate both
policy 𝜋(𝑎 𝑗 |𝑠 𝑗 ) and value function 𝑣𝜋 (𝑠 𝑗 ) by passing the output of decoder d = [𝑑1, 𝑑2, ..., 𝑑𝑛]
to two separate fully connected layers. Notice that the policy and value function share most
of the parameters (i.e., the encoder and decoder) which are used to extract common features
of DAGs (e.g., the graph structure and task profiles). Therefore, training the policy can
accelerate the training of value function and vice versa. During training for the seq2seq
neural network, the action 𝑎 𝑗 is generated through sampling from the policy 𝜋(𝑎 𝑗 |𝑠 𝑗 ). Once
the training is finished, the offloading decisions for a DAG can be made by inference through
the seq2seq neural network, where the action 𝑎 𝑗 is generated by 𝑎 𝑗 = argmax𝑎 𝑗

𝜋(𝑎 𝑗 |𝑠 𝑗 ).
Therefore, the time complexity for my algorithm is the same as the inference of the seq2seq
neural network with attention, which is 𝑂 (𝑛2) [129]. Normally, the task number, 𝑛, of a
mobile application is less than 100 [75, 67, 28], thus the time complexity of the MRLCO is
feasible.

4.3.3 Implementation of MRLCO

MRLCO shares a similar algorithm structure with gradient-based MRL algorithms, which
consists of two loops for training. Instead of using VPG as the policy gradient method
for the “inner loop” training [31], I define the objective function based on Proximal Policy
Optimization (PPO) [108]. Compared to VPG, PPO achieves better exploring ability and
training stability. For one learning task T𝑖, PPO generates trajectories using the sample policy
𝜋\𝑜

𝑖
and updates the target policy 𝜋\𝑖 for several epochs, where \𝑖 equals \𝑜

𝑖
at the initial

epoch. In order to avoid a large update of the target policy, PPO uses a clipped surrogate
objective as

𝐽C
T𝑖 (\𝑖) = E𝜏∼𝑃T𝑖 (𝜏,\𝑜𝑖 )

[
𝑛∑
𝑡=1

min
(
Pr𝑡 �̂�𝑡 ,clip1+𝜖

1−𝜖 (Pr𝑡) �̂�𝑡
)]
. (4.13)

Here, \𝑜
𝑖

is the vector of parameters of the sample policy network. Pr𝑡 is the probability ratio
between the sample policy and target policy, which is defined as

Pr𝑡 =
𝜋\𝑖 (𝑎𝑡 |𝐺 (𝑇,𝐸), 𝐴1:𝑡)
𝜋\𝑜

𝑖
(𝑎𝑡 |𝐺 (𝑇,𝐸), 𝐴1:𝑡)

. (4.14)
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Algorithm 2: Meta Reinforcement Learning based Computation Offloading
1 Require: Task distribution 𝜌(T ),
2 Randomly initialize the parameters of meta policy, \
3 for iterations 𝑘 ∈ {1, ...,𝐾} do
4 Sample 𝑛 tasks {T0,T1, ...,T𝑛} from 𝜌(T )
5 for each task T𝑖 ∈ {T0,T1, ...,T𝑛} do
6 Initialize \𝑜

𝑖
← \ and \𝑖← \

7 Sample trajectories set 𝐷 = (𝜏1, 𝜏2, . . .) from T𝑖 using sample policy 𝜋\𝑜
𝑖

8 for iterations 𝑗 ∈ {1, ...,𝑚} do
9 Update parameters \𝑖

10 \𝑖← \𝑖 +𝛼∇\𝑖𝐽PPO
T𝑖 (\𝑖)

11 by mini-batch gradient descent based on 𝐷 with Adam
12 end
13 end
14 Update \← \ + 𝛽𝑔MRLCO via Adam
15 end

The clip function clip1+𝜖
1−𝜖 (Pr𝑡) aims to limit the value of Pr𝑡 , in order to remove the incentive

for moving Pr𝑡 outside of the interval [1− 𝜖,1+ 𝜖]. �̂�𝑡 is the advantage function at time step
𝑡. Specially, I use general advantage estimator (GAE) [107] as the advantage function, which
is defined by

�̂�𝑡 =

𝑛−𝑡+1∑
𝑘=0
(𝛾_)𝑘 (𝑟𝑡+𝑘 +𝛾𝑣𝜋 (𝑠𝑡+𝑘+1) − 𝑣𝜋 (𝑠𝑡+𝑘 )), (4.15)

where _ ∈ [0,1] is used to control the trade-off between bias and variance. The value function
loss is defined as

𝐽VF
T𝑖 (\𝑖) = E𝜏∼𝑃T𝑖 (𝜏,\𝑜𝑖 )

[
𝑛∑
𝑡=1
(𝑣𝜋 (𝑠𝑡) − �̂�𝜋 (𝑠𝑡))2

]
, (4.16)

where �̂�𝜋 (𝑠𝑡) =
∑𝑛−𝑡+1
𝑘=0 𝛾𝑘𝑟𝑡+𝑘 .

Overall, I combine Eq. (4.13) and Eq. (4.16), defining the objective function for each
“inner loop” task learning as:

𝐽PPO
T𝑖 (\𝑖) = 𝐽

𝐶
T𝑖 (\𝑖) − 𝑐1𝐽

VF
T𝑖 (\𝑖), (4.17)

where 𝑐1 is the coefficient of value function loss. Here, I do not add the entropy bonus as the
regularisation term since the “outer loop” training can be seen as a kind of regularisation for
the objective function.
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Table 4.1 The Neural Network and Training Hyperparameters

Hyperparameter Value Hyperparameter Value
Encoder Layers 2 Encoder Layer Type LSTM

Encoder Hidden Units 256 Encoder Layer Norm. On
Decoder Layers 2 Decoder Layer Type LSTM

Decoder Hidden Units 256 Decoder Layer Norm. On
Learning Rate 𝛽 5×10−4 Learning Rate 𝛼 5×10−4

Optimization Method Adam Activation function Tanh
Discount Factor 𝛾 0.99 Loss Coefficient 𝑐1 0.5

Adv. Discount Factor _ 0.95 Clipping Constant 𝜖 0.2
Gradient Step 𝑚 3

According to the target of gradient-based MRL defined in Eq. (2.12) and the objective
function given by Eq. (4.17), the “outer loop” training target of MRLCO is expressed as

𝐽MRLCO(\) = ET𝑖∼𝜌(T ),𝜏∼𝑃T𝑖 (𝜏,\ ′𝑖) [𝐽
PPO
T𝑖 (\

′
𝑖)],

where \′𝑖 =𝑈𝜏∼𝑃T𝑖 (𝜏,\𝑖) (\𝑖,T𝑖), \𝑖 = \.
(4.18)

Next, I can conduct gradient ascent to maximize the 𝐽MRLCO(\). However, optimizing
this objective function involves gradients of gradients, which introduces large computation
cost and implementation difficulties when combining a complex neural network such as
the seq2seq neural network. To address this challenge, this research uses the first-order
approximation to replace the second-order derivatives as suggested in [90], which is defined
as

𝑔MRLCO :=
1
𝑛

𝑛∑
𝑖=1

[
(\′𝑖 − \)/𝛼/𝑚

]
, (4.19)

where 𝑛 is the number of sampled learning tasks in the “outer loop”, 𝛼 is the learning rate of
the “inner loop” training, and 𝑚 is the conducted gradient steps for the “inner loop” training.

I present the overall design of the algorithm in Algorithm 2. The parameters of the meta
policy neural network are denoted as \. I firstly sample a batch of learning tasks T with
batch size 𝑛 and conduct “inner loop” training for each sampled learning task. After finishing
the “inner loop” training, I update the meta-policy parameters \ by using gradient ascent
\← \ + 𝛽𝑔MRLCO via Adam [53]. Here, 𝛽 is the learning rate of “outer loop” training.
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Low fat and density High fat and density

Fig. 4.4 Examples of generated DAGs.

4.4 Performance Evaluation

This section presents the experimental results of the proposed method. First, I introduce the
algorithm hyperparameters of MRLCO and the simulation environment. Next, I evaluate the
performance of MRLCO by comparing it with a fine-tuning DRL method and a heuristic
algorithm.

4.4.1 Algorithm Hyperparameters

The MRLCO is implemented via Tensorflow. The encoder and decoder of the seq2seq neural
network are both set as two-layer dynamic Long Short-Term Memory (LSTM) with 256
hidden units at each layer. Moreover, the layer normalization [9] is added in both the encoder
and decoder. For the training hyperparameters setting in MRLCO, the learning rate of “inner
loop” and “outer loop” are both set as 5× 10−4. The coefficient 𝑐1 is set as 0.5 and the
clipping constant 𝜖 is set as 0.2. The discount factors 𝛾 and _ are set as 0.99 and 0.95,
respectively. The number of gradient steps for “inner loop” training, 𝑚, is set as 3. Overall, I
summarize the hyperparameter setting in Table 4.1.

4.4.2 Simulation Environment

I consider a cellular network, where the data transmission rate varies with the UE’s position.
The CPU clock speed of UE, 𝑓l, is set to be 1 GHz. There are 4 cores in each VM of the
MEC host with the CPU clock speed of 2.5 GHz per core. The offloaded tasks can run in
parallel on all cores, thus the CPU clock speed of a VM, 𝑓s, is 4×2.5 = 10 GHz.

Many real-world applications can be modelled by DAGs, with various topologies and
task profiles. To simulate the heterogeneous DAGs, I implement a synthetic DAG generator
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according to [8]. There are four parameters controlling topologies and task profiles of the
generated DAGs: n, fat, density, and ccr, where n represents the task number, fat controls
the width and height of the DAG, density decides the number of edges between two levels
of the DAG, and ccr denotes the ratio between the communication and computation cost of
tasks. Fig. 4.4 shows the generated DAGs from low fat and density to high fat and density
examples.

I design three experiments to evaluate the performance of MRLCO under dynamic sce-
narios. The first two experiments simulate the scenarios where UE has different application
preferences represented by various topologies and task numbers. While the third experiment
simulates the scenarios where UE has varying dynamic transmission rates. For all experi-
ments, the data size of each task ranges from 5 KB to 50 KB; the CPU cycles required by
each task ranges from 107 to 108 cycles [28]. The length of child/parent task indices vector
𝑝 is set as 12. I randomly select ccr from 0.3 to 0.5 for each generated DAG, since most of
mobile applications are computation-intensive. The generated datasets in each experiment
are separated into “training datasets” and “testing datasets”. I consider learning an effective
offloading policy for each dataset as a learning task. The MRLCO firstly learns a meta policy
based on “training datasets” by using Algorithm 2. The learned meta policy is then used as
the initial policy to fast learn an effective offloading policy for the “testing datasets”.

I compare MRLCO with three baseline algorithms:

• Fine-tuning DRL: It first pretrains one policy for all “training datasets” using the
DRL-based offloading algorithm proposed in [131]. Next, it uses the parameters of the
trained policy network as an initial value of the task-specific policy network, which is
then updated on the “testing datasets”.

• HEFT-based: This algorithm is adapted from [67], which firstly prioritizes tasks based
on HEFT and then schedules each task with earliest estimated finish time.

• Greedy: Each task is greedily assigned to the UE or the MEC host based on its
estimated finish time.

4.4.3 Results Analysis

In the first experiment, this research generates DAG sets with different topologies to simulate
the scenario where users have different preferences of mobile applications. Each dataset
contains 100 DAGs of similar topologies with the same fat and density, which are two key
parameters influencing the DAG topology. I set the task number for each generated DAG
as 𝑛 = 20 and set fat ∈ {0.4,0.5,0.6,0.7,0.8}, density ∈ {0.4,0.5,0.6,0.7,0.8}. 25 DAG sets
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(c) Topology III

Fig. 4.5 Evaluation results with different DAG topologies.

are generated with different combinations of fat and density. Each DAG set represents the
application preference of one mobile user and consider finding the effective offloading policy
for a DAG set as a learning task. I randomly select 22 DAG sets as the training datasets and
the other 3 as unseen testing datasets. I train the MRLCO and the fine-tuning DRL method
on the training datasets and evaluate MRLCO and baseline algorithms on the testing datasets.

During training of MRLCO, I set the meta batch size as 10, thus 10 learning tasks are
sampled from 𝜌(T ) in the “outer loop” training stage. At each “inner loop”, I sample 20
trajectories for a DAG and conduct 𝑚 policy gradient updates (𝑚 = 3) for the PPO target.
After training, I evaluate the MRLCO and fine-tuning DRL method by running up to 20
policy gradient updates, each samples 20 trajectories for a DAG on the testing datasets. Fig.
4.5 shows the performance of the MRLCO and baseline algorithms with different DAG sets.
Overall, the Greedy algorithm has the highest latency, while the MRLCO obtains the lowest
latency. Fig. 4.5a demonstrates that the MRLCO is better than the HEFT-based algorithm
after 9 steps of gradient update, while the fine-tuning DRL method consistently performs
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(a) 𝑛 = 20
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(b) 𝑛 = 30
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(c) 𝑛 = 40

Fig. 4.6 Evaluation results with different task numbers.

worse than the HEFT-based algorithm. This indicates that the MRLCO can adapt to new
tasks much more quickly than the fine-tuning DRL method. In Fig. 4.5b and Fig. 4.5c, the
MRLCO and the fine-tuning DRL method with 0 step of gradient updates already beat the
two heuristic-based algorithms: HEFT-based and the Greedy algorithms, because both the
MRLCO and fine-turning DRL learn the updated policy based on the pre-trained models
instead of learning from scratch. These heuristic-based algorithms use fixed policies to obtain
the offloading plan, which cannot adapt well to different DAG topologies.

The second experiment aims to show the influence of the task number 𝑛 on the perfor-
mance of different algorithms. I randomly generate 6 training datasets with 𝑛 ∈ {10, 15, 25,
35, 45, 50} and 3 testing datasets with 𝑛 ∈ {20,30,40}. In each dataset, I generate DAGs by
randomly selecting fat from {0.4, 0.5, 0.6, 0.7, 0.8}, density from {0.4, 0.5, 0.6, 0.7, 0.8},
and ccr from 0.3 to 0.5, thus the distributions of DAG topologies of all datasets are similar.
In this experiment, I set the meta batch size as 5 and the rest of the settings the same as the
first experiment. Fig. 4.6 shows that both the MRLCO and the fine-tuning DRL method
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(b) 𝑅ul = 𝑅dl = 8.5 Mbps
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Fig. 4.7 Evaluation results with different transmission rates.

outperform the HEFT-based algorithms after a few gradient updates, and are consistently
better than the Greedy from step 0 of gradient updates. Moreover, MRLCO adapts to new
learning tasks faster than the fine-tuning DRL method. For example, Fig. 4.6b shows that,
after one step gradient update, the latency of MRLCO decreases sharply and is less than both
fine-tuning and HEFT-based algorithms. After 20 gradient updates, MRLCO obtains the
lowest latency compared to the baseline algorithms.

I conduct the third experiment to evaluate the performance of MRLCO with different
transmission rates. Learning the offloading policy for each transmission rate is considered as
an individual learning task. I randomly generate the DAG dataset by setting 𝑛 = 20 and other
parameters the same as the second experiment. In addition, I implement Optimal algorithm
via exhaustively searching the solution space to find the optimal offloading plan. I conduct
meta training process based on randomly selected transmission rates from 4 Mbps to 22
Mbps with a step size of 3 Mbps. I then evaluate the trained meta policy among transmission
rates from {5.5 Mbps, 8.5 Mbps, 11.5 Mbps}, which are unseen in the training procedure.
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Fig. 4.7 shows that the MRLCO again adapts to new learning tasks much faster than the
fine-tuning DRL method in all test sets and achieves the lowest latency after 20 gradient
updates. In some cases (Fig. 4.7b and Fig. 4.7c), MRLCO even achieves the lowest latency
at the initial point.

Table 4.2 summarizes the average latency of all algorithms on different testing datasets.
Overall, the MRLCO outperforms all heuristic baseline algorithms after 20 gradient update
steps. The MRLTO and fine-tuning DRL method will get better results with more update
steps. Table 4.2 also shows the performance of the fine-tuning and the MRLCO algorithms
after 100 update steps. Compared to the fine-tuning algorithm, the MRLCO achieves better
result after both 20 and 100 update steps. However, there are still gaps between the results of
MRLCO and the Optimal values. One possible solution could be to integrate the seq2seq
neural network with another sample efficient off-policy MRL method [101], which is a
direction for future work.
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MRLCO has many advantages over the existing RL-based task offloading methods, such
as learning to fast adapt in a dynamic environment and high sample efficiency. Beyond the
scope of task offloading in MEC systems, the proposed MRLCO framework has the potential
to be applied to solve more decision-making problems in MEC systems. For instance, content
caching in MEC aims to cache popular contents at MEC hosts to achieve high Quality-of-
Service (QoS) for mobile users and reduce the network traffic. While MEC hosts can have
different caching policies to suit the dynamic content preferences and network conditions of
users in different areas. The proposed MRL framework can be adapted to solve this problem
through executing the “outer loop” training at cloud servers to learn a meta caching policy
and the “inner loop” training at MEC hosts to learn a specific caching policy for each MEC
host.

Even though MRLCO has many benefits to MEC systems, there are several challenges
for further exploration. In this chapter, I consider stable wireless channels, reliable mobile
devices, and sufficient computation resources. Thus, the MRLCO will not break down
when increasing the number of users. However, when operating at large-scale, some UE as
stragglers may drop out due to broken network connections or insufficient power. Considering
the synchronous process of “outer loop” training that updates the meta policy after gathering
parameters from all UE, the stragglers might affect the training performance of MRLCO.
One way to solve this issue is to apply an adaptive client selection algorithm which can
automatically filter out stragglers and select reliable clients to join the training process based
on their running states.

4.5 Conclusion

In this chapter, I propose an MRL-based approach, namely MRLCO, to solve the computation
offloading problem in MEC. Distinguished from the existing works, the MRLCO can quickly
adapt to new MEC environments within a small number of gradient updates and samples. In
the proposed method, the target mobile applications are modelled as DAGs, the computation
offloading process is converted to a sequence prediction process, and a seq2seq neural
network is proposed to effectively represent the policy. Moreover, I adopt the first-order
approximation for the MRL objective to reduce the training cost and add a surrogate clipping
to the objective so as to stabilize the training. I conduct simulation experiments with different
DAG topologies, task numbers, and transmission rates. The results demonstrate that, within
a small number of training steps, MRLCO achieves the lowest latency compared to three
baseline algorithms including a fine-tuning DRL method, a greedy algorithm, and an HEFT-
based algorithm.



Chapter 5

Online Service Migration with
Incomplete System Information

As a crucial problem in Multi-access Edge Computing (MEC), service migration needs to
decide where to migrate user services for maintaining sustainable Quality-of-Service (QoS)
when users roam between MEC servers with limited coverage and capacity. However, finding
an optimal migration policy is intractable due to the highly dynamic MEC environment
and user mobility. Many existing works make centralized migration decisions based on
complete system-level information, which can be time-consuming and also suffer from
the scalability issue with the rapidly increasing number of mobile users. To address these
challenges, I propose a new learning-driven method, namely Deep Recurrent Actor-Critic
based service Migration (DRACM), which is user-centric and can make effective online
migration decisions by utilizing incomplete system-level information. In the next section, I
give an overall introduction to the research problem, challenges, and contributions.

5.1 Introduction

MEC provides many computing and storage resources at the network edge (close to users),
which can effectively cut down the application latency and improve the the Quality-of-Service
(QoS). Specifically, a mobile application empowered by the MEC consists of a front-end
component running on mobile devices, and a back-end service that runs the tasks offloaded
from the application on MEC servers [102]. In this way, the MEC enables mobile devices
with limited processing power to run complex applications with satisfied QoS.

When considering the user mobility along with the limited coverage of MEC servers, the
communications between a mobile user and the user service running on an edge server may
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go through multiple hops, which would severely affect the QoS. To address this problem,
the service could be dynamically migrated to a more suitable MEC server so that the QoS
is maintained. Unfortunately, finding an optimal migration policy for such a problem is
non-trivial, due to the complex system dynamics and user mobility. Many existing works
[94, 135, 147, 137, 91] proposed service migration solutions based on Markov Decision
Process (MDP) or Lyapunov optimization under the assumption of knowing the complete
system-level information (e.g., available computation resources of MEC servers, profiles
of offloaded tasks, and backhaul network conditions). Thus, they designed centralized
controllers (i.e., controllers are placed on edge servers or central cloud) that make migration
decisions for mobile users in the MEC system.

The aforementioned methods have two potential drawbacks: 1) in a real-world MEC
system, gathering complete system-level information can be difficult and time-consuming;
2) the centralized control approach will have the scalability issue since its time complexity
rapidly increases with the number of mobile users. To address the above issues, some works
proposed decentralized service migration methods based on contextual Multi-Armed Bandit
(MAB) [116, 93, 115], where the migration decisions are made by the user side with partially
observed information. However, they did not consider the intrinsically large state space and
complex dynamics in the MEC system, which may lead to unsatisfactory performance. A
recent work [155] modeled the joint optimization problem of service migration and path
selection as a partially observable Markov decision process (POMDP) solved by independent
Q-learning, which can be unstable and inefficient when handling the MEC environment with
continuous state space (e.g., data size, CPU cycle, workload) and complex system dynamics.

To address the aforementioned challenges, I propose a new method, DRACM, which is
user-centric and can learn to make online migration decisions with incomplete system-level
information based on Deep Reinforcement Learning (DRL). Specifically, the incomplete
system-level information includes the workloads of edge servers, the processing capacity
of edge servers, and the network condition of the links among edge servers. DRL is able to
solve complex decision-making problems in various areas, including robotics [35], games
[152], networks [24], etc., making it an attractive approach. Distinguished from the existing
works, I model the service migration problem as a POMDP with continuous state space and
develop a tailored off-policy actor-critic algorithm to efficiently solve the POMDP.

This framework is highly related to the scenarios when system-level service placement
management is difficult. In practice, a MEC system can include multiple networks and
edge/cloud services that are managed by different operators and it is generally difficult to
achieve efficient coordinated system-level service management across multiple operators.
Therefore, the centralised service migration method may be difficult to deploy in real-world
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MEC systems. In contrast, decentralised methods can avoid using system-level information
and make efficient migration decisions. Moreover, user-managed service migration can
achieve better-personalized service support tailored to user-specific preference when users’
demands are highly diverse [93]. I then summarise the main contributions of this work as:

• This research models the service migration problem as a POMDP to capture the
intrinsically complex system dynamics in the MEC. I solve the POMDP by proposing a
novel off-policy actor-critic method, namely DRACM. Specifically, the distinguishing
advantage of this new method is that it is model-free and can quickly learn effective
migration policies through end-to-end reinforcement learning (RL), where the agent
makes online migration decisions based on the sampled raw data from the MEC
environment with minimal human expertise.

• A new encoder network that combines a Long Short-Term Memory (LSTM) and an
embedding matrix is designed to effectively extract the hidden information from the
sampled histories. Moreover, a tailored off-policy actor-critic algorithm with a clipped
surrogate objective function is developed to substantially stabilize the training process
and improve the performance.

• This research demonstrates how to implement the DRACM efficiently in an emerging
MEC framework, where the migration decisions can be made online through the
inference of the policy network, while the training of the policy network can be offline,
thus saving the cost of directly interacting with the MEC environment.

• Extensive experiments are conducted to evaluate the performance of the DRACM
using real-world mobility traces. The results demonstrate that the DRACM has a
stable training process with high adaptivity to different scenarios. Furthermore, it
outperforms the online baseline algorithms, and can achieve near-optimal results.

5.2 Problem Formulation of Service Migration

As shown in Fig. 5.1, I consider a typical scenario where mobile users move in a geographical
area covered by a set of MEC servers,M, each of which is co-located with a base station. In
the MEC system, mobile users can offload their computation tasks to the services provided
by MEC servers. I define the MEC server that runs the service of a mobile user as the user’s
serving node, and the MEC server that directly connects with the mobile user as the user’s
local server. In general, the MEC servers are interconnected via stable backhaul links, thus
the mobile user can still access its service via multi-hop communication among MEC servers
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Fig. 5.1 An example of service migration in MEC.

when it is no longer directly connected to the serving node. To maintain satisfactory QoS, the
service should be dynamically migrated among the MEC servers as the user moves. In this
chapter, I use latency as the measurement for the QoS that consists of migration, computation,
and communication delays.

I consider a time-slotted model, where a user’s location may only change at the beginning
of each time slot. The time-slotted model is widely used to address the service migration
problem [137, 93, 135], which can be regarded as a sampled version of a continuous-time
model. When a mobile user changes location, the user makes the migration decision for
the current service and then offloads computation tasks to the serving node for processing.
Denote the migration decision at time slot 𝑡 as 𝑎𝑡 (𝑎𝑡 ∈M), where 𝑎𝑡 can be any of the MEC
servers in this area. In general, the migration, computation, and communication delays are
expressed as follows.

Migration delay: The migration delay is incurred when a service is moved out from
the previous serving node. In general, the migration delay 𝐵(𝑑𝑡) = 𝑚𝑐𝑡 𝑑𝑡 is a non-decreasing
function of 𝑑𝑡 [137, 93, 136], where 𝑑𝑡 is the hop distance between the current serving node
𝑎𝑡 and the previous one 𝑎𝑡−1, and 𝑚𝑐𝑡 is the coefficient of migration delay. The migration
delay can capture the service interruption time during migration, which increases with the hop
distance due to the involved propagation and switching delay of service data transmission.

Computation delay: At each time slot, the mobile user may offload computation tasks
to the serving node for processing. The computing resources of MEC servers are shared
by multiple mobile users to process their applications. At time slot 𝑡, I denote the sum
of the required CPU cycles for processing the offloaded tasks as 𝑐𝑡 , the workload of the
serving node as 𝑤𝑎𝑡𝑡 , and the total computing capacity of the serving node as 𝑓 𝑎𝑡 . I consider
a weighted resource allocation strategy on each MEC server, where tasks are allocated with
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computation resources proportional to their required CPU cycles. Therefore, the computation
delay of running the offloaded tasks at time slot 𝑡, can be calculated as

𝐷 (𝑎𝑡) =
𝑐𝑡

( 𝑐𝑡
𝑤
𝑎𝑡
𝑡 +𝑐𝑡

𝑓 𝑎𝑡 )
=
𝑤
𝑎𝑡
𝑡 + 𝑐𝑡
𝑓 𝑎𝑡

. (5.1)

Communication delay: After migrating the service, the communication delay is in-
curred when the mobile user offloads computation tasks to the serving node. Generally, the
communication delay consists of two parts: access delay between the mobile user and the
local server, and backhaul delay between the local server and the serving node. The access
delay is determined by the wireless environment and the data size of the offloaded tasks. At
time slot 𝑡, I denote the data size of the offloaded tasks as 𝑑𝑎𝑡𝑎𝑡 , the average upload rate of
the wireless channel as 𝜌𝑡 . Hence, the access delay can be expressed as

𝑅(𝑑𝑎𝑡𝑎𝑡) =
𝑑𝑎𝑡𝑎𝑡

𝜌𝑡
. (5.2)

While the backhaul delay is incurred by data transmission, propagation, processing, and
queuing between the serving node and the local server through backhaul networks, which
mainly depends on the hop distance along the shortest communication path and the data size
of the offloaded tasks [155, 137, 93]. I denote the local server at time slot 𝑡 as 𝑢𝑡 (𝑢𝑡 ∈ 𝑀) and
the hop distance between the serving node 𝑎𝑡 and the local server 𝑢𝑡 as 𝑦𝑡 . The bandwidth
of the outgoing link of the local server is denoted as [𝑡 . Generally, the transmission delay
of the computation results can be ignored because of the small data size. Consequently, the
backhaul delay can be given by

𝑃(𝑦𝑡 , 𝑑𝑎𝑡𝑎𝑡) =


0, if 𝑦𝑡 = 0,
𝑑𝑎𝑡𝑎𝑡

[𝑡
+2_bh𝑦𝑡 , if 𝑦𝑡 ≠ 0,

(5.3)

where _bh is a coefficient of the backhaul delay [155]. Especially, when the serving node
and mobile user are directly connected (𝑦𝑡 = 0), there is no backhaul cost. Overall, the total
communication delay at time slot 𝑡 can be obtained by

𝐸 (𝑦𝑡 , 𝑑𝑎𝑡𝑎𝑡) = 𝑅(𝑑𝑎𝑡𝑎𝑡) +𝑃(𝑦𝑡 , 𝑑𝑎𝑡𝑎𝑡). (5.4)

Given a finite time horizon 𝑇 , the objective for the service migration problem is to obtain
optimal migration decisions, {𝑎1, 𝑎2, ..., 𝑎𝑇 }, so that the sum of all the above costs (i.e., total
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latency) is minimal. Formally, the objective is expressed as:

min
𝑎0,𝑎1,...,𝑎𝑇

𝑇∑
𝑡=0

𝐵(𝑑𝑡) +𝐷 (𝑎𝑡) +𝐸 (𝑦𝑡 , 𝑑𝑎𝑡𝑎𝑡),

s.t. 𝑎𝑡 ∈M .

(5.5)

Obtaining the optimal solution for the above objective is challenging, which requires
user mobility and complete system-level information over the entire time horizon. However,
in real-world scenarios, it is impractical to gather all the relative information in advance.
To address this challenge, I propose a learning-based online service migration method that
can make efficient migration decisions based on partially observed information. In the next
section, I present the solution in detail.

5.3 Online Service Migration with Incomplete Information

Service migration in MEC is intrinsically a sequential decision-making problem with a
partially observable environment (i.e., with incomplete system information), which can be
naturally modeled as a POMDP. I solve the POMDP with the proposed DRACM method to
provide effective online migration decisions.

5.3.1 POMDP modeling for service migration problem

Key factors that affect the migration decision of a mobile user at a time slot are the mobility
of the user, the offloading tasks’ profile, the workloads of edge servers, and the resource
allocations of edge servers, etc. Ideally, the user can make optimal migration decisions
if knowing complete information related to the decision-making process. However, some
information are hard to obtain for the user side. For example, at each time slot, the workloads
of edge servers are determined by the task requests from their associated mobile users and
the available computation resources of edge servers. However, it is unlikely for a mobile
user to get such information. To make effective decisions based on partially observable
information, POMDP is a natural choice to model the problem, which gives the agent the
ability to effectively estimate the outcome of its actions even when it cannot exactly observe
the state of its environment. In the POMDP modeling, the mobile user treats the unobserved
information (e.g., workloads and resource allocations of MEC servers) as a part of the latent
state. Differing from the simplified model such as MAB, POMDP does not ignore the
intrinsic large state space and complex dynamics of the service migration problem, thus
solving the POMDP can result in more effective decisions.
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The detailed POMDP model of service migration is defined as follows:

• Observation: The observation contains information that is accessible from the user
side, which is defined by a tuple of the local server 𝑢𝑡 , the transmission rate of
wireless network 𝜌𝑡 , the required CPU cycles of computation tasks 𝑐𝑡 , and the sizes of
transmission data, 𝑑𝑎𝑡𝑎𝑡 :

𝑜𝑡 := (𝑢𝑡 , 𝜌𝑡 , 𝑐𝑡 , 𝑑𝑎𝑡𝑎𝑡). (5.6)

Note that the geographical location of the mobile user is an indirect factor that affects
the migration decisions, which determines the local server associated with the mobile
user and affects the transmission rate (included in the definition of the observation, Eq.
(5.6)). Therefore, I define the local server 𝑢𝑡 as a component of the observation rather
than the geographical location of the mobile user.

• Action: At each time slot, the service can be migrated to any of the MEC servers in the
area. Therefore, an action is defined as 𝑎𝑡 ∈M.

• Reward: The reward at each time slot is defined as the negative sum of migration,
computation, and communication delays, which is formally expressed as

𝑟𝑡 := − (𝐵(𝑑𝑡) +𝐷 (𝑎𝑡) +𝐸 (𝑦𝑡 , 𝑑𝑎𝑡𝑎𝑡)) . (5.7)

Solving the above POMDP is non-trivial due to the complex dynamics and continuous
state space of the MEC environment. In the next subsection, I present the method, DRACM,
to solve the above POMDP.

5.3.2 Deep Recurrent Actor-Critic based service Migration (DRACM)

Fig. 5.2 shows the overall architecture of the DRACM, which follows an end-to-end principle
with raw history sampled from the environment as input and the migration decisions as
output. The DRACM consists of two parts: the encoder network and the learning agent,
where the encoder network learns to effectively represent the latent state of the POMDP
based on the history and the learning agent learns to make effective migration decisions. The
goal of the encoder network is to infer the latent state of the POMDP based on the observed
history:

𝑝(𝑠1:𝑇 |𝑜1:𝑇 , 𝑎1:𝑇−1) =
𝑇∏
𝑡=1

𝑝(𝑠𝑡 |𝑠𝑡−1, 𝑎𝑡−1, 𝑜𝑡) (5.8)



82 Online Service Migration with Incomplete System Information

!!"# "!"# #!"# $%&%!"#

!'()

*!"$
x x x x x x
x x x x x x
x x x x x x

concatenate

ActorCritic

!! "! #! $%&%!

!'

*!"#
x x x x x x
x x x x x x
x x x x x x

ActorCritic

!% "% #% $%&%%

!+

*%"#
x x x x x x
x x x x x x
x x x x x x

ActorCritic

Embedding
Matrix

LSTM
…

!!"#

"($!"#|&!"#) "($!|&!)v(&!)v(&!"#)

*%

!!

v(&$) "($$|&$)

!$

Action embedding
User location embedding

*!

…

…

Encoder
Network

Learning
Agent

"'()

Fig. 5.2 The architecture of the DRACM.

Here, I include a LSTM to approximate the above function where the hidden state of the
LSTM, ℎ𝑡 , is used to represent the latent state 𝑠𝑡 of the POMDP, thus I have

ℎ𝑡 = 𝑓enc( [𝑜≤𝑡 , 𝑎<𝑡];\) = 𝑓enc( [𝑜𝑡 , 𝑎𝑡−1], ℎ𝑡−1;\), (5.9)

where 𝑡 ∈ [1,𝑇], 𝑓enc and \ represent the inner process and parameters of the encoder network,
respectively.

To improve the representation ability of the features 𝑢𝑡 and 𝑎𝑡−1, I convert them into
embeddings by looking up a trainable |M| × 𝑑𝑒 matrix, where 𝑑𝑒 is the dimension of embed-
ding vectors. Subsequently, the action embedding, user location embedding, and the rest
components of the observation are concatenated as a vector, 𝑒𝑡 , feeding into the LSTM to
produce the hidden state ℎ𝑡 .

The learning agent is based on a standard actor-critic structure. Both actor and critic
are parametrized by neural networks with the hidden state ℎ𝑡 as input. I denote 𝜙 and 𝜓
as the parameters of actor and critic networks, respectively. The actor network aims at
approximating the policy, 𝜋(𝑎𝑡 |ℎ𝑡;𝜙), which outputs a distribution over the action space at
time step 𝑡 given ℎ𝑡 . Meanwhile, the critic network, 𝑣(ℎ𝑡 ,𝜓), approximates the value function
that is an estimation of the expected return when starting in ℎ𝑡 and following the policy 𝜋
thereafter.

I denote the trajectory sampled from the environment following the policy 𝜋 as 𝜏 =
{𝑜0, 𝑎0, 𝑟0, ..., 𝑜𝑇 , 𝑎𝑇 , 𝑟𝑇 }. The critic network can be updated by minimizing the mean square
error of one-step temporal differences 𝛿𝑡 based on the sampled trajectories, which is formally
defined as

𝐿critic(𝜓, \) = E𝜏∼𝑝(𝜏 |𝜋)

[
𝑇∑
𝑡=0
𝛿2
𝑡

]
, (5.10)
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𝛿𝑡 = 𝑟𝑡 +𝛾𝑣(ℎ𝑡+1;𝜓) − 𝑣(ℎ𝑡 ;𝜓), (5.11)

where the ℎ𝑡 can be obtained by Eq. (5.9) and 𝑟𝑡 is the immediate reward obtained at time
step t. The objective of the actor is to find an optimal policy that maximizes the accumulated
reward, which can be formally expressed as

𝐿act(𝜙, \) = E𝜏∼𝑝(𝜏 |𝜋)

[
𝑇∑
𝑡=0
𝛾𝑡𝑟𝑡

]
. (5.12)

The optimal policy can then be obtained by gradient assent through policy gradient with one-
step actor-critic [118], where the gradient of the above objective function can be calculated
by

∇\,𝜙𝐿act = E𝜏∼𝑝(𝜏 |𝜋)

[
𝑇∑
𝑡=0
𝛿𝑡∇\,𝜙 log𝜋(𝑎𝑡 |ℎ𝑡 ;𝜙)

]
.

(5.13)

However, directly applying the above on-policy (i.e., using the same policy for training
and sampling) objective has some drawbacks when solving the service migration problem.
First, I cannot train the policy network offline with mini-batches by using on-policy objective.
This can lead to severe sample efficiency problem, since the learning agent needs to resample
trajectories from the environment after each gradient update. Especially, in the MEC system,
frequently interacting with the environment to get the training samples is costly. Second, the
on-policy objective has limited exploring ability, thus the policy can easily get stuck in a
local optima. Third, to reduce the variance of the objective function, Eq. (5.13) includes a
biased estimator 𝛿𝑡 . However, introducing bias may harm the convergence of the algorithm.
To address the above problems, I design an off-policy (i.e., training a policy different from
that was used to sample the data) algorithm that can train the policy with mini-batches and
reduce the interaction frequency with the environment. Inspired by the previous works on
RL [108, 37, 107], I introduce an off-policy training method with a surrogate objective as
follows:

𝐿act
c (𝜙, \) = E𝜏∼𝑝(𝜏 |𝜋′)

[
𝑇∑
𝑡=0
𝑔clip(𝜋′𝑡 , 𝜋𝑡 , �̂�𝑡) + 𝑐ℎH(𝜋𝑡)

]
, (5.14)

𝑔clip(𝜋′𝑡 , 𝜋𝑡 , �̂�𝑡) = min
(
𝜋𝑡

𝜋′𝑡
�̂�𝑡 ,clip1+𝜖

1−𝜖

(
𝜋𝑡

𝜋′𝑡

)
�̂�𝑡

)
, (5.15)

�̂�𝑡 (ℎ𝑡 ;𝜓) =
𝑇∑
𝑙=0
(𝛾_)𝑙𝛿𝑡+𝑙 , (5.16)
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Algorithm 3: Deep Recurrent Actor-Critic based service Migration (DRACM)
1 Initialize the parameters of behavior policy 𝜙′, behavior encoder network \′, target

policy 𝜙, target encoder network \, and critic network 𝜓,
2 for 𝑘 = 0,1,2, ..., 𝑛 do
3 /**Start sampling process**/
4 Synchronize the parameters: \′← \, 𝜙′← 𝜙.
5 Sample a set of trajectories 𝐷𝜏 = {𝜏0, 𝜏1, ...𝜏𝑛} by running the behavior policy

𝜋′(𝑎𝑡 |ℎ′𝑡 ;𝜙′) in the environment, where ℎ′𝑡 = 𝑓enc( [𝑜≤𝑡 , 𝑎<𝑡];\′).
6 Compute the advantage estimator, �̂�𝑡 , according to Eq. (5.16).
7

8 /**Start target policy updating process**/
9 for 𝑗 = 0,1,2, ...,𝑚 do

10 Update the parameters of encoder network \, target policy network 𝜙, and
critic network 𝜓,

11 \← \ +∇\𝐿act
c (𝜙, \) −∇\𝐿critic(𝜓, \),

12 𝜙← 𝜙+∇𝜙𝐿act
c (𝜙, \),

13 𝜓← 𝜓−∇𝜓𝐿critic(𝜓, \),
14 by mini-batch gradient updates based on collected trajectories 𝐷𝜏 with Adam.
15 end
16 end

where 𝜋′(𝑎𝑡 |ℎ′𝑡 ;𝜙′) is the behavior policy for sampling trajectories, which does not participate
in gradient updates. 𝜋(𝑎𝑡 |ℎ𝑡;𝜙) is the target policy for optimization. 𝜋𝑡

𝜋′𝑡
is the importance

sampling ratio which is used to correct the distribution errors caused by the difference
between the behavior and target policies. Besides, I introduce 𝑐ℎH(𝜋𝑡) as a regularization
term to further encourage exploration during training, where H(𝜋𝑡) denotes the entropy
of the policy and 𝑐ℎ is a coefficient. However, the off-policy method is known for being
unstable and hard to coverage. To address this issue, the clip function, clip1+𝜖

1−𝜖 , is used to limit
the value of the importance sampling ratio by removing the incentive for moving the ratio
outside of the interval [1− 𝜖,1+ 𝜖], thus it can prevent very large policy updates and stabilize
the training. To balance the trade-off between variance and bias of the training objective, I
utilize the generalized advantage estimator (GAE) [107], �̂�𝑡 , as given by Eq. (5.16), where
_ ∈ [0,1] is used to control the trade-off between bias and variance. GAE can dramatically
reduce the variance of the objective while keeping a tolerable bias level. Different from the
work [108], I include an encoder network as a shared part of both actor and critic networks.
The encoder network can effectively extract the latent state of POMDP based on the history
(i.e., the sequence of previous observations and actions).

Algorithm 3 summarizes the training process of the DRACM. Each training loop consists
of the sampling process and the target policy updating process. In the sampling process,
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Fig. 5.3 The framework of DRACM empowered MEC system. The data flows in this
framework are: 1© the observation 𝑜𝑡 and reward 𝑟𝑡 from the MEC environment, 2© the
history 𝐻𝑡 = {𝑜0, 𝑎0, ..., 𝑎𝑡−1, 𝑜𝑡} for migration decision-making, 3© the migration action, 𝑎𝑡 ,
made by the behavior policy, 4© the collected trajectories uploaded to the experience pool,
5© the parameters of the trained target policy and encoder networks for service migration.

I firstly synchronize the parameters of the behaviour and target networks (include policy
network and encoder network), and then sample a set of trajectories from the environment
using the behaviour encoder and policy networks. The advantage estimator, �̂�𝑡 , can then be
obtained based on the sampled trajectories. Next, in the target policy updating process, I
conduct training of 𝑚 loops to update the parameters of the encoder network, policy network,
and critic network via mini-batch stochastic gradient descent with Adam [53]. After training,
the target policy and encoder networks can be deployed to the end device for making online
migration decisions by neural network inference, which has a linear time complexity of𝑂 (𝑛),
where 𝑛 is the length of the history. In the next subsection, I discuss how to implement the
DRACM in the emerging MEC system.

5.3.3 The DRACM empowered MEC framework

The emerging MEC system defined by ETSI consists of three levels: user level, edge level,
and remote level [104]. The user level includes various mobile devices such as smartphones
and vehicles. The edge level consists of multiple edge servers where each server provides
services for processing tasks that are offloaded by mobile users. The edge servers are
connected through backhaul links, thus the service can be migrated among them. The remote
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level includes data centers with large storage and computing capacity. Fig. 5.3 shows the
overall framework of integrating the DRACM into the three-level MEC system. Four key
components (experience collector, migration decision maker, experience pool, and target
policy trainer) of the DRACM are deployed at the user and remote level:

• At the user level, the experience collector is responsible of collecting the information
of observations and rewards from the MEC environment (Step 1©). It sends the history
𝐻𝑡 = {𝑜0, 𝑎0, ..., 𝑎𝑡−1, 𝑜𝑡} to the migration decision maker for online decision-making
(Step 2©), and the collected trajectories to the experience pool for the target policy
training (Step 4©). The migration decision maker includes behavior policy and encoder
networks. It downloads parameters from the target policy trainer as the initial values of
the behavior policy and encoder networks (Step 5©), and decides the migration actions
based on the observed history (Step 3©).

• At the remote level, the experience pool stores the sampled trajectories from mobile
users. The target policy trainer is in charge of training the target policy based on the
sampled trajectories.

According to Algorithm 3, the target policy trainer conducts multiple training loops
with mini-batch gradient updates based on the collected trajectories in the experience pool.
Note that the training can be offline without directly interacting with the MEC environment.
After training, the target policy trainer sends the updated parameters of policy and encoder
networks to mobile users for the next-round of sampling process.

5.4 Experiments

In this section, I present the comprehensive evaluation results of the DRACM in detail. The
experiments demonstrate that: 1) the DRACM has a stable and efficient training process; 2)
the DRACM can autonomously adapt to different MEC scenarios including various user’s
task arriving rates, applications’ processing densities, and coefficients of migration delay. I
firstly introduce the experiment settings based on a real-world MEC environment. Next, I
present the baseline algorithms for comparison. Finally, I evaluate the performance of the
DRACM and baseline algorithms in different MEC scenarios.

5.4.1 Experiment settings

I evaluate the DRACM with two real-world mobility traces of cabs in Rome, Italy [16] and
San Francisco, USA [97]. Specifically, I focus the analysis to the central parts of Rome
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Fig. 5.4 The central areas of Rome, Italy (8 km × 8 km area bounded by the coordinate pairs
[41.856, 12.442] and [41.928, 12.5387]) and San Francisco (8 km × 8 km area bounded by
the coordinates pairs [37.709, -122.483] and [37.781, -122.391]).

and San Franscisco, as shown in Fig. 5.4. I consider that 64 MEC servers are deployed in
each area, where each MEC server covers a 1 km × 1 km grid with a computation capacity
𝑓 = 128 GHz (i.e., four 16-core servers with 2 GHz for each core). According to [87], the
upload rate of real-world commercial 5G networks is generally less than 60 Mbps. Therefore,
in the environment, the upload rate 𝜌𝑡 in each grid is set as 60, 48, 36, 24, and 12 Mbps from
a proximal end to a distal end. The hop distances between two MEC servers are calculated
by Manhattan distance. The location of an MEC server is represented by a 2-D vector (𝑖, 𝑗)
with respect to a reference location at (0,0). To calculate the propagation latency, I set the
bandwidth of backhaul network, [𝑡 , as 500 Mbps [73] and the coefficient of backhaul delay,
_bh, as 0.02 s/hop [155]. The migration delay varies with various service types and network
conditions, e.g., the migration delay of Busybox (a type of service) ranges from 2.4 to 3.3
seconds [73] with different bachkhaul bandwidths. Following some related work on MEC
[93, 135, 73], I assume the coefficient of migration delay is uniformly distributed in [1.0,3.0]
s/hop during the training.

At each time slot, the tasks arriving at a mobile user and those arriving at an MEC
server are sampled from Poisson distributions with rates _𝑢𝑝 and _𝑠𝑝, respectively. In the
experiments, I show the performance of the DRACM under different task arriving rates of
mobile users. According to the current works [89, 21, 158], the data size of an offloaded
task in real-world mobile applications often varies from 50 KB (sensor data) [89] to 5 MB
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Table 5.1 Parameters of the Simulated Environment.

Parameter Value
Computation capacity of an MEC server, 𝑓 128 GHz

Upload rate of wireless network, 𝜌𝑡 {60, 48, 36, 24, 12} Mbps
Bandwidth of backhaul network, [𝑡 500 Mbps
Coefficient of backhaul delay, _bh 0.02 s/hop
Coefficient of migration delay, 𝑚𝑐

𝑡 𝑈 [1.0,3.0] s/hop
Data size of each offloaded task 𝑈 [0.05,5] MB

Processing density of an offloaded task, ^ 𝑈 [200,10000] cycles/bit
User’s task arriving rate _𝑢𝑝 2 tasks/slot

MEC server’s task arriving rate _𝑠𝑝 𝑈 [5,20] tasks/slot

Table 5.2 Hyperparameters of the DRACM.

Hyperparameter Value Hyperparameter Value
LSTM Hidd. Units 256 Embedding Dim. 𝑑𝑒 2
Actor Layer Type Dense Actor Hidd. Units 128
Critic Layer Type Dense Critic Hidd. Units 128

Learning Rate 0.0005 Optimizer Adam
Discount _ 0.95 Discount 𝛾 0.99

Coefficient 𝑐ℎ 0.01 Clipping Value 𝜖 0.2

(image data) [21]. Hence, I set the data size of each offloaded task uniformly distributed in
[0.05,5] MB. The required CPU cycles of each task can be calculated by the product of the
data size and processing density, ^, which is uniformly distributed in [200,10000] cycles/bit,
covering a wide range of tasks from low to high computation complexity [57]. I summarize
the parameter settings of the simulation environment in Table 5.1.

5.4.2 Baseline algorithms

I compare the performance of the DRACM to that of five baseline algorithms:

• Always migrate (AM): A mobile user always selects the nearest MEC server to
migrate at each time slot.

• Never migrate (NM): The service is placed on an MEC server and never migrate
during the time horizon.

• Multi-armed Bandit with Thompson Sampling (MABTS): Some exiting works
[116, 93] solve the service migration problem based on MAB. According to the work
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Fig. 5.5 Average total reward of the DRACM and baseline algorithms with the mobility
traces of Rome.

[93], MABTS uses a diagonal Gaussian distribution to approximate the posterior of
the cost for each arm and applies Thompson sampling to handle the trade-off between
exploring and exploiting.

• DQL-based migrate (DQLM): Some recent works [135, 147, 155] adapt DQL to
tackle the service migration problem. For a fair comparison, I use similar neural
network structure as DRACM to approximate the action-value function for DQLM,
but use the objective function of the DQL method as the training target. Moreover, I
use 𝜖-greedy to control the exploring-exploiting trade-off as the above works do.

• Optimal migrate (OPTIM): Assuming the user mobility trace and the complete
system-level information over the time horizon are known ahead, the service migration
problem can be transformed to the shortest-path problem [94, 135], which can be
solved by the Dijkstra algorithm.

The NM, AM, MABTS, and DQLM algorithms can run online, while the OPTIM is an offline
algorithm which defines the performance upper-bound of service migration algorithms.

5.4.3 Evaluation of the DRACM and baseline algorithms

This research first evaluates the training performance of the DRACM and DQLM on two
different mobility trace datasets [16, 97]. Each training dataset includes 100 randomly picked
mobility traces, where each trace has 100 time slots of three-minute length each. Table 5.2
lists the hyperparameters in training. The neural network structure of the DQLM is similar to
the DRACM with the same encoder network. The difference is that, rather than using the
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Fig. 5.6 Average total reward of the DRACM and baseline algorithms with the mobility
traces of San Francisco.

actor-critic structure, the DQLM is based on the Q-network that includes a fully connected
layer with 128 hidden units to approximate the action-value function and chooses the action
with the largest action-value at each time step. I train the DQLM and DRACM with the same
learning rate, mini-batch size, and number of gradient update steps.

Figs. 5.5 and 5.6 show the training results of DRACM and DQLM on mobility traces
of Rome and San Francisco, respectively. The other baseline algorithms do not involve
the training process for neural networks, thus I show their final performance. The network
parameters of both DRACM and DQLM are initialized by random values, thus they randomly
select actions to explore the environment and achieve the worst results compared to other
baseline algorithms before training. However, the DRACM quickly surpasses NM and AM
after 12 epochs and keeps growing on both mobility traces. After 25 training epochs, the
average total reward of the DRACM remains stable, which shows the excellent convergence
property of the DRACM. Besides, the final stable results of the DRACM on both mobility
traces beat all baseline algorithms.

To evaluate the generalization ability of the DRACM, I test the trained target policy
on testing datasets of both mobility traces, where each test dataset includes 30 randomly
picked mobility traces that were not included in the training dataset. Figs. 5.7 and 5.8
present the results of the average total latency of DRACM and baseline algorithms on Rome
and San Francisco mobility traces, respectively. I found the DRACM achieves the best
performance compared to online baseline algorithms on both mobility traces. Specifically,
Fig. 5.7 shows that the DRACM outperforms the DQLM and MABTS by 18% and 13%,
respectively. Fig. 5.8 indicates that the DRACM surpasses the DQLM and MABTS by 44%
and 23%, respectively. Furthermore, the DRACM achieves near-optimal results within 12%
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Fig. 5.7 Average total latency (s) of service migration over the time horizon (250 minutes) on
the testing dataset from mobility traces of Rome.

of the optimum on both mobility traces. MABTS models the service migration problem
as a bandit model which can be seen as a one-step MDP. The bandit model only considers
one-step reward which is “short-sighted” compared to the POMDP that includes multi-step
rewards. As a consequence, MABTS can easily get stuck in local optima thus achieving
unsatisfactory performance. Although DQLM models the service migration problem as
POMDP, it uses Q-learning to train the policy, which involves a slow learning process and
can be unstable. Hence, the performance of DQLM is even worse than MABTS. In contrast,
our method models the service migration problem as a POMDP and solve it with an efficient
off-policy policy gradient method.

I then test the DRACM and baseline algorithms with different task arriving rates of users
on both mobility traces. As shown in Figs. 5.9 and 5.10, the average total latencies of all
evaluated algorithms increase with the rise of user’s task arriving rate, since the average
number of offloaded tasks increases at each time slot. The evaluation results show that the
DRACM adapts well among different task arriving rates of users, where it outperforms the
DQLM and MABTS by up to 24% and 45%, respectively. Moreover, in all cases, the results
of DRACM are close to the optimal values.

Next, I investigate the performance of the DRACM with different processing densities.
For a real-world mobile application, the higher is the processing density, the more com-
putation power is required for processing the application. Figs. 5.11 and 5.12 depict the
average total latency of DRACM on Rome mobility traces and San Francisco mobility traces,
respectively. I find that the DRACM adapts well to the change of processing density on both
mobility traces, where it outperforms all online baselines.
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Fig. 5.8 Average total latency (s) of service migration over the time horizon (250 minutes) on
the testing dataset from mobility traces of San Francisco.

Migration delay is another important factor that influences the overall latency. To
investigate the impact of the migration delay, I evaluate the DRACM and baseline algorithms
on the testing datasets with different coefficients of migration delay. Intuitively, when the
migration delay is high, a mobile user may not choose to frequently migrate services. As
shown in Figs. 5.13 and 5.14, the NM algorithm keeps the similar performance in all cases
while the performance of other algorithms drops with the increase of 𝑚𝑡𝑐. This is because
that the NM does not involve the migration process and thus has no migration delay. In Fig.
5.13, I find the MABTS suffers serious performance degradation as 𝑚𝑐𝑡 increases. When the
𝑚𝑡𝑐 is low (e.g., 𝑚𝑡𝑐 = 1.0), the MABTS achieves similar results as the DRACM. However,
when 𝑚𝑡𝑐 > 4, the performance of MABTS becomes even worse than the DQLM. Compared
to RL-based methods like the DQLM and DRACM, MABTS is “short-sighted” since it only
considers the one-step reward rather than explicitly optimizes the total reward over the entire
time horizon. Overall, the DRACM autonomously learns to adapt among the scenarios with
different migration delays, which achieves the best performance compared to the online
baselines (with up to 25% improvement over the MABTS and up to 42% improvement over
the DQLM), and obtains near-optimal results in the experiments.

The DRACM method has many advantages: 1) the learning-based nature of the DRACM
makes it flexible among different scenarios with few human expertise; 2) the user-centric
design is scalable for the increasing number of mobile users, where each mobile user makes
effective online migration decisions based on the incomplete system information; 3) the
tailored off-policy training objective improves both performance and stability of the training
process; 4) the design of online decision-making and offline policy training makes the
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Fig. 5.9 Average total latency (s) of service migration over the time horizon (250 minutes)
with different task arriving rates of users (mobility traces of Rome).

DRACM more practical in real-world MEC systems. Beyond the scope of service migration,
the framework of the DRACM has the potential to be applied to solve more decision-making
problems in MEC systems such as task offloading and resource allocation [77].

Despite that the DRACM has many benefits to solve the service migration problem,
there are several challenges for further investigation. In this paper, I consider minimizing
the individual cost of each mobile user for service migration. Through POMDP modeling,
each mobile user independently learns to solve the service migration problem through
trial-and-error with the MEC environment, without considering actions from other mobile
users (the actions from other mobile users are treated as part of the environment dynamics).
However, when minimizing the global cost of all mobile users, I need to explicitly consider
the cooperation among users to find the best policy during training. One way to solve this
problem is to include cooperative multi-agent reinforcement learning [162] in the training
process, where agents exchange/share local information with their neighbours. In addition,
since sampling experiences from real-world MEC systems can be time-consuming and costly,
the sample efficiency of the DRACM needs to be further improved. During each training
loop, the DRACM only uses the experiences that are sampled from the current behaviour
policy and discards the previous gathered experiences, which might not make full use of the
gather experiences. A potential solution to address this issue is to develop a more efficient
offline reinforcement learning [60] method that can utilize previously collected experiences
from different migration policies. Offline reinforcement learning algorithms hold tremendous
application promise in the field of edge computing since it can learn effective policy through
previous gathered experiences (those experiences can be sampled by carefully designed
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Fig. 5.10 Average total latency (s) of service migration over the time horizon (250 minutes)
with different task arriving rates of users (mobility traces of San Francisco).

expert algorithms or human operators) even without further interaction with the environment
[33].

5.5 Conclusion

In this chapter, I propose the DRACM, a new method for solving the service migration
problem in MEC given incomplete system-level information. The proposed method is
completely model-free and can learn to make online migration decisions through end-to-end
RL training with minimal human expertise. Specifically, the service migration problem in
MEC is modelled as a POMDP. To solve the POMDP, I design an encoder network that
combines an LSTM and an embedding matrix to effectively extract hidden information
from sampled histories. Besides, I propose a new tailored off-policy actor-critic algorithm
with a clipped surrogate objective to improve the training performance. I demonstrate
the implementation of the DRACM in the emerging MEC framework, where migration
decisions can be made online from the user side and the training for the policy can be offline
without directly interacting with the environment. This research evaluates the DRACM and
four online baseline algorithms with real-world datasets and demonstrates that DRACM
consistently outperforms the online baselines and achieves near-optimal results on a diverse
set of scenarios.
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Fig. 5.11 Average total latency (s) of service migration over the time horizon (250 minutes)
with different processing densities (mobility traces of Rome).
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Fig. 5.12 Average total latency (s) of service migration over the time horizon (250 minutes)
with different processing densities (mobility traces of San Francisco).
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Fig. 5.13 Average total latency (s) of service migration over the time horizon (250 minutes)
with different coefficients of migration delay (mobility traces of Rome).
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Fig. 5.14 Average total latency (s) of service migration over the time horizon (250 minutes)
with different coefficients of migration delay (mobility traces of San Francisco).



Chapter 6

Conclusion

6.1 Summary

Optimisation and maintenance for Multi-access Edge Computing systems have been of
vital importance for maintaining high Quality-of-Service (QoS), reducing costs, and saving
energy. Over the past decades, system optimisation and maintenance are traditionally the
responsibility of human experts. However, with the increasing complexity of the system
architecture, effectively optimising such sophisticated systems becomes intractable. This
thesis takes a step forward to solve system optimisation problems in MEC with Deep Rein-
forcement Learning (DRL), letting machines learn optimal policies to optimise themselves.
To demonstrate the effectiveness of DRL-based methods, this thesis investigates two crucial
optimisation problems in MEC systems: task offloading and service migration.

Chapter 3 considers the task offloading problem for mobile applications, where the
applications are modelled as Directed Acyclic Graphs (DAG). The optimisation target is to
minimise a weighted sum of energy consumption and processing latency. To address the
problem, this research proposes a DRL-based offloading framework, DRTO, which combines
an off-policy policy gradient method with a Sequence-to-Sequence (seq2seq) neural network.
Extensive experiments demonstrate that the proposed method achieves superior performance
than human-designed heuristic algorithms and close to the optimal solution with quadratic
time complexity.

Chapter 4 keep investigating the dependent task offloading problem. Although the
proposed DRL-based method in Chapter 3 can achieve good performance for a learning task,
retraining for the policy is required when facing a new learning task, which is time-consuming.
To address the problem, this research enhances the DRL-based task offloading framework
with Meta Reinforcement Learning (MRL), which learns a meta-policy from a range of
learning tasks and uses the meta-policy to speed up the learning of new tasks. Simulation
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experiments demonstrate that the proposed method can fast learn effective offloading policies
for new learning tasks with few update steps and training data.

Chapter 5 studies the service migration problem in MEC considering user mobility.
Different from many existing studies, this thesis considers a decentralised decision-making
process where migration decisions are made by mobile users. This research then models the
service migration problem as a Partially Observable Markov Decision Process (POMDP) and
proposed an actor-critic algorithm that combines Long Short-Term Memory (LSTM) for the
extraction of hidden state to solve the POMDP. This research evaluates the proposed method
with real-world mobility datasets. The results show that the proposed method consistently
outperforms the state-of-the-art online migration algorithms and achieves near-optimal results
on a diverse set of scenarios.

6.2 Future Works

Integrating machine learning technologies into MEC systems has become a promising trend.
Recently, lots of pristine and interesting research problems and directions have been proposed.
In the following section, this thesis outlines some important research directions for future
work.

6.2.1 Offline Model-based Reinforcement Learning Algorithms for Sys-
tem Optimisation

To solve the system optimisation problems by DRL, there are still some challenges for the
implementation of DRL-based methods in real-world MEC systems. First, training DRL
generally requires a large amount of data, however collecting experiences from real-world
MEC systems can be costly. Besides, in some cases, the learning agent can not directly
interact with the edge system during training due to the delayed system rewards. Therefore,
the training algorithm should be sample efficient and offline (i.e. the training is based on the
pre-gathered log data from the system). There are two promising advanced reinforcement
learning (RL) methods can address the above issue: Model-based RL [84] and offline RL
algorithms [60]. Specifically, model-based RL algorithms have been demonstrated to achieve
much higher sample efficiency than model-free one while offline RL algorithms utilize
previously collected data without additional online data collection.

Recently, both model-based RL and offline RL has attracted lots of research interest.
Dyna [117] can be seen as one of the early model-based RL algorithms, which alternates
between model learning, data generation under a model, and policy learning using the model
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data. More recently, Luo et al. [71] proposed a novel algorithmic framework for designing
and analysing model-based RL with theoretical guarantees. Janner et al. [47] developed
a new algorithm that uses short model-generated rollouts branched from real experience.
Their method can match the asymptotic performance of the best model-free algorithms while
achieve much lower sample complexity. Offline RL algorithms aim to learn effective policy
from static datasets without further interaction with the environment. However, there are still
challenges to develop effective offline RL methods. For example, how to properly tackle the
shift between the dataset and the learned policy? Kumar et al. [56] proposed conservative
Q-learning (CQL) to avoid the overestimation of Q-values caused by the distribution shift.
A recent work [52] integrated model-based RL and offline RL which learned a pessimistic
MDP (P-MDP) from the offline datasets and train a near-optimal policy for the P-MDP.

Although some model-based RL and offline RL methods have demonstrated their effec-
tiveness in gaming or robotics environment, seldom of them have been integrated into edge
computing systems. However, the high sample complexity and online training paradigm of
conventional RL algorithms are the main factors that hind them from deploying in real-world
systems. To tackle these issue, model-based RL and offline RL are promising methods for
system optimisation problems.

6.2.2 Reinforcement Learning for System Optimisation Problems with
Constraints

In general, the optimisation targets of traditional RL methods do not explicitly consider
the constraints. However, many real-world system optimisation problems are Constraint-
Satisfaction Problems (CSPs) where the state of the objectives must satisfy several constraints
or limitations. For example, in some scenarios, the task offloading problem needs to satisfy
hard deadline constraints (i.e., deadline constraints for some tasks should never be violated)
[41, 123] or computing resource constraints [69]. Most of the existing RL methods are built
on the MDP without considering the constraints on states, thus it is hard for them to tackle
CSPs.

To solve the above challenges, it is necessary to redesign the existing RL algorithms
to satisfy the system constraints in MEC. A theoretical framework of Constrained Markov
Decision Processes (CMDPs) is introduced by Altman [7] in 1999. In CMDPs, the objective
is to maximize accumulated reward while satisfying some linear constraints over auxiliary
costs. Altman [7] presented a Linear Programming (LP) based methods to handle CMDPs
that the model dynamics are known. In high-dimensional environment settings, Achiam
et al. [2] approximated the constrained objective with an unconstrained one and sought to
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ensure approximate constraint satisfaction during the training process. Nachum et al. [85]
developed a special duality-based solution to RL algorithms, which transforms the traditional
constraint-satisfaction mathematical form to an unconstrained one. Miryoosefi et al. [81]
proposed an algorithmic scheme that can handle various types of constraints with rigorous
theoretical guarantees. Despite the above RL solutions for CSPs, most of them have some
assumptions that can hardly be satisfied in real-world systems (e.g., the constraints should
be convex). Exploring new RL frameworks to address system optimisation problems under
constraints can be a promising and important research direction.

6.2.3 Safe and Robust Reinforcement Learning in MEC systems

RL fundamentally involves exploring and exploiting processes where the agent needs to
visit different states and actions in order to find an optimal policy. The context-free random
exploring methods such as 𝜖-greedy have no constraints for the action, thus may bring the
system into an unsafe region and cause catastrophic consequences. In addition, the trained
policies of conventional RL algorithms are fragile to the environment perturbation. For
safety-critical applications, the failure of a learned policy may lead to dangerous situations.
Unfortunately, MEC systems generally contain unstable and noisy dynamics due to the
complex and dynamic wireless communication and highly heterogeneous edge devices.
Some applications in MEC systems including self-driven vehicles [70] and cloud robotics
[3] are highly safety-sensitive, thus we need to assure a safe exploring process during RL
training and generate robust policies for deployment.

Safe and robust RL has been an active area in recent years [95, 34, 96]. A safe and robust
RL system should ensure reasonable system performance and/or respect safety constraints
during the learning and/or deployment processes [34]. In the software engineering area,
formal verification is concerned with the rigorous mathematical specification, design, and
verification of systems [146]. Therefore, a natural starting point is to consider formal methods
to verify the DRL-based solutions. However, since DRL combines DNNs that are black-box
models for decision-making, verifying DRL still faces lots of challenges [109]. To prevent
the failure of the trained policy in turbulent environments, the policy should be robust against
the adversarial input. To address this problem, some studies [128, 96] explicitly involve
adversarial training into their algorithm, thus create policies that are robust to differences in
training/test conditions. However, these methods still lack theoretical guarantees. Building
safe and robust RL for real-world systems is an open research area where lots of issues and
challenges remain unsolved.
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6.2.4 Federated Reinforcement Learning in Edge Computing Systems

In MEC systems, the training of RL algorithms is generally conducted on the central Cloud,
thus requiring mobile users to upload their local data. However, in many real-world applica-
tions, data from clients is often decentralised and privacy sensitive while the client devices
(e.g., smartphones, tablets, and IoT devices) generally have limited samples and computing
resources. Consequently, it is challenge for traditional RL methods to learn effective models
for those applications while keep the data stored on the individual client without harming the
privacy.

To address the above challenges, Federated Learning (FL) is an emerging solution
that aims to collaboratively train Machine Learning (ML) models in a distributed fashion
without sensitive user data leaving the devices where it was generated. Many popular FL
algorithms for supervised learning, such as Federated Averaging (FedAvg) [79], work in an
iterative fashion, with rounds of local training on clients, followed by model uploading and
aggregation on a server. Therefore only model parameters, and not sensitive user data, is
uploaded by clients. However, the majority of FL works consider training supervised models,
how to extend FL to RL paradigm remains an interesting and open challenge [49].

Several previous works have investigated training RL policies in the FL setting. Nadiger
et al. [86] proposed a system for training virtual Pong players (controlled via a Deep Q-
network) in the FL setting to match the skill levels of (simulated) players. In [141] and [140],
the authors design systems for training RL policies to maximise cache-hits for user content
on base stations near the network edge. Zhou et al. [167] designed the FedRL system for
training a policy, where individual FL clients do not each have access to the full state-space
of the RL task. Despite this previous research interest, none of these previous works provide
rigorous theoretical analysis about combining RL and FL. Therefore, investigating effective
methods for the integration of RL and FL in MEC systems and providing rigorous theoretical
analysis create interesting opportunities and challenges for the applications of RL methods
in real-world MEC systems.
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