34,497 research outputs found

    Configurable Strategies for Work-stealing

    Full text link
    Work-stealing systems are typically oblivious to the nature of the tasks they are scheduling. For instance, they do not know or take into account how long a task will take to execute or how many subtasks it will spawn. Moreover, the actual task execution order is typically determined by the underlying task storage data structure, and cannot be changed. There are thus possibilities for optimizing task parallel executions by providing information on specific tasks and their preferred execution order to the scheduling system. We introduce scheduling strategies to enable applications to dynamically provide hints to the task-scheduling system on the nature of specific tasks. Scheduling strategies can be used to independently control both local task execution order as well as steal order. In contrast to conventional scheduling policies that are normally global in scope, strategies allow the scheduler to apply optimizations on individual tasks. This flexibility greatly improves composability as it allows the scheduler to apply different, specific scheduling choices for different parts of applications simultaneously. We present a number of benchmarks that highlight diverse, beneficial effects that can be achieved with scheduling strategies. Some benchmarks (branch-and-bound, single-source shortest path) show that prioritization of tasks can reduce the total amount of work compared to standard work-stealing execution order. For other benchmarks (triangle strip generation) qualitatively better results can be achieved in shorter time. Other optimizations, such as dynamic merging of tasks or stealing of half the work, instead of half the tasks, are also shown to improve performance. Composability is demonstrated by examples that combine different strategies, both within the same kernel (prefix sum) as well as when scheduling multiple kernels (prefix sum and unbalanced tree search)

    Scheduling MapReduce Jobs under Multi-Round Precedences

    Full text link
    We consider non-preemptive scheduling of MapReduce jobs with multiple tasks in the practical scenario where each job requires several map-reduce rounds. We seek to minimize the average weighted completion time and consider scheduling on identical and unrelated parallel processors. For identical processors, we present LP-based O(1)-approximation algorithms. For unrelated processors, the approximation ratio naturally depends on the maximum number of rounds of any job. Since the number of rounds per job in typical MapReduce algorithms is a small constant, our scheduling algorithms achieve a small approximation ratio in practice. For the single-round case, we substantially improve on previously best known approximation guarantees for both identical and unrelated processors. Moreover, we conduct an experimental analysis and compare the performance of our algorithms against a fast heuristic and a lower bound on the optimal solution, thus demonstrating their promising practical performance

    Exploiting partial reconfiguration through PCIe for a microphone array network emulator

    Get PDF
    The current Microelectromechanical Systems (MEMS) technology enables the deployment of relatively low-cost wireless sensor networks composed of MEMS microphone arrays for accurate sound source localization. However, the evaluation and the selection of the most accurate and power-efficient network’s topology are not trivial when considering dynamic MEMS microphone arrays. Although software simulators are usually considered, they consist of high-computational intensive tasks, which require hours to days to be completed. In this paper, we present an FPGA-based platform to emulate a network of microphone arrays. Our platform provides a controlled simulated acoustic environment, able to evaluate the impact of different network configurations such as the number of microphones per array, the network’s topology, or the used detection method. Data fusion techniques, combining the data collected by each node, are used in this platform. The platform is designed to exploit the FPGA’s partial reconfiguration feature to increase the flexibility of the network emulator as well as to increase performance thanks to the use of the PCI-express high-bandwidth interface. On the one hand, the network emulator presents a higher flexibility by partially reconfiguring the nodes’ architecture in runtime. On the other hand, a set of strategies and heuristics to properly use partial reconfiguration allows the acceleration of the emulation by exploiting the execution parallelism. Several experiments are presented to demonstrate some of the capabilities of our platform and the benefits of using partial reconfiguration

    Pregelix: Big(ger) Graph Analytics on A Dataflow Engine

    Full text link
    There is a growing need for distributed graph processing systems that are capable of gracefully scaling to very large graph datasets. Unfortunately, this challenge has not been easily met due to the intense memory pressure imposed by process-centric, message passing designs that many graph processing systems follow. Pregelix is a new open source distributed graph processing system that is based on an iterative dataflow design that is better tuned to handle both in-memory and out-of-core workloads. As such, Pregelix offers improved performance characteristics and scaling properties over current open source systems (e.g., we have seen up to 15x speedup compared to Apache Giraph and up to 35x speedup compared to distributed GraphLab), and makes more effective use of available machine resources to support Big(ger) Graph Analytics
    • …
    corecore