156,573 research outputs found

    Targeting Interventions in Networks

    Get PDF
    We study the design of optimal interventions in network games, where individuals' incentives to act are affected by their network neighbors' actions. A planner shapes individuals' incentives, seeking to maximize the group's welfare. We characterize how the planner's intervention depends on the network structure. A key tool is the decomposition of any possible intervention into principal components, which are determined by diagonalizing the adjacency matrix of interactions. There is a close connection between the strategic structure of the game and the emphasis of the optimal intervention on various principal components: In games of strategic complements (substitutes), interventions place more weight on the top (bottom) principal components. For large budgets, optimal interventions are simple - targeting a single principal component

    Targeting Interventions in Networks

    Get PDF
    We study games in which a network mediates strategic spillovers and externalities among the players. How does a planner optimally target interventions that change individuals’ private returns to investment? We analyze this question by decomposing any intervention into orthogonal principal components, which are determined by the network and are ordered according to their associated eigenvalues. There is a close connection between the nature of spillovers and the representation of various principal components in the optimal intervention. In games of strategic complements (substitutes), interventions place more weight on the top (bottom) principal components, which reflect more global (local) network structure. For large budgets, optimal interventions are simple – they involve a single principal component

    From Centrality to Temporary Fame: Dynamic Centrality in Complex Networks

    Get PDF
    We develop a new approach to the study of the dynamics of link utilization in complex networks using records of communication in a large social network. Counter to the perspective that nodes have particular roles, we find roles change dramatically from day to day. "Local hubs" have a power law degree distribution over time, with no characteristic degree value. Our results imply a significant reinterpretation of the concept of node centrality in complex networks, and among other conclusions suggest that interventions targeting hubs will have significantly less effect than previously thought.Comment: 11 pages, 4 figure

    Comparing Methods of Targeting Obesity Interventions in Populations: An Agent-based Simulation

    Get PDF
    Social networks as well as neighborhood environments have been shown to effect obesity-related behaviors including energy intake and physical activity. Accordingly, harnessing social networks to improve targeting of obesity interventions may be promising to the extent this leads to social multiplier effects and wider diffusion of intervention impact on populations. However, the literature evaluating network-based interventions has been inconsistent. Computational methods like agent-based models (ABM) provide researchers with tools to experiment in a simulated environment. We develop an ABM to compare conventional targeting methods (random selection, based on individual obesity risk, and vulnerable areas) with network-based targeting methods. We adapt a previously published and validated model of network diffusion of obesity-related behavior. We then build social networks among agents using a more realistic approach. We calibrate our model first against national-level data. Our results show that network-based targeting may lead to greater population impact. We also present a new targeting method that outperforms other methods in terms of intervention effectiveness at the population level

    Human and social capital strategies for Mafia network disruption

    Full text link
    Social Network Analysis (SNA) is an interdisciplinary science that focuses on discovering the patterns of individuals interactions. In particular, practitioners have used SNA to describe and analyze criminal networks to highlight subgroups, key actors, strengths and weaknesses in order to generate disruption interventions and crime prevention systems. In this paper, the effectiveness of a total of seven disruption strategies for two real Mafia networks is investigated adopting SNA tools. Three interventions targeting actors with a high level of social capital and three interventions targeting those with a high human capital are put to the test and compared between each other and with random node removal. Human and social capital approaches were also applied on the Barab\'asi-Albert models which are the one which better represent criminal networks. Simulations showed that actor removal based on social capital proved to be the most effective strategy, by leading to the total disruption of the criminal network in the least number of steps. The removal of a specific figure of a Mafia family such as the Caporegime seemed also promising in the network disruption

    Salience and default mode network coupling predicts cognition in aging and Parkinson’s disease

    Full text link
    OBJECTIVES: Cognitive impairment is common in Parkinson’s disease (PD). Three neurocognitive networks support efficient cognition: the salience network, the default mode network, and the central executive network. The salience network is thought to switch between activating and deactivating the default mode and central executive networks. Anti-correlated interactions between the salience and default mode networks in particular are necessary for efficient cognition. Our previous work demonstrated altered functional coupling between the neurocognitive networks in non-demented individuals with PD compared to age-matched control participants. Here, we aim to identify associations between cognition and functional coupling between these neurocognitive networks in the same group of participants. METHODS: We investigated the extent to which intrinsic functional coupling among these neurocognitive networks is related to cognitive performance across three neuropsychological domains: executive functioning, psychomotor speed, and verbal memory. Twenty-four non-demented individuals with mild to moderate PD and 20 control participants were scanned at rest and evaluated on three neuropsychological domains. RESULTS: PD participants were impaired on tests from all three domains compared to control participants. Our imaging results demonstrated that successful cognition across healthy aging and Parkinson’s disease participants was related to anti-correlated coupling between the salience and default mode networks. Individuals with poorer performance scores across groups demonstrated more positive salience network/default-mode network coupling. CONCLUSIONS: Successful cognition relies on healthy coupling between the salience and default mode networks, which may become dysfunctional in PD. These results can help inform non-pharmacological interventions (repetitive transcranial magnetic stimulation) targeting these specific networks before they become vulnerable in early stages of Parkinson’s disease.Published versio
    • …
    corecore