36 research outputs found

    Optimal Transmission Radius for Energy Efficient Broadcasting Protocols in Ad Hoc and Sensor Networks

    Get PDF
    International audienceWe investigate the problem of minimum energy broadcasting in ad hoc networks where nodes have capability to adjust their transmission range. The minimal transmission energy needed for correct reception by neighbor at distance r is proportional to r^alpha + c_e, alpha and c_e being two environment-dependent constants. We demonstrate the existence of an optimal transmission radius, computed with a hexagonal tiling of the network area, that minimizes the total power consumption for a broadcasting task. This theoretically computed value is experimentally confirmed. The existing localized protocols are inferior to existing centralized protocols for dense networks. We present two localized broadcasting protocols, based on derived 'target' radius, that remain competitive for all network densities. The first one, TR-LBOP, computes the minimal radius needed for connectivity and increases it up to the target one after having applied a neighbor elimination scheme on a reduced subset of direct neighbors. In the second one, TR-DS, each node first considers only neighbors whose distance is no greater than the target radius (which depends on the power consumption model used), and neighbors in a localized connected topological structure such as RNG or LMST. Then, a connected dominating set is constructed using this subgraph. Nodes not selected for the set may be sent to sleep mode. Nodes in selected dominating set apply TR-LBOP. This protocol is the first one to consider both activity scheduling and minimum energy consumption as one combined problem. Finally, some experimental results for both protocols are given, as well as comparisons with other existing protocols. Our analysis and protocols remain valid if energy needed for packet receptions is charged

    Localized Broadcast Incremental Power Protocol for Wireless Ad Hoc Networks.

    Get PDF
    As broadcasting is widely used for miscellaneous maintenance operations in wireless ad hoc networks, where energy is a scarce resource, an efficient broadcasting protocol is of prime importance. One of the best known algorithm, named BIP (Broadcast Incremental Power), constructs a spanning tree rooted at a given node. This protocol offers very good results in terms of energy savings, but its computation is unfortunately centralized, as the source node needs to know the entire topology of the network to compute the tree. Many localized protocols have since been proposed, but none of them has ever reached the performances of BIP. Even distributed versions of the latter have been proposed, but they require a huge transmission overhead for information exchange and thus waste energy savings obtained thanks to the efficiency of the tree. In this paper, we propose and analyze a localized version of this protocol. In our method, each node is aware of the position of all the hosts in the set of its 2-hop neighborhood and compute the BIP tree on this set, based on information provided by the node from which it got the packet. That is, a tree is incrementally built thanks to information passed from node to node in the broadcast packet. Only the source node computes an initially empty tree to initiate the process. We also provide experimental results showing that this new protocol has performances very close to other good ones for low densities, and is very energy-efficient for higher densities with performances that equal the ones of BIP

    Optimal transmission radius for energy efficient broadcasting protocols in ad hoc and sensor networks

    Full text link

    Modeling and Validation of Transmission Range Adjustment Algorithm in Wireless Sensor Network Using Colored Petri Nets

    Get PDF
    The interest, research and development in Wireless Sensor Network (WSN) is increasing day by day. In WSN the sensor nodes play the role of routers in broadcasting. One of the simplest way in broadcasting in WSN is flooding in which all the sensor nodes relay the data packets once with their full transmission range to attain the full network coverage. But as we know sensor nodes operate on limited battery power, resulting in wastage of power resources due to transmission at full power. So flooding proves itself to be an inefficient broadcasting technique. So there must be some other efficient techniques to solve the problem of minimum or lesser transmission energy broadcasting. In the WSN nodes have capabilities of adjust their transmission range in a limit, as lesser transmission range leads us to more number of transmission but lesser power consumption at individual node. We try to cover both the aspects of WSN, that the nodes can be stationary or moving. We uses the concept of an optimal transmission radius, computed with a hexagonal tiling of the network area, that minimizes the total power consumption for a broadcasting task. We assume energy consumption for both the packet transmission and receptions. In this thesis a Local Minimum Spanning Tree (LMST) algorithm is used to generate a LMST tree for the specified network area. In LMST we generate a fully connected graph containing all the sensor nodes with minimum sum of edge lengths. The idea behind using the minimum edge length( i.e. minimum transmission range) is that, transmission energy å transmission range. For thesis purpose MATLAB is used to generate the LMST and to calculate the energy spent in broadcasting, and CPN is used to validate the LMST generated by MATLAB. CPN is a formal languagefs product which can validate the working of any algorithm or the protocol designed by any simulator

    Localized Broadcast Incremental Power Protocol for Wireless Ad Hoc Networks.

    Get PDF
    As broadcasting is widely used for miscellaneous maintenance operations in wireless ad hoc networks, where energy is a scarce resource, an efficient broadcasting protocol is of prime importance. One of the best known algorithm, named BIP (Broadcast Incremental Power), constructs a spanning tree rooted at a given node. This protocol offers very good results in terms of energy savings, but its computation is unfortunately centralized, as the source node needs to know the entire topology of the network to compute the tree. Many localized protocols have since been proposed, but none of them has ever reached the performances of BIP. Even distributed versions of the latter have been proposed, but they require a huge transmission overhead for information exchange and thus waste energy savings obtained thanks to the efficiency of the tree. In this paper, we propose and analyze a localized version of this protocol. In our method, each node is aware of the position of all the hosts in the set of its 2-hop neighborhood and compute the BIP tree on this set, based on information provided by the node from which it got the packet. That is, a tree is incrementally built thanks to information passed from node to node in the broadcast packet. Only the source node computes an initially empty tree to initiate the process. We also provide experimental results showing that this new protocol has performances very close to other good ones for low densities, and is very energy-efficient for higher densities with performances that equal the ones of BIP

    Unified Power Management in Wireless Sensor Networks, Doctoral Dissertation, August 2006

    Get PDF
    Radio power management is of paramount concern in wireless sensor networks (WSNs) that must achieve long lifetimes on scarce amount of energy. Previous work has treated communication and sensing separately, which is insufficient for a common class of sensor networks that must satisfy both sensing and communication requirements. Furthermore, previous approaches focused on reducing energy consumption in individual radio states resulting in suboptimal solutions. Finally, existing power management protocols often assume simplistic models that cannot accurately reflect the sensing and communication properties of real-world WSNs. We develop a unified power management approach to address these issues. We first analyze the relationship between sensing and communication performance of WSNs. We show that sensing coverage often leads to good network connectivity and geographic routing performance, which provides insights into unified power management under both sensing and communication performance requirements. We then develop a novel approach called Minimum Power Configuration that ingegrates the power consumption in different radio states into a unified optimization framework. Finally, we develop two power management protocols that account for realistic communication and sensing properties of WSNs. Configurable Topology Control can configure a network topology to achieve desired path quality in presence of asymmetric and lossy links. Co-Grid is a coverage maintenance protocol that adopts a probabilistic sensing model. Co-Grid can satisfy desirable sensing QoS requirements (i.e., detection probability and false alarm rate) based on a distributed data fusion model

    Routing and scheduling approaches for energy-efficient data gathering in wireless sensor networks

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2011.Thesis (Ph. D.) -- Bilkent University, 2011.Includes bibliographical references leaves 99-108.A wireless sensor network consists of nodes which are capable of sensing an environment and wirelessly communicating with each other to gather the sensed data to a central location. Besides the advantages for many applications, having very limited irreplaceable energy resources is an important shortcoming of the wireless sensor networks. In this thesis, we present effective routing and node scheduling solutions to improve network lifetime in wireless sensor networks for data gathering applications. Towards this goal, we first investigate the network lifetime problem by developing a theoretical model which assumes perfect data aggregation and power-control capability for the nodes; and we derive an upper-bound on the functional lifetime of a sensor network. Then we propose a routing protocol to improve network lifetime close to this upper-bound on some certain conditions. Our proposed routing protocol, called L-PEDAP, is based on constructing localized, self-organizing, robust and power-aware data aggregation trees. We also propose a node scheduling protocol that can work with our routing protocol together to improve network lifetime further. Our node scheduling protocol, called PENS, keeps an optimal number of nodes active to achieve minimum energy consumption in a round, and puts the remaining nodes into sleep mode for a while. Under some conditions, the optimum number can be greater than the minimum number of nodes required to cover an area. We also derive the conditions under which keeping more nodes alive can be more energy efficient. The extensive simulation experiments we performed to evaluate our PEDAP and PENS protocols show that they can be effective methods to improve wireless sensor network lifetime for data gathering applications where nodes have power-control capability and where perfect data aggregation can be used.Tan, Hüseyin ÖzgürPh.D

    An Overview of Own Tracking Wireless Sensors with GSM-GPS Features

    Get PDF
    Wireless Sensors (WS) mobility and pause time have a major impact directly influencing the energy consumption. Lifetime of a WS Network (WSN) depends directly on the energy consumption, thus, the hardware and software components must be optimized for energy management. This study aims to combine a compact hardware architecture with a smart energy management efficiency in order to increase ratio Lifetime/Energy Consumption, to improve the operating time on a portable tracking system with GPS/GSM/GPRS features and own power. In this paper we present the evolution of own WS tracking architecture with GPS/GSM/GPRS features, basic criterion being the lifetime combined with low power consumption. Concern was focused on hardware and software areas: Large number of physical components led to reconsideration of hardware architecture, while for software, we focused on algorithms able to reduce the number of bits in transmitted data packets, which help to reduce energy consumption. The results and conclusions show that the goal was achieved

    A distributed topology control technique for low interference and energy efficiency in wireless sensor networks

    Get PDF
    Wireless sensor networks are used in several multi-disciplinary areas covering a wide variety of applications. They provide distributed computing, sensing and communication in a powerful integration of capabilities. They have great long-term economic potential and have the ability to transform our lives. At the same time however, they pose several challenges – mostly as a result of their random deployment and non-renewable energy sources.Among the most important issues in wireless sensor networks are energy efficiency and radio interference. Topology control plays an important role in the design of wireless ad hoc and sensor networks; it is capable of constructing networks that have desirable characteristics such as sparser connectivity, lower transmission power and a smaller node degree.In this research a distributed topology control technique is presented that enhances energy efficiency and reduces radio interference in wireless sensor networks. Each node in the network makes local decisions about its transmission power and the culmination of these local decisions produces a network topology that preserves global connectivity. The topology that is produced consists of a planar graph that is a power spanner, it has lower node degrees and can be constructed using local information. The network lifetime is increased by reducing transmission power and the use of low node degrees reduces traffic interference. The approach to topology control that is presented in this document has an advantage over previously developed approaches in that it focuses not only on reducing either energy consumption or radio interference, but on reducing both of these obstacles. Results are presented of simulations that demonstrate improvements in performance. AFRIKAANS : Draadlose sensor netwerke word gebruik in verskeie multi-dissiplinêre areas wat 'n wye verskeidenheid toepassings dek. Hulle voorsien verspreide berekening, bespeuring en kommunikasie in 'n kragtige integrate van vermoëns. Hulle het goeie langtermyn ekonomiese potentiaal en die vermoë om ons lewens te herskep. Terselfdertyd lewer dit egter verskeie uitdagings op as gevolg van hul lukrake ontplooiing en nie-hernubare energie bronne. Van die belangrikste kwessies in draadlose sensor netwerke is energie-doeltreffendheid en radiosteuring. Topologie-beheer speel 'n belangrike rol in die ontwerp van draadlose informele netwerke en sensor netwerke en dit is geskik om netwerke aan te bring wat gewenste eienskappe het soos verspreide koppeling, laer transmissiekrag en kleiner nodus graad.In hierdie ondersoek word 'n verspreide topologie beheertegniek voorgelê wat energie-doeltreffendheid verhoog en radiosteuring verminder in draadlose sensor netwerke. Elke nodus in die netwerk maak lokale besluite oor sy transmissiekrag en die hoogtepunt van hierdie lokale besluite lewer 'n netwerk-topologie op wat globale verbintenis behou.Die topologie wat gelewer word is 'n tweedimensionele grafiek en 'n kragsleutel; dit het laer nodus grade en kan gebou word met lokale inligting. Die netwerk-leeftyd word vermeerder deur transmissiekrag te verminder en verkeer-steuring word verminder deur lae nodus grade. Die benadering tot topologie-beheer wat voorgelê word in hierdie skrif het 'n voordeel oor benaderings wat vroeër ontwikkel is omdat dit nie net op die vermindering van net energie verbruik of net radiosteuring fokus nie, maar op albei. Resultate van simulasies word voorgelê wat die verbetering in werkverrigting demonstreer.Dissertation (MEng)--University of Pretoria, 2010.Electrical, Electronic and Computer Engineeringunrestricte

    Clustering and Hybrid Routing in Mobile Ad Hoc Networks

    Get PDF
    This dissertation focuses on clustering and hybrid routing in Mobile Ad Hoc Networks (MANET). Specifically, we study two different network-layer virtual infrastructures proposed for MANET: the explicit cluster infrastructure and the implicit zone infrastructure. In the first part of the dissertation, we propose a novel clustering scheme based on a number of properties of diameter-2 graphs to provide a general-purpose virtual infrastructure for MANET. Compared to virtual infrastructures with central nodes, our virtual infrastructure is more symmetric and stable, but still light-weight. In our clustering scheme, cluster initialization naturally blends into cluster maintenance, showing the unity between these two operations. We call our algorithm tree-based since cluster merge and split operations are performed based on a spanning tree maintained at some specific nodes. Extensive simulation results have shown the effectiveness of our clustering scheme when compared to other schemes proposed in the literature. In the second part of the dissertation, we propose TZRP (Two-Zone Routing Protocol) as a hybrid routing framework that can balance the tradeoffs between pure proactive, fuzzy proactive, and reactive routing approaches more effectively in a wide range of network conditions. In TZRP, each node maintains two zones: a Crisp Zone for proactive routing and efficient bordercasting, and a Fuzzy Zone for heuristic routing using imprecise locality information. The perimeter of the Crisp Zone is the boundary between pure proactive routing and fuzzy proactive routing, and the perimeter of the Fuzzy Zone is the boundary between proactive routing and reactive routing. By adjusting the sizes of these two zones, a reduced total routing control overhead can be achieved
    corecore