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Radio power management is of paramount concern in wireless sensor networks (WSNs)

that must achieve long lifetimes on scarce amount of energy. Previous work has

treated communication and sensing separately, which is insufficient for a common

class of sensor networks that must satisfy both sensing and communication require-

ments. Furthermore, previous approaches focused on reducing energy consumption

in individual radio states resulting in suboptimal solutions. Finally, existing power

management protocols often assume simplistic models that cannot accurately reflect

the sensing and communication properties of real-world WSNs.

We develop a unified power management approach to address these issues. We first

analyze the relationship between sensing and communication performance of WSNs.

We show that sensing coverage often leads to good network connectivity and geo-

graphic routing performance, which provides insights into unified power management

under both sensing and communication performance requirements. We then develop



a novel approach called Minimum Power Configuration that integrates the power

consumption in different radio states into a unified optimization framework. Finally,

we develop two power management protocols that account for realistic communication

and sensing properties of WSNs. Configurable Topology Control can configure a

network topology to achieve desired path quality in presence of asymmetric and

lossy links. Co-Grid is a coverage maintenance protocol that adopts a probabilistic

sensing model. Co-Grid can satisfy desirable sensing QoS requirements (i.e., detection

probability and false alarm rate) based on a distributed data fusion model.



To Yanni



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Sensing Coverage Maintenance . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Power-aware Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Topology Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Connectivity maintenance . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Sleep Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Relationship between Coverage and Connectivity . . . . . . . . . . 16

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Sensing and Communication Models . . . . . . . . . . . . . . 17

3.1.2 Voronoi Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Coverage vs. Connectivity . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Extensions to More Realistic Models . . . . . . . . . . . . . . . . . . 20

iv



3.4 Integrated Coverage and Connectivity Maintenance . . . . . . . . . . 22

4 Impact of Coverage on Greedy Geographic Routing . . . . . . . . . 24

4.1 Network Model and Performance Metric . . . . . . . . . . . . . . . . 25

4.2 Greedy Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Bounded Voronoi Greedy Forwarding (BVGF) . . . . . . . . . . . . . 30

4.3.1 The BVGF Algorithm . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 Network Dilation of BVGF . . . . . . . . . . . . . . . . . . . . 32

4.3.3 Summary of Analysis on Network Dilations . . . . . . . . . . . 43

4.4 Extension to a Probabilistic Communication Model . . . . . . . . . . 44

4.4.1 Routing Algorithms with ARQ . . . . . . . . . . . . . . . . . 45

4.4.2 Routing Algorithms without ARQ . . . . . . . . . . . . . . . . 47

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Results under the Deterministic Communication Model . . . . 49

4.5.2 Results under the Probabilistic Communication Model . . . . 51

5 Minimum Power Configuration . . . . . . . . . . . . . . . . . . . . . . 54

5.1 An Illustrating Example . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Centralized Approximation Algorithms . . . . . . . . . . . . . . . . . 64

5.3.1 Matching based Algorithm . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Shortest-path Tree Heuristic (STH) . . . . . . . . . . . . . . . 67

5.3.3 Incremental Shortest-path Tree Heuristic (ISTH) . . . . . . . 71

5.3.4 Constant-ratio Approximation Algorithm . . . . . . . . . . . . 75

5.3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 79

5.4 Distributed Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Minimum Power Configuration Protocol . . . . . . . . . . . . 82

v



5.4.2 Minimum Active Subnet Protocol . . . . . . . . . . . . . . . . 87

5.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . 89

5.5.2 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.3 Performance of MPCP . . . . . . . . . . . . . . . . . . . . . . 91

5.5.4 Comparison of MPCP and MASP . . . . . . . . . . . . . . . . 95

6 Configurable Topology Control . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.2 Topology Control Problem . . . . . . . . . . . . . . . . . . . . 103

6.2 The CTC Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . 106

6.2.3 Per-node Power Control . . . . . . . . . . . . . . . . . . . . . 109

6.2.4 Per-link Power Control . . . . . . . . . . . . . . . . . . . . . . 113

6.2.5 Correctness of CTC . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.6 Time Complexity of CTC . . . . . . . . . . . . . . . . . . . . 116

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Quality of Network Topology . . . . . . . . . . . . . . . . . . 117

6.3.2 Simulation Settings on Prowler . . . . . . . . . . . . . . . . . 120

6.3.3 Performance Results . . . . . . . . . . . . . . . . . . . . . . . 121

7 Probabilistic Coverage Maintenance . . . . . . . . . . . . . . . . . . . 125

7.1 Detection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1.2 Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vi



7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Design of Coverage Maintenance Protocols . . . . . . . . . . . . . . . 133

7.3.1 Centralized Coverage Maintenance

Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.2 Coverage Maintenance Protocol based on Separate Grids . . . 136

7.3.3 Coverage Maintenance Protocol with

Inter-grid Coordination . . . . . . . . . . . . . . . . . . . . . . 136

7.4 Analysis of the Degree of Parallel Configuration . . . . . . . . . . . . 142

7.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 144

8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 146

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

vii



List of Tables

5.1 Radio transmission parameters . . . . . . . . . . . . . . . . . . . . . . 80

5.2 A routing table in MPCP. . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



List of Figures

3.1 The Voronoi diagram of the nodes that 1-cover a region. . . . . . . . 17

4.1 GF always finds a next-hop node in sensing-covered networks. . . . . 27

4.2 A routing path of BVGF . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 BVGF always finds a next-hop node . . . . . . . . . . . . . . . . . . . 33

4.4 Voronoi forwarding rectangle. . . . . . . . . . . . . . . . . . . . . . . 36

4.5 One-step projected progress of BVGF . . . . . . . . . . . . . . . . . 37

4.6 Projected progress of two non-adjacent nodes . . . . . . . . . . . . . 39

4.7 Projected Progress in Four Consecutive Steps . . . . . . . . . . . . . 42

4.8 Network Dilations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9 Performance with ARQ under the probabilistic communication model. 51

4.10 Performance w/o ARQ under the probabilistic communication model. 52

5.1 Two communication paths from a to c: a → c or a → b → c. . . . . . 56

5.2 Average power consumption vs. data rate . . . . . . . . . . . . . . . 57

5.3 Matching based algorithm (MBA) for MPC problem . . . . . . . . . . 65

5.4 Shortest-path Tree Heuristic (STH) . . . . . . . . . . . . . . . . . . . 68

5.5 (a) Initial network with edge weight Cu,v and node weight z = 2 (shown

on each node). (b) edge weights are defined by r1 · Cu,v + z. (c) edge

weights are defined by r2 · Cu,v + z. . . . . . . . . . . . . . . . . . . . 68

5.6 Incremental Shortest-path Tree Heuristic (ISTH) . . . . . . . . . . . 72

ix



5.7 The shortest path from s2 to t shares a edge with the existing shortest

path from s1 to t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.8 The Gilbert minimum Steiner tree algorithm . . . . . . . . . . . . . . 78

5.9 Energy consumption vs. number of flows. . . . . . . . . . . . . . . . . 81

5.10 The junction node C will initiate a round of route update due to the

arrival of new source A. . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.11 Routing topologies of different protocols with 20 sources. . . . . . . . 92

5.12 Energy consumption of different protocols. . . . . . . . . . . . . . . . 93

5.13 Communication performance and overhead of different protocols. . . . 94

5.14 Energy consumption on different platforms. . . . . . . . . . . . . . . 96

5.15 End-to-end delay on different platforms. . . . . . . . . . . . . . . . . 97

5.16 Routing overhead on different platforms. . . . . . . . . . . . . . . . . 97

6.1 The execution of two different algorithms. . . . . . . . . . . . . . . . 106

6.2 The Per-node CTC Algorithm with the min sum metric (executed at u)110

6.3 Measured DTC of per-node CTC algorithms . . . . . . . . . . . . . . 119

6.4 Measured DTC of per-link CTC algorithms . . . . . . . . . . . . . . . 119

6.5 Measured DTC of CTC and LMST. . . . . . . . . . . . . . . . . . . . 120

6.6 Packet delivery ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7 Average delay of the received packets at the sink . . . . . . . . . . . . 122

6.8 Measured DTC of CTC and LMST. . . . . . . . . . . . . . . . . . . . 122

6.9 The variation of transmission energy of all nodes. . . . . . . . . . . . 123

7.1 Overlapping Grid Layout . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 An example of degree of Parallel Configuration. . . . . . . . . . . . . 143

7.3 Degree of Parallel Configuration vs. grid width. . . . . . . . . . . . . 144

x



Acknowledgments

First, I would like to thank my advisor, Dr. Chenyang Lu, for his inspiration, his

enthusiasm, and his great efforts to help me grow as a researcher. He has made my

doctoral study at Washington University a journey full of fun and excitements. His

guidance and our numerous scientific discussions have greatly improved this work.

I wish to thank Dr. Robert Pless for his constant support and guidance. He gave

many insightful and constructive suggestions on this work, and helped me improve

my analytical skills. I am very grateful to Dr. Gruia-Catalin Roman who always was

available when I needed his advices throughout my D.Sc period.

Part of the thesis work in Chapter 5 was done while I was a research intern at the

Palo Alto Research Center Inc. It is a pleasure to thank Dr. Qingfeng Huang, Dr.

Ying Zhang, Dr. Markus P.J. Fromherz and all other members in the Embedded

Reasoning Area (ERA) group for their hospitality and collaborations.

I wish to thank my wife and best friend, Yanni, for accompanying me through the

difficult times, and for her love, understanding and support during my D.Sc period.

Thanks to my fellow students for their collaborations and friendship. I am especially

grateful to Sangeeta Bhattacharya, Octav Chipara, Chien-Liang Fok, Kevin Klues,

Venkita Subramonian, Xiaorui Wang, and Yuanfang Zhang.

Lastly but not least, I wish to thank my parents for their love and continuous support.

I am grateful to my father for my early interest in science and technology.

Guoliang Xing

Washington University in Saint Louis

August 2006

xi



1

Chapter 1

Introduction

1.1 Motivation

The advances in Micro-Electro-Mechanical Systems (MEMS), low-cost communica-

tion and sensing technologies have enabled the deployments of a large number of sen-

sor nodes to collect the information about the physical environments. These nodes

are typically equipped with CPU, memory, wireless communication interfaces and

various sensors. Due to the lack of a priori infrastructure support in deployment

environments, the nodes must self-organize into networks, referred to as wireless sen-

sor networks (WSNs), and collaboratively sense the useful information from their

surrounding areas and deliver to the base stations.

Typical WSN applications include habitat monitoring in remote biological environ-

ments [42], structural health monitoring [72], object detection and tracking [35], and

so on. Due to the high deployment cost, a WSN must remain operational for a long

lifetime (from several months to years) on batteries or limited power supplies like

small solar panels. For instance, due to the high cost for embedding sensors in civil

infrastructure such as buildings and bridges, a WSN deployed for structural health
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monitoring must be able to continuously operate for more than ten years to be eco-

nomically feasible. Therefore, energy conservation is crucial for WSNs to become

viable in real world deployments. In this thesis, we focus on reducing the radio power

consumption as radio is the major source of power dissipation in many WSNs [54].

While power management has the potential of significantly extending the system

lifetime of WSNs, it may degrade the Quality of Service (QoS) received by users. For

example, reducing radio transmission power of nodes, although can lower the energy

consumed in packet transmissions, may potentially result in partitioned network or

longer communication delay due to reduced radio range. Therefore, a major challenge

of power management in WSNs is to achieve satisfactory QoS required by applications

while minimizing the total energy consumption of the network.

In sharp contrast to traditional ad hoc networks only concerned with communication

performance, WSNs must satisfy both sensing and communication QoS required by

applications simultaneously. Such combined performance requirements underlie the

integration of multi-hop wireless communication and sensing capabilities on WSN

platforms.

• Sensing QoS requirements: Since the primary purpose of WSNs is to moni-

tor the environment, they must maintain sufficient quality of sensing even when

operating in an energy conservation mode. An important sensing QoS required

by many WSN applications is sensing coverage. Sensing coverage characterizes

the monitoring quality provided by a sensor network in a designated region.

Different applications require different degrees of sensing coverage. For exam-

ple, distributed detection based on data fusion [64] requires every location to
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be monitored by multiple nodes, and distributed tracking and classification [35]

requires even higher degrees of coverage.

• Communication QoS requirements: At the same time, both data fusion

among multiple sensors and data services for end-users may have QoS require-

ments on the communication network. The minimum requirement is that the

active nodes must guarantee network connectivity among different nodes when-

ever they need to communicate. Single connectivity is not sufficient for many

sensor networks because a single failure could disconnect the network. Higher

connectivity may also be necessary to maintain good throughput by avoiding

communication bottlenecks. In addition, many sensing applications also involve

real-time observation or interaction with the physical environment and the un-

derlying sensor networks need to deliver sensor data under timing constraints

in form of end-to-end deadlines. For example, a surveillance sensor network

may need to deliver the information of an evolving wild fire to firefighters in 5

seconds. Otherwise, the firefighters may fail to locate the frontier of the quickly

evolving fire. The end-to-end delay is related to the number of hops between

source and sink and one-hop communication delay.

Several radio power management approaches can achieve certain communication QoS

required by users. Topology control [50, 48, 45, 30, 36, 3, 38] aims at preserving net-

work connectivity or low node degree while reducing the total transmission power

consumption of a network. Power-aware routing [56, 18, 19, 10, 51] can reduce trans-

mission energy consumption of a packet by choosing appropriate routes. Sleep schedul-

ing [78, 83, 63] can configure nodes to run in sleep/wakeup duty cycles to reduce the

idle listening energy consumption of a network while providing sufficient effective net-

work bandwidth. Connectivity maintenance protocols [7, 11, 74] maintain a small set
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of active nodes that preserve network connectivity while scheduling all other nodes

to sleep.

Recently, several power management approaches have been proposed to achieve sens-

ing QoS requirements. Several centralized solutions [43, 13, 9] can select the minimal

set of active nodes to maintain sensing coverage based on the global information of a

network. Due to requirements for scalability and fault-tolerance, localized algorithms

are more suitable and robust for large-scale WSNs that operate in dynamic environ-

ments. Recently, several distributed protocols [61, 75, 6] are proposed to maintain

sensing coverage and schedule redundant nodes to sleep.

Although a multitude of solutions have been proposed, existing power management

techniques often share the following important limitations.

• Separate treatment of sensing and communication: The existing power

management approaches have treated sensing and communication QoS in an

isolated fashion. Unfortunately, providing sensing or communication QoS alone

is not sufficient for a sensor network to satisfy users’ requirements. For ex-

ample, although a connectivity maintenance protocol can guarantee continuous

connection of the network through a communication backbone composed of a

small number of active nodes, it may lower the network’s capability of sensing

asynchronous targets due to the reduced density of active nodes. The combi-

nation of sensing and communication is a special requirement introduced by

sensor networks that integrate multi-hop wireless communication and sensing

capabilities into a single platform. On one hand, without enough sensing cov-

erage, the network cannot monitor the environment with sufficient accuracy or

may even suffer from “sensing voids” – locations where no sensing can occur.
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On the other hand, when the network connectivity is low or the communication

latency is high, nodes may not be able to coordinate effectively in distributed

sensing tasks or transmit sensor data back to base stations in time. However,

to our best knowledge, no unified framework exists to date for power man-

agement under both sensing and communication QoS requirements. Moreover,

the fundamental relationship between sensing and communication has not been

studied. For example, the sensing coverage required by applications determines

the minimum number of active nodes and their distribution, which in turns

impacts the communication performance of the network. Understanding the re-

lationship between sensing and communication performance requirements will

yield key insights into minimizing the total network energy consumption.

• Power conservation in individual radio states: The existing power man-

agement approaches only aim at reducing the power consumed in a particular

radio state. As a result, they are only effective for certain radio platforms

and network conditions. Topology control and power-aware routing protocols

only reduce the transmission power of radio, and hence are not suitable for

the applications with low workload or the radio platforms with high idle power

consumption. Backbone maintenance and sleep scheduling protocols, on the

other hand, only reduce the idle power consumption, and hence are not ef-

fective when the network workload is high or the idle power consumption of

radio is low. Clearly, a WSN needs to reduce the energy consumed in each of

the radios states (i.e., transmission, reception, and idle) in order to minimize

its total energy consumption, which requires effective application all the above

approaches.
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• Unrealistic communication and sensing models: Recent empirical studies

[81, 8, 84] revealed that lossy and asymmetric links are common in WSNs. For

example, communication over a wireless link may experience a highly proba-

bilistic reception performance. These findings contradicted the widely adopted

distance based radio models used in the existing power management protocols.

Similarly, the deterministic sensing models (such as the disc model) used by the

existing coverage maintenance protocols [9, 61, 65, 75, 76] cannot character-

ize the stochastic nature of real physical signals. Furthermore, these protocols

assume that each sensor performs sensing independently. This assumption is

invalidated by many sensor network applications which rely on data fusion to

improve sensing performance.

In this thesis work, we propose a unified approach for power management in WSNs.

We first conduct systematic studies on the fundamental relationship between sensing

and communication QoS requirements. Our results show that sensing coverage often

leads to good network connectivity. Moreover, simple greedy geographic routing al-

gorithms are shown to perform well in many sensing-covered WSNs. These results

provide important insights into unified power management under both sensing and

communication QoS requirements. We then propose a new radio power management

scheme called minimum power configuration (MPC). In contrast to the existing ap-

proaches that treat different radio states (transmission/reception/idle) in isolation,

MPC integrates them into a unified optimization framework. We design four ap-

proximation algorithms with provable performance bounds and two practical routing

protocols that significantly outperform existing power-aware routing and topology

control protocols. Finally, to account for realistic properties of WSNs like proba-

bilistic sensing range and communication link quality, we develop two novel power
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management protocols. Configurable Topology Control (CTC) is a localized topology

control protocol that can configure a network topology to achieve desired path qual-

ity bounds in presence of lossy links. Co-Grid is a distributed coverage maintenance

protocol that adopts a probabilistic sensing model. Co-Grid can satisfy desirable

sensing QoS requirements (i.e., detection probability and false alarm rate) based on

a distributed data fusion model.

1.2 Contributions

Specifically, the main contributions of this thesis work are as follows:

• Analysis of the relationship between coverage and connectivity: We

provide a geometric analysis of the fundamental relationship between coverage

and connectivity. Specifically, our analytical results (1) show that sensing cover-

age implies network connectivity when the sensing range is no more than half of

the communication range; and (2) quantify the relationship between the degree

of coverage and connectivity. These results give underlying insights for treating

coverage and connectivity in a unified power management framework. This is

in sharp contrast to several existing works that address the two requirements

separately.

• Analysis of the impact of coverage on geographic routing: We con-

duct theoretical analysis on the impact of sensing coverage on the performance

geographic routing algorithms. Our results demonstrate that an existing ge-

ographic routing algorithm, greedy forwarding (GF), although often fails on

random network topologies, can successfully find short routing paths based on
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local states in sensing-covered networks. In particular, we derive theoretical

upper bounds on the network dilation of sensing-covered networks under GF.

We also propose a new greedy geographic routing algorithm called Bounded

Voronoi Greedy Forwarding (BVGF) that achieves path dilation lower than

4.62 in sensing-covered networks as long as the communication range is at least

twice the sensing range. Furthermore, we extend GF and BVGF to achieve

provable performance bounds in terms of total number of transmissions and

reliability in lossy networks. Our studies prove that simple greedy geographic

routing algorithms like GF and BVGF yield good performance in presence of

sensing coverage.

• Minimum power configuration: We propose a new power management ap-

proach called Minimum power configuration (MPC). In contrast to existing ap-

proaches that treat different radio states (transmission/reception/idle) in isola-

tion, MPC integrates them in a unified optimization model that considers both

the set of active nodes and their transmission power. We have designed a set

of approximation algorithms with provable performance bounds, and two prac-

tical distributed protocols. In particular, the Minimum Power Configuration

Protocol (MPCP) can flexibly adapt to a wide range of radio platforms and

applications by taking into consideration the power characteristics of the radio

and the current workload of the network.

• Configurable transmission power control: We propose a new formulation

of topology control problem for lossy WSNs based on a new metric called dila-

tion of transmission count (DTC). DTC accounts for lossy links and quantifies

the worst-case path quality of a network topology. We develop a set of novel,
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localized configurable topology control (CTC) algorithms that can achieve dif-

ferent DTC bounds. CTC has two salient features. It can provide path quality

assurance over lossy and asymmetric links in WSNs. Furthermore, it enables

applications to achieve desired tradeoff between transmission power and path

quality based on their specific requirements.

• Probabilistic coverage maintenance: We develop a new coverage mainte-

nance protocol called Co-Grid. In contrast to the existing solutions based on

the simple disc sensing model, Co-Grid adopts a probabilistic sensing model

that incorporates realistic properties of physical signals like propagation de-

cay. Coverage in Co-Grid is defined based on detection probability and sys-

tem false alarm rate thresholds that are consistent to the QoS requirements of

many sensing applications like event monitoring. Moreover, Co-Grid integrates

a distributed detection model that allows for efficient data fusion from multiple

nodes.

The rest of the thesis is organized as follows. Related work is reviewed in Section 2.

The analyses of the relationship between coverage and connectivity, and the impact

of sensing coverage on geographic routing are presented in Section 3 and 4, respec-

tively. We present the minimum power configuration approach to power management

in Section 5. Two novel power management schemes that account for realistic com-

munication and sensing properties of WSNs, Configurable Topology Control (CTC)

and Co-Grid, are presented in Section 6 and 7, respectively. We conclude the thesis

in Section 8.
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Chapter 2

Related Work

As one of the most fundamental issues in WSNs, power management has been exten-

sively studied in the literature. In this section, we review different approaches to the

power management of WSNs. We first review the existing work on sensing coverage

maintenance, followed by a survey on different power management approaches under

communication QoS requirements, including topology control, connectivity mainte-

nance, power-aware routing, and sleep scheduling.

2.1 Sensing Coverage Maintenance

Several node deployment strategies are investigated in [13, 9] to provide sufficient

coverage for distributed detection based on global information of a network. Due to

requirements for scalability and fault-tolerance, localized algorithms are more suit-

able and robust for large-scale WSNs that operate in dynamic environments. Tian

and Georganas [61] proposed a local coverage maintenance algorithm in which each

node decides to be active or not based on the geometric calculation of the spon-

sored sectors from its neighbors. The differentiated surveillance protocol proposed
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in [75] is designed to achieve different degrees of coverage by dynamically scheduling

nodes’ duty cycles. For WSNs to operate successfully, the active nodes must maintain

both sensing coverage and satisfactory communication performance. Unfortunately,

none of the above coverage maintenance protocols is concerned with communication

performance of the network.

Our earlier work on Coverage Configuration Protocol [71] is the first work that aims

to provide both provable degree of sensing coverage and network connectivity. Ye et

al. [76] proposed the PEAS protocol that also addresses both coverage and connec-

tivity in a configurable fashion. However, nodes in PEAS base their status (active or

asleep) on probabilistic probing to its neighbors, and hence does not provide analyti-

cal guarantees on the degree of coverage or connectivity. The problem of maintaining

both sensing coverage and network connectivity is also studied in [79].

As these works provide initial promise of maintaining both sensing coverage and net-

work connectivity, the fundamental implication of sensing coverage on the communi-

cation performance of the network including both network connectivity and routing

performance has not been addressed, and is our focus of discussion in Section 4.

2.2 Power-aware Routing

Power-aware routing aims at minimizing the per packet transmission power in multi-

hop routing. Singh et al. proposed five power-aware routing metrics to reduce energy

consumption and extend system lifetime [56]. The implementation of a minimum en-

ergy routing protocol based on DSR was discussed in [18, 19]. An online power-aware

routing scheme is proposed to optimize system lifetime of WSNs in [39]. Chang and
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Tassiulas studied the problem of maximizing the lifetime of a network with known

data rates [10]. Chang et al. formulated the problem of choosing routes and trans-

mission power of each node to maximize the system lifetime as a linear programming

problem and discussed two centralized algorithms [10]. Sankar et al. formulated

maximum lifetime routing as a maximum concurrent flow problem and proposed a

distributed algorithm [51]. More recently, Dong et al. [17] studied the problem of

minimum transmission energy routing in the presence of unreliable communication

links.

The major limitation of power-aware routing is that it only minimizes the transmission

power of nodes and ignores the power consumption in other radio states. As a result, it

is only effective for the radio platforms with high transmission power or the networks

with high workload where nodes operate in transmission state in most of time.

2.3 Topology Control

Topology control aims to preserve the desirable properties of a wireless network (e.g.,

K-connectivity) through reduced nodal transmission power. A comprehensive sur-

vey on existing topology control schemes can be found in [52]. Most of the existing

algorithms aim at maintaining (strong) network connectivity and several other sec-

ondary network properties such as low node degree and bidirectional link connectivity

[50, 48, 45, 30, 36, 3]. In the scheme proposed in [50], a node chooses to relay through

other nodes only when less power is used. The network is shown to be strongly con-

nected if every node only keeps the links with the nodes in its “enclosure” defined by

the relay regions. Ramanathan and Hain [48] proposed two centralized algorithms to
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minimize the maximal power used per node while maintaining the (bi)connectivity

of the network. Two distributed heuristics were also proposed for mobile networks

in [48], although they may not necessarily preserve the network connectivity. Two

algorithms are proposed in [45, 30] to maintain network connectivity using the min-

imal transmission power. CBTC [36] preserves the network connectivity using the

minimum power that can reach some node in every cone smaller than 5π/6. A local

topology called Localized Delaunay Triangulation (LDT) is shown to have a constant

stretch factor with respect to the original network [3]. Li et al. [38] proposed LMST –

a MST-based topology control scheme which preserves the network connectivity and

has bounded node degree. Li and Hou [37] proposed a localized algorithm that builds

a K-vertex connected topology based on the extended Kruskal’s MST algorithm [32].

Li et al. [40] proposed a localized algorithm that preserves K-connectivity by hav-

ing each node choose K closest neighbors in each of the p ≥ 6 cones. Hajiaghayi et

al. [25] proposed three approximate algorithms (two centralized and one distributed)

that build the K-connected topology.

Most of the above works aim at maintaining connectivity based metrics of a network

through reduced transmission power. However, network connectivity does not suf-

fice to provide a satisfactory communication performance when the underlying links

among nodes are lossy. Recent empirical studies [81, 1] revealed that lossy communi-

cation links are common in wireless sensor networks and 801.11 mesh networks. The

simple network model (e.g., the unit disk model) adopted by existing schemes fails to

capture the characteristics of such lossy links in real deployments. Furthermore, sim-

ilar to power-aware routing, topology control only minimizes the transmission power

of the network.
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2.4 Connectivity maintenance

An effective approach of reducing idle listening power consumption of radios is to

maintain a communication backbone composed of a small number of active nodes

and schedule other nodes to sleep. ASCENT [7] and SPAN [11] are two adaptive

connectivity maintenance protocols in which each node assesses its local connectiv-

ity with neighbors and decides whether to join the communication backbone of the

network. AFECA [73] is a routing scheme in which each node decides to be active or

asleep based on application-level information as well as network density. Xu et al. [74]

proposed a connectivity maintenance protocol called GAF that utilizes geographic in-

formation to ensure every node in the network is covered by the communication range

of at least one active node.

The connectivity maintenance approach has two major limitations: (1) As connec-

tivity maintenance only reduces the idle listening power of nodes, it is only effective

when the idle power of the radio is high or the network workload is low. (2) It is only

suitable for the networks that are dense enough such that extraneous nodes can be

turned off without impairing the network performance.

2.5 Sleep Scheduling

In sleep scheduling, each node operates in a duty cycle composed of wake-up/sleep

intervals. A sleep schedule with fixed duty cycle is adopted in 802.11 Power Sav-

ing Mode (PSM) [27]. Ye et al. propose a MAC protocol called S-MAC for WSNs

[78]. Each node in S-MAC operates in synchronous adaptive duty cycles that can
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be extended based on network activity. T-MAC [63] is a MAC protocol that can

mitigate the impact of low node duty cycle on network throughput by an adaptive

sleep schedule adjustable based on workload variation. Zheng and Kravets [83] pro-

posed a similar on-demand sleep scheduling scheme adaptive to the network workload.

The above approaches are based on synchronous sleep schedules that are inherently

subject to significant communication delay when packets arrive during sleep time of

nodes. Although the adaptive sleep scheduling schemes adopted in [78, 83, 63] can

improve the responsiveness of nodes, they are based on heuristics and hence cannot

provide guarantee on the worst-case communication delay.

Recently, asynchronous sleep scheduling schemes have been proposed to achieve bet-

ter trade-offs between energy consumption and communication delay. Zheng et al.

[82] proposed an asynchronous sleep scheduling that allows bounded wake-up delay

in neighbor discovery. Lu et al. [41] showed that minimizing the end-to-end com-

munication delay for a general topology under asynchronous duty cycle is NP-hard.

The authors studied the optimal solutions for several special topologies like trees and

rings. Polastre et al. [47] proposed a MAC protocol called B-MAC for WSNs that

supports asynchronous sleep scheduling and adopts a low power listening scheme to

wake up nodes. The major limitation of asynchronous sleep scheduling is its high

overhead in neighbor discovery as each node in the neighborhood has different sleep

schedules. Similar to connectivity maintenance, sleep scheduling only reduces the idle

listening power of the network.
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Chapter 3

Relationship between Coverage

and Connectivity

Sensing coverage maintenance has recently received much attention [61, 75, 70, 76, 79].

The basic idea is to choose a small set of active nodes that satisfy the coverage re-

quirement of the application while scheduling all other nodes to operate in sleeping

or power saving mode. For a WSN to operate successfully, the active nodes must

maintain both sensing coverage and satisfactory communication performance. In this

chapter, we analyze the fundamental relationship between sensing coverage and net-

work connectivity. This analysis will provide important insights for treating sensing

and communication in a unified power management framework. Our results show

that many networks with sensing coverage exhibit desirable network connectivity.

3.1 Preliminaries

We first define the simple sensing and communication models assumed in this section.

We then introduce a geometric graph structure called Voronoi Diagram that is used
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in our analysis. We present our analytical results based on the simple sensing and

communication models in Section 3.2, and then extend them to more realistic models

in Section 3.3.

3.1.1 Sensing and Communication Models

We now introduce the following simplistic network model that is useful for our initial

analysis. Every node v has a circular sensing radius Rs. Any point within Rs of v is

covered by v. Any two nodes u and v can directly communicate with each other if their

Euclidian distance is less than a communication range Rc. Although this simplistic

model only represents an limited approximation to the communication/sensing region

in real WSN deployments, it allows us to quantify the impact of sensing coverage

and develop important insights into the relationship between sensing coverage and

communication. We will discuss how our results are extended when these assumptions

are relaxed.
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Figure 3.1: The Voronoi diagram of the nodes that 1-cover a region.
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3.1.2 Voronoi Diagram

Voronoi diagram is one of the most fundamental structures in computational geometry

and has found applications in a variety of fields [4]. For a set of n nodes V in 2D space,

the Voronoi diagram of V is the partition of the plane into n Voronoi regions, one

for each node in V . The Voronoi region of node i (i ∈ V ) is denoted by Vor(i). Fig.

3.1 shows a Voronoi diagram of a set of nodes. A point in the plane lies in Vor(i) if

and only if i is the closest node to the point. The boundary between two contiguous

Voronoi regions is called a Voronoi edge. A Voronoi edge is on the perpendicular

bisector of the segment connecting two adjacent nodes. A Voronoi vertex is the

intersection of Voronoi edges. As shown in Fig. 3.1, point p is a Voronoi vertex of

three contiguous Voronoi regions: Vor(u), Vor(v) and Vor(w). We assume that all

nodes are in general positions (i.e., no four nodes are co-circular).

In the dual graph of Voronoi diagram, Delaunay Triangulation (denoted by DT (V )),

there is an edge between nodes u and v in DT (V ) if and only if the Voronoi regions

of nodes u and v share a boundary. DT (V ) consists of Delaunay triangles. Fig. 3.1

shows a Delaunay triangle uvw. DT (V ) is planar, i.e., no two edges cross.

3.2 Coverage vs. Connectivity

We now analyze the relationship between coverage and connectivity. We note that

connectivity only requires that the location of any active node to be within the com-

munication range of one or more active nodes such that all active nodes can form a

connected communication backbone, while coverage requires all locations in the cov-

erage region to be within the sensing range of at least one active node. Intuitively, the
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relationship between connectivity and coverage depends on the ratio of the communi-

cation range to the sensing range. However, it is easily seen that a connected network

may not guarantee its coverage regardless of the ranges. This is because coverage is

concerned with whether any location is uncovered while connectivity only requires

that the locations of all active nodes are connected. Hence we focus on analyzing

the sufficient condition for a covered network to guarantee connectivity in the rest

of this section. A network is Ks covered (or has a Ks coverage) if any point within

the deployment region of the network is covered by at least Ks nodes. A network

is Kc connected (or has a Kc connectivity) if removing any Kc − 1 nodes would not

disconnect any two nodes in the network. We have the following theorem:

Theorem 1. If Rc ≥ 2Rs, any network that at least 1-covers a convex region is

connected.

Proof. We prove the statement using the Voronoi diagram of the nodes in the network,

as shown in Fig. 3.1. Let V or(u) represent the Voronoi cell of node u. We first prove

that any two nodes whose Voronoi cells are adjacent can communicate with each

other if Rc ≥ 2Rs. As illustrated in Fig. 3.1, p is the Voronoi vertex of three adjacent

Voronoi cells V or(u), V or(v) and V or(w). According to the definition of Voronoi

diagram, u, v and w are equally distant from p and are closest to p among all nodes.

Hence, p must be covered by u, v and w, otherwise it will not be covered by any

nodes. According to the triangle inequality, we have: |uv| ≤ |pu| + |pv| < 2Rs ≤ Rc.

We now prove the network is connected by showing that there is a communication path

between any two nodes s and t in the network. Suppose line segment uv intersects

consecutive Voronoi cells V or(s) = V or(u1), V or(u2) · · ·V or(un) = V or(t). For any

two consecutive nodes in the series u1 to un, since their Voronoi cells are adjacent, they
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can communicate with each other according to the discussion earlier. Hence nodes u1

to un constitute a communication path from s to t. The dotted path between s and

t in Fig. 3.1 illustrates such a path.

Theorem 1 establishes a sufficient condition for a 1-covered network to guarantee

1-connectivity. The coverage requirement for a sensor network also depends on the

number of faults that must be tolerated. A network with a higher degree of coverage

can maintain acceptable coverage in face of higher rates of node failures. We now

extend this result to quantify the relationship between the degree of coverage and

connectivity in the following theorem. The proof of the theorem can be found in [71].

Theorem 2. If Rc ≥ 2Rs, a network that Ks-covers a convex region A has a con-

nectivity of Ks. The interior nodes whose sensing range does not intersect with the

boundary of A have a connectivity of 2Ks.

3.3 Extensions to More Realistic Models

We now relax our assumptions made at the beginning of this section and extend

our results to more realistic cases. We assume that nodes may have non-uniform

and irregular (i.e., possibly non-circular) communication and sensing regions. This

assumption is more consistent with WSNs in practice where the communication and

sensing range of a node is highly dependent on the environment around the node

[81]. We define the following notation. The minimum communication range (MCR)

of node v, Rcmin(v), is the minimum distance between the location of node v and

the boundary of its communication region. The maximum sensing range (MSR) of

node v, Rsmax(v), is the maximal distance between the location of node v and the
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boundary of its sensing region. Rcmin and Rsmax represent the minimum MCR and

the maximum MSR of all nodes in the network, respectively. SN(u) represents the

set of nodes whose sensing region intersect node u’s sending region. We have the

following theorem.

Theorem 3. Theorems 1 and 2 hold when Rcmin ≥ 2Rsmax.

Proof. Since region A is Ks-covered by the nodes and the actual sensing range of

every node is upper-bounded by Rsmax, A is Ks-covered by the circles that are cen-

tered at the nodes and have a radius Rsmax. Hence Theorems 1 and 2 hold if the

communication range of every node is Rcmin. From the definition of Rcmin, the actual

communication range of every node is lower-bounded by Rcmin. Hence the results on

the network connectivity proved in Theorems 1 and 2 still hold.

Theorem 3 depends on the knowledge of two global network properties, Rsmax and

Rcmin, which may not be easily available in a large-scale sensor network. Further-

more, from Theorem 3, the sufficient condition to guarantee the network connectivity

becomes Rsmax ≥ Rcmin, which may be too conservative for heterogeneous sensor

networks where nodes may have different types of network interfaces and/or node

modalities. The proof of sufficient condition for network connectivity in Theorem 1

depends on the fact that, when Rc ≥ 2Rs, any two sensing neighbors can commu-

nicate directly. This observation allows us to extend Theorem 1 to the case where

nodes have different communication and sensing ranges.

Theorem 4. Theorem 1 holds when the following condition is satisfied for every node

u: ∀v ∈ SN(u), Rcmin(u) ≥ Rsmax(v) + Rsmax(u).
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Proof. Let node v be a sensing neighbor of node u. Since the sensing regions of u

and v are contained by the circles C(u, Rsmax(u)) and C(v, Rsmax(v)), respectively,

the two circles intersect. Hence |uv| < Rsmax(u) + Rsmax(v). From the assumption,

Rcmin(u) > |uv|, i.e., node v is within the communication range of node u. Similarly,

it can be shown that node u is within the communication range of node v. That is,

any two sensing neighbors are connected in the communication graph. For any two

nodes i and j, similar to the proof Theorem 1 , it can be shown that a communication

path can be constructed along the line segment joining i and j, since any two sensing

neighbors whose sensing regions are intersected by line ij can communicate with each

other.

For a sensing-covered network, Theorem 4 gives a sufficient condition for connectivity

based on the communication and sensing ranges of sensing neighbors. This condi-

tion is less pessimistic than Theorem 3 in heterogeneous network platforms. It also

allows a sensing-covered network to determine whether it needs explicit connectivity

configuration based on local states.

3.4 Integrated Coverage and Connectivity Main-

tenance

Our analyses (Theorems 1-4) suggest that many networks with coverage have good

connectivity. This result has important implication on integrating coverage and con-

nectivity maintenance into a unified power management framework. Under the con-

dition that Rc ≥ 2Rs, the active nodes that cover the network deployment region can
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also guarantee the network connectivity, which justifies the approach of many cover-

age maintenance protocols that does not consider the network connectivity. However,

when Rc < 2Rs, a coverage maintenance protocol alone fails to maintain both sensing

coverage and network connectivity. In our earlier work [71], we proposed to integrate

our coverage maintenance protocol CCP with a connectivity maintenance protocol

SPAN [11] to achieve both requirements.
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Chapter 4

Impact of Coverage on Greedy

Geographic Routing

We have shown in Chapter 3 that sensing coverage can guarantee network connectivity

when communication range is at least twice sensing range. In this chapter, we present

our analytical results on the routing quality of the networks with sensing coverage.

We focus our analysis on geographic routing. Geographic routing is a suitable routing

scheme for WSNs as communication in WSNs is often addressed by physical locations.

For example, instead of querying a sensor with a particular ID, a user often queries a

geographic region. Furthermore, geographic routing makes efficient routing decisions

based on local states (e.g., locations of one-hop neighbors), which enables it to scale

to large distributed applications. As the simplest form of geographic routing, greedy

forwarding (GF) is particularly attractive for WSNs. In GF, a node always forwards

a packet to the neighbor closest to the destination. Due to the low overhead, GF can

be easily implemented on resource constrained sensor network platforms. However,

GF fails when a node cannot find a better neighbor than itself. Earlier research has

shown such routing void is common on random network topologies. In this section,
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we present geometric analysis that demonstrates GF is a viable and effective routing

scheme in sensing-covered networks. We also propose a new greedy geographic routing

algorithm called Bounded Voronoi Greedy Forwarding (BVGF) that outperforms GF

in sensing-covered networks.

4.1 Network Model and Performance Metric

The ratio between the communication range, Rc, and the sensing range, Rs, has a

significant impact on the routing quality of the network. Intuitively, as the ratio

increases, a sensing-covered network becomes denser, resulting in better connectivity

and routing performance. The ratio varies across a wide range due to the heterogene-

ity of sensor networks. As a starting point for the analysis, we focus on those networks

with the double range property, i.e., Rc/Rs ≥ 2. This assumption is motivated by

the geometric analysis in Section 3, which showed that a sensing-covered network is

always connected if it has the double range property. As shown in [68], the double

range property is applicable to a number of representative sensing applications. In

the rest of this Chapter, we assume a sensing-covered network always satisfies the

double range property.

We use network dilation to quantify the performance of a routing algorithm on a WSN.

It quantifies the performance of the algorithm relative to the ideal case in which the

path between any two nodes u and v has
⌈
|uv|
Rc

⌉
hops. Formally, the network dilation

of network G(V, E) under the routing algorithm R is defined as follows.
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Dn = max
u,v∈V

τG(u, v)⌈
|uv|
Rc

⌉ (4.1)

where τG(u, v) represents the shortest path (in terms of hop count) between u and v

found by the routing algorithm R.

4.2 Greedy Forwarding

Our first analysis is concerned with the performance of GF on sensing-covered net-

works. Greedy forwarding (GF) is an efficient, localized ad hoc routing scheme em-

ployed in many existing geographic routing algorithms [29, 60, 21]. Under GF a

node makes routing decisions only based on the locations of its (one-hop) neighbors,

thereby avoiding the overhead of maintaining global topology information. In each

step a node forwards a packet to the neighbor with the shortest Euclidean distance

to the destination [29, 21]. An alternative greedy forwarding scheme [60] chooses the

neighbor with the shortest projected distance to the destination on the straight line

joining the current node and the destination.

However, a routing node might encounter a routing void when it cannot find a neighbor

that is closer (in term of Euclidean or projected distance) to the destination than

itself. In such a case, the routing node must drop the packet or enter a more complex

recovery modes [29, 33, 58] to route the packet around the routing void. In this

section we prove GF always succeeds in sensing-covered networks when the double-

range property is satisfied. We further derive the upper bound on the network dilation

of sensing-covered networks under GF.
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Theorem 5. In a sensing-covered network, GF can always find a routing path between

any two nodes. Furthermore, in each step (other than the last step arriving at the

destination), a node can always find a next-hop node that is more than Rc−2Rs closer

(in terms of both Euclidean and projected distance) to the destination than itself.

Rc-2Rs

Rc

Rs

si snab

w

w'

Figure 4.1: GF always finds a next-hop node in sensing-covered networks.

Proof. Let sn be the destination, and si be either the source or an intermediate node

on the GF routing path, as shown in Fig. 4.1. If |sisn| ≤ Rc, the destination is

reached in one hop. If |sisn| > Rc, we find point a on sisn such that |sia| = Rc − Rs.

Since Rc ≥ 2Rs, point a must be outside of the sensing circle of si. Since a is covered,

there must be at least one node, say w, inside the circle C(a, Rs).

We now prove the progress toward destination sn (in terms of both Euclidean and

projected distance) is more than Rc − 2Rs by choosing w as the next hop of si. Let

point b be the intersection between sisn and C(a, Rs) that is closest to si. Since

circle C(a, Rs) is internally tangent with the communication circle of node si, |sib| =

Rc − 2Rs. Clearly, the maximal distance between sn and any point on or inside circle

C(a, Rs) is |snb|. Suppose w′ is the projection of node w on line segment sisn. We
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have:

|snsi| − |snw′| ≥ |snsi| − |snw| > |sib| = Rc − 2Rs ≥ 0

From above relation, we can see that both the projected distance and the Euclidean

distance in one hop (other than the last hop arriving at the destination) of a BVGF

routing path is more than Rc−2Rs. Thus GF always can find a routing path between

any two nodes.

Theorem 5 establishes that the progress toward the destination in each step of a GF

routing path is lower-bounded by Rc − 2Rs. Therefore, the network length of a GF

routing path between a source and a destination is upper-bounded.

Theorem 6. In a sensing-covered network, GF can always find a routing path between

source u and destination v no longer than
⌊

|uv|
Rc−2Rs

⌋
+ 1 hops.

Proof. Let N be the network length of the GF routing path between u and v. The

nodes on the path are s0(u),s1 · · · sn−1,sn(v). From Theorem 5, we have

|s0sn| − |s1sn| > Rc − 2Rs

|s1sn| − |s2sn| > Rc − 2Rs

...

|sn−2sn| − |sn−1sn| > Rc − 2Rs

Summing all the equations above, we have:

|s0sn| − |sn−1sn| > (N − 1)(Rc − 2Rs)
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Given |s0sn| = |uv|, we have:

N <
|uv| − |sn−1sn|

Rc − 2Rs

+ 1 (4.2)

<
|uv|

Rc − 2Rs
+ 1

Hence N ≤
⌊

|uv|
Rc−2Rs

⌋
+ 1

From Theorem 6 and (4.1), the network dilation of a sensing-covered network G(V, E)

under GF satisfies:

Dn(GF ) ≤ max
u,v∈V

⎛
⎝
⌊

|uv|
Rc−2Rs

⌋
+ 1⌈

|uv|
Rc

⌉
⎞
⎠ (4.3)

The asymptotic network dilation bound of sensing-covered networks under GF can be

computed by ignoring the rounding and the constant term 1 in (4.3).

Corollary 1. The asymptotic network dilation of sensing-covered networks under GF

satisfies

D̃n(GF ) ≤ Rc

Rc − 2Rs

(4.4)

From (4.4), the dilation upper bound monotonically decreases when Rc/Rs increases.

It becomes lower than 2 when Rc/Rs > 4, and approaches 1 when Rc/Rs becomes
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very large. This result confirms our intuition that a sensing-covered network ap-

proaches an ideal network in terms of network length when the communication range

is significantly longer than the sensing range.

However, the GF dilation bound in (4.4) increases quickly to infinity when Rc/Rs

approaches 2. In the proof of Theorem 5, when Rc approaches 2Rs, a forwarding

node si may be infinitely close to the intersection point between C(a, Rs) and sisn.

Consequently, si may choose a neighbor inside C(a, Rs) that makes an infinitely small

progress toward the destination and hence result in a long routing path. Similar to

the proof of Theorem 5.1 in [22], it can be shown that the network length of a GF

routing path between source u and destination v is bounded by O(( |uv|
Rc

)2). From (4.1),

we can see that this result cannot lead to a constant upper bound on the network

dilation for a given range ratio. Whether GF has a tighter analytical network dilation

bound when Rc/Rs is close to two is an open research question left for future work.

4.3 Bounded Voronoi Greedy Forwarding (BVGF)

From Sections 4.2, we note that although GF has a satisfactory network dilation

bound on sensing-covered networks when Rc/Rs � 2, the bound becomes very large

when Rc/Rs is close to two. This result motivates us to develop a new routing

algorithm, Bounded Voronoi Greedy Forwarding (BVGF), that has a satisfactory

analytical dilation bound for any Rc/Rs > 2.
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4.3.1 The BVGF Algorithm

Similar to GF, BVGF is a localized algorithm that makes greedy routing decisions

based on one-hop neighbor locations. When node i needs to forward a packet, a

neighbor j is eligible as the next hop only if the line segment joining the source and

the destination intersects Vor(j) or coincides with one of the boundaries of Vor(j).

BVGF chooses as the next hop the neighbor that has the shortest Euclidean distance

to the destination among all eligible neighbors. When there are multiple eligible

neighbors that are equally closest to the destination, the routing node randomly

chooses one as the next hop. Fig. 4.2 illustrates four consecutive nodes (si ∼ si+3)

on the BVGF routing path from source u to destination v. The communication circle

of each node is also shown in the figure. We can see that a node’s next hop on a

routing path might not be adjacent with it in the Voronoi diagram (e.g., node si does

not share a Voronoi edge with node si+1). When Rc � Rs, this greedy forwarding

scheme allows BVGF to achieve a tighter dilation bound than the DT bound that

only considers DT edges and does not vary with the range ratio.

The key difference between GF and BVGF is that BVGF only considers the neighbors

whose Voronoi regions are intersected by the line joining the source and the desti-

nation. As we will show later in this section, this feature allows BVGF to achieve a

tighter upper-bound on the network dilation in sensing-covered networks.

In BVGF, each node maintains a neighborhood table. For each one-hop neighbor j,

the neighborhood table includes j′s location and the locations of the vertices of Vor(j).

For example, as illustrated in Fig. 4.2, for one-hop neighbor si, node si+1 includes

in its neighborhood table the locations of si and the vertices of Vor(si) (denoted by

crosses in the figure). To maintain the neighborhood table, each node periodically
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Si+1 Si+2

Si+3

v
u Si

Figure 4.2: A routing path of BVGF

broadcasts a beacon message that includes the locations of itself and the vertices of

its Voronoi region. Note each node can compute its own Voronoi vertices based on its

neighbor locations because all Voronoi neighbors are within its communication range

(as proved in Theorem 1).

Assume the number of neighbors within a node’s communication range is bounded

by O(n). The complexity incured by a node to compute the Voronoi diagram of all

its one-hop neighbors is O(n log n) [4]. Since the number of vertices of the Voronoi

region of a node is bounded by O(n) [4], the total storage complexity of a node’s

neighborhood table is O(n2).

4.3.2 Network Dilation of BVGF

In this section, we analyze the network dilation of BVGF. We first prove that BVGF

can always find a routing path between any two nodes in a sensing-covered network

(Theorem 7). We next show that a BVGF routing path always lies in a Voronoi

forwarding rectangle. We then derive lower bounds on the projected progress in every

step of a BVGF routing path (Lemma 3). Since this lower bound is not tight when
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Rc/Rs is close to two, we derive the tighter lower bounds on the projected progress in

two and four consecutive steps on a BVGF routing path (Lemmas 6 and 7). Finally we

establish the asymptotic bounds of the network dilation of sensing-covered networks

under BVGF in Theorem 9.

In the rest of this section, to simplify our discussion on the routing path from source

u to destination v, we assume node u is the origin and the straight line joining u

and v is the x-axis. The Voronoi forwarding rectangle of nodes u and v refers to

the rectangle defined by the points (0, Rs), (0,−Rs), (|uv|,−Rs) and (|uv|, Rs). Let

x(a) and y(a) denote the x-coordinate and y-coordinate of a point a, respectively.

The projected progress between two nodes is defined as the difference between their

x-coordinates.

Theorem 7. In a sensing-covered network, BVGF can always successfully find a

routing path between any two nodes. Furthermore, the projected progress in each step

of a BVGF routing path is positive.

s'

v

w'

u

s

w'

Y
Y’

p'

q
p

v u

w a1 a2

(a) (b)

Figure 4.3: BVGF always finds a next-hop node

Proof. As illustrated in Fig. 4.3, node si is an intermediate node on the BVGF routing

path from source u to destination v. x-axis intersects Vor(si) or coincides with one

of the boundaries of Vor(si). Let point p be the intersection between Vor(si) and the
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x-axis that is closer to v (if x-axis coincides with one of the boundaries of Vor(si), we

choose the vertex of Vor(si) that is cloest to v as point p). There must exist a node

w such that Vor(si) and Vor(w) share the Voronoi edge that hosts p and intersects

the x-axis. The straight line (denoted as dotted line in Fig. 4.3) where the Vornoi

edge lies on defines two half-planes Pi and Pi+1, and si ∈ Pi, w ∈ Pi+1. From the

definition of Voronoi diagram, any point in half-plane Pi+1 has a shorter distance to

w than to si. Since v ∈ Pi+1, |wv| < |siv|. In addition, since |siw| < 2Rs ≤ Rc

(see Theorem 1) and line segment uv intersects Vor(w) (or coincides with one of the

boundaries of Vor(w)), w is eligible to be the next hop of si. That is, si can find at

least one neighbor (w) closer to the destination. This holds for every node other than

the destination and hence BVGF can always find a routing path between the source

and the destination.

We now prove the projected progress in each step of a BVGF routing path is positive.

We discuss two cases. 1) If si chooses w as the next hop on the BVGF routing path,

from the definition of Voronoi diagram, si and w lies to the left and the right of the

perpendicular bisector of line segment siw, respectively. Therefore, x(si) < x(p) <

x(w) and hence the projected progress between si and w is positive. 2) If si chooses

node si+1 (which is different from w) as the next hop, we can construct a consecutive

path (along the x-axis) consisting of the nodes si, a0(w), a1 · · ·am, si+1 such that any

two adjacent nodes on the path share a Voronoi edge that intersects the x-axis, as

illustrated in Fig. 4.3. Similar to case 1), we can prove:

x(si) < x(a0) < · · · < x(am) < x(si+1)
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Hence the projected progress between the consecutive nodes si and si+1 on the BVGF

routing path is positive.

In a sensing-covered convex region, any point is covered by the node closest to it.

This simple observation lead to the the following Lemma.

Lemma 1 (Coverage Lemma). A convex region A is covered by a set of nodes V if

and only if each node can cover its Voronoi region (including the bounary).

Proof. The nodes partition the convex region A into a number of Voronoi regions

in the Voronoi diagram. Clearly, if each Voronoi region (including the boundary) is

covered by the node within it, region A is sensing-covered. On the other hand, if

region A is covered, any point in region A must be covered by the closest node(s) to

it. In the Voronoi diagram, all the points in a Voronoi region share the same closest

node. Thus every node can cover all the points in its Voronoi region. Any point on

the boundary of two Voronoi regions Vor(i) and Vor(j) has the same distance from i

and j and is covered by both of them.

BVGF always forwards a packet to a node whose Voronoi region is intersected by the

x-axis. From Lemma 1, every Voronoi region in a sensing-covered network is within a

sensing circle. Therefore, the nodes on a BVGF routing path lie in a bounded region.

Specifically, we have the following Lemma.

Lemma 2. The BVGF routing path from node u to node v lies in the Voronoi for-

warding rectangle of nodes u and v.

Proof. As illustrated in Fig. 4.4, si is an intermediate node on the BVGF routing

path between u and v. Let point w be one of the intersections between the x-axis and
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Figure 4.4: Voronoi forwarding rectangle.

Vor(si) (if x-axis coincides with one of the boundaries of Vor(si), choose a vertex on

the boundary as point w). From Lemma 1, node si covers point w, and hence |siw| <

Rs. We have |y(si)| ≤ |siw| < Rs. Furthermore, from Theorem 7, 0 < |x(si)| < |uv|.
Thus, si lies in the Voronoi forwarding rectangle of nodes u and v.

In a sensing-covered network, the greedy nature of BVGF ensures that a node chooses

a next hop that has the shortest distance to the destination among all eligible neigh-

bors. On the other hand, according to Lemma 2, the next-hop node must fall in the

Voronoi forwarding rectangle. These results allow us to derive a lower bound on the

progress of every step on a BVGF routing path.

Lemma 3 (One-step Advance Lemma). In a sensing-covered network, the projected

progress in each step of a BVGF routing path is more than Δ1, where

Δ1 = max(0,
√

R2
c − 2RcRs − Rs).

Proof. As illustrated in Fig. 4.5, si is an intermediate node on the BVGF routing

path between source u and destination v. Let point s′i be the projection of si on

the x-axis. From Lemma 2, sis
′
i < Rs. Let point d be the point on the x-axis such

that |sid| = Rc − Rs. According to Lemma 1, there must exist a node, w, which

covers point d and d ∈Vor(w). Clearly w lies in circle C(d, Rs). Since d is on the

x-axis and d ∈Vor(w), x-axis intersects Vor(w). Furthermore, since circle C(d, Rs)
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Figure 4.5: One-step projected progress of BVGF

is internally tangent with the communication circle of node si, node w is within the

communication range of node si. Therefore node si can at least choose node w as the

next hop. Let c be the intersection between C(d, Rs) and x-axis that is closest to u.

Let w′ be the projection of w on the x-axis. The projected progress between si and

w is:

|s′iw′| > |s′ic| = |s′id| − Rs

=
√

|sid|2 − |sis′i|2 − Rs

>
√

(Rc − Rs)2 − R2
s − Rs

=
√

R2
c − 2RcRs − Rs

|s′iw′| ≤ 0 whe Rc/Rs ≤ 1+
√

2. From Theorem 7, projected progress made by BVGF

in each step is positive. Therefore, the lower bound on the projected progress in each

step is max(0,
√

R2
c − 2RcRs − Rs).
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From Lemma 3, we can see that the lower bound on the projected progress between

any two nodes on a BVGF routing path approaches zero when Rc/Rs ≤ 1 +
√

2. We

ask the question whether there is a tighter lower bound in such a case. Consider

two non-adjacent nodes i and j on a BVGF routing path. The Euclidean distance

between them must be longer than Rc because otherwise BVGF would have chosen j

as the next hop of i which contradicts the assumption that i and j are non-adjacent on

the routing path. We refer to this property of BVGF as the non-adjacent advancing

property1. We have the following Lemma (the proof can be found in [69]).

Lemma 4 (Non-adjacent Advancing Property). In a sensing-covered network, the

Euclidean distance between any two non-adjacent nodes on a BVGF routing path is

longer than Rc.

The non-adjacent advancing property, combined with the fact that a BVGF routing

path always lies in the Voronoi forwarding rectangle, leads to the intuition that the

projected progress toward the destination made by BVGF in two consecutive steps is

lower-bounded. Specifically, we have the following Lemma that establishes a tighter

bound on the projected progress of BVGF than Lemma 3 when Rc/Rs is small.

Lemma 5. In a sensing-covered network, the projected progress between any two

non-adjacent nodes i and j on a BVGF routing path is more than:

√
R2

c − R2
s if i, j on the same side of the x-axis√

R2
c − 4R2

s if i, j on different sides of the x-axis

1Similarly, GF also can be shown to have this property.
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Proof. Let s0(u),s1 · · · sn−1,sn(v) be the consecutive nodes on the BVGF routing path

between source u and destination v. From Lemma 4, |sisi+k| > Rc (k > 1). Fig. 4.6(a)

and (b) illustrate the two cases where si and si+k are on the same or different sides

of the x-axis, respectively. Both si and si+k lie in the Voronoi forwarding rectangle

of nodes u and v (dotted box in the figure). When si and si+k are on the same side

of the x-axis, we have

|y(si+k) − y(si)| < Rs

The projected progress between si+k and si satisfies:

x(si+k) − x(si) =
√
|sisi+k|2 − (y(si+k) − y(si))2

>
√

R2
c − R2

s

si

s i+k

s0 sn
x(si) x(si+k)

|y(si)-y(si+k)| Rs

Rs

s i

s i+k

s0 sn
x(si)

x(si+k)|y(si)-y(si+k)| Rs

Rs

(a)

(b)

Figure 4.6: Projected progress of two non-adjacent nodes

Similarly, when si and si+k are on different sides of the x-axis as shown in Fig. 4.6(b),

we can prove that the projected progress between them is more than
√

R2
c − 4R2

s.
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From Lemma 5, we can see that the worst-case projected progress in two consecutive

steps on a BVGF routing path occurs when the non-adjacent nodes on the two steps

are on the different sides of the x-axis. We have the following Lemma (proof can be

found in [68]).

Lemma 6 (Two-step Advance Lemma). In a sensing-covered network, the projected

progress in two consecutive steps on a BVGF routing path is more than Δ2, where

Δ2 =
√

R2
c − 4R2

s.

Combining the different cases of non-adjacent node locations, we can derive the lower

bound on the projected progress made by BVGF in four consecutive steps.

Lemma 7 (Four-step Advance Lemma). In a sensing-covered network, the projected

progress in four consecutive steps of a BVGF routing path is more than Δ4, where

Δ4 =

⎧⎪⎪⎨
⎪⎪⎩
√

R2
c − R2

s (2 ≤ Rc/Rs ≤
√

5)

√
4R2

c − 16R2
s (Rc/Rs >

√
5)

Proof. Let s0(u),s1 · · · sn−1,sn(v) be the consecutive nodes on the BVGF routing path

between source u and destination v. si, si+2 and si+4 are three non-adjacent nodes on

the path. Without loss of generality, let si lie above the x-axis. Fig. 4.7(a)(b)(c)(d)

show all possible configurations of si, si+2 and si+4 (the dotted boxes denote the

Voronoi forwarding rectangles). We now derive the lower bound on the projected

progress between si and si+4.

1).When si and si+4 lie on different sides of the x-axis, as illustrated in Fig. 4.7(a)(b),

the projected progress δab between si and si+4 is the sum of the projected progress
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between si and si+2 and the projected progress between si+2 and si+4. From Lemma

5 :

δab =
√

R2
c − R2

s +
√

R2
c − 4R2

s

2).When si and si+4 lie on the same side of the x-axis, as shown in Fig. 4.7(c)(d), from

Lemma 5, the projected progress between them is more than δcd =
√

R2
c − R2

s. On

the other hand, the projected progress can be computed as the sum of the projected

progress between si and si+2 and the projected progress between si+2 and si+4, i.e.,

δc = 2
√

R2
c − 4R2

s as shown in Fig. 4.7(c) or δd = 2
√

R2
c − R2

s as shown in Fig.

4.7(d). Since δd > δc, the max{δcd, δc} is the lower bound on the projected progress

between si and si+4 when they lie on the same side of the x-axis.

Summarizing the cases 1) and 2), the lower bound on the projected progress in four

consecutive steps on a BVGF routing path is

Δ4 = min{δab, max{δcd, δc}}

From the relation between δab, δcd and δc, Δ4 can be transformed to the result of the

theorem.

When Rc/Rs is small, the network is relatively sparse. Although the one-step pro-

jected progress approaches zero as shown in Lemma 3 in such a case, interestingly,

Lemmas 6 and 7 show that the projected progress toward the destination made by

BVGF in two or four consecutive steps is lower-bounded. On the other hand, when
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Figure 4.7: Projected Progress in Four Consecutive Steps

Rc � Rs, the sensing coverage of the network can result in a high density of nodes

in the communication range of a routing node and hence the projected progress of

BVGF in each step approaches Rc. In such a case the lower bound established in

Lemma 3 is tighter than the lower bounds established in Lemmas 6-7.

Based on the 1-hop, 2-hop and 4-hop minimum projected progress derived in Lemmas

3, 6 and 7, respectively, we can derive the upper bounds on the network length of a

BVGF routing path. Summarizing these upper bounds, we have the following theorem

(the proof can be found in [68]).

Theorem 8. In a sensing-covered network, The BVGF routing path between any two

nodes u and v is no longer than Δ hops, where Δ = min
{⌈

|uv|
Δ1

⌉
, 2
⌊
|uv|
Δ2

⌋
+ 1, 4

⌊
|uv|
Δ4

⌋
+ 3
}
.
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From Theorem 8 and (4.1),the network dilation of a sensing-covered network G(V, E)

under BVGF satisfies:

Dn(BV GF ) ≤ max
u,v∈V

Δ⌈
|uv|
Rc

⌉ (4.5)

where Δ is defined in Theorem 8. The asymptotic bound on network dilation of

sensing-covered networks under BVGF can be computed by ignoring the rounding

and the constant terms in (4.5).

Theorem 9. The asymptotic network dilation of a sensing-covered network under

BVGF satisfies

D̃n(BV GF )≤

��������������
�������������

4Rc√
R2

c−R2
s

(2 ≤ Rc/Rs ≤
√

5)

2Rc√
R2

c−4R2
s

(
√

5 < Rc/Rs ≤ 3.8)

Rc√
R2

c−2RcRs−Rs

(Rc/Rs > 3.8)

(4.6)

4.3.3 Summary of Analysis on Network Dilations

In this section we summarize the network dilation bounds based on the deterministic

communication model. Fig. 4.8 in Section 4.5 shows the asymptotic dilation bounds

of GF and BVGF under different range ratios. The asymptotic bound of BVGF is

competitive for all range ratios no smaller than two. The bound gets the worst-case

value 8
√

3
3

≈ 4.62 when Rc/Rs = 2. That is, BVGF can always find a routing path

between any two nodes u and v within 4.62
⌈
|uv|
Rc

⌉
hops. The asymptotic network

dilation bound of GF increases quickly with the range ratio and approaches infinity

when Rc/Rs is close to two. Whether there is a tighter bound for GF in such a case

is an open research question. When Rc/Rs >∼ 3.5, the network dilations of GF and
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BVGF are very similar because the network topology is dense and both algorithms

can find very short routing paths.

4.4 Extension to a Probabilistic Communication

Model

The theoretical analysis and protocol design discussed in previous sections are based a

simplistic communication model that assumes a deterministic communication range.

Recent empirical studies showed that real sensor network platforms (e.g., Berkeley

motes) yield unreliable links and irregular communication ranges [81]. A wireless

sensor network must handle communication failures due to unreliable links. GF is

shown to yield poor performance in lossy networks because it always chooses the node

closest to the destination as the next hop, which often results in a long but unreliable

communication link [53]. In this section, we extend our results to a probabilistic

communication model that captures these characteristics.

In the probabilistic communication model, the quality of a communication link from

node u to node v is described by packet reception rate (PRR(u,v)) that is defined as

the ratio of the number of successful transmissions from u to v to the total number

of transmissions from u to v. Note that PRR(u, v) may not equal PRR(v, u) since

the communication quality of a link is often asymmetric. In practice the PRR of

a link can be estimated either offline or online. For example, in the MT routing

protocol on TinyOS [67] a node computes the PRR of the link from a neighbor to

itself by monitoring the reception statistics of periodic beacon messages broadcast by

the neighbor.



45

4.4.1 Routing Algorithms with ARQ

When a node fails to deliver a packet to the next hop (e.g., indicated by a missing ACK

from the receiver), it retransmits the packet through an automatic repeat request

(ARQ) mechanism. We assume ARQ keeps retransmitting a packet until successful

reception by the next hop node. In this section, we discuss efficient variants of GF

and BVGF when ARQ is employed. The case without ARQ is discussed in Section

4.4.2. Recently, Kuruvila et al. studied several efficient routing metrics in presence of

ARQ, including the product of PRR and progress traversed toward the destination,

for wireless networks with a lossy physical layer [34]. Product of PRR and progress is

also shown to be optimal in terms of energy efficiency for GF in [53] in lossy networks.

This new metric achieves a better energy-efficiency than distance by balancing the

hop count and path reliability. Both GF and BVGF can be modified to use this

metric as follows. Instead of choosing the neighbor closest to destination among

all routing candidates, node u chooses as the next hop a node v that maximizes

(|ut| − |vt|) ·PRR(u, v) where t is the destination. We denote the variants of GF and

BVGF based on this new metric as GFe and BVGFe, respectively.

We extend the double range property presented in Section 4.1 as follows. For a given

parameter p (0 < p ≤ 1), we define the probabilistic communication range Rc(p) as

the distance within which the link of any two nodes has a PRR no lower than p.

The extended double range property can be formulated as Rc(p) ≥ 2Rs. Similar

arguments as the proofs of Theorem 5 and 7 can show that both GFe and BVGFe

always find a routing path between any two nodes if ∃p > 0 s.t. Rc(p) ≥ 2Rs. We

note that the notation of Rc(p) is only for the purpose of performance bound analysis.

The operation of the GFe and BVGFe does not require the knowledge of Rc(p).
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The analysis presented in Section 4.3 focused on hop count and network dilation.

However, in the probabilistic communication model, hop count does not indicate

the quality of a routing path due to unreliable links. When ARQ is present, the

energy cost and end-to-end delay of a routing path depends on the total number

of transmissions needed to successfully delivery a packet from source to destination.

Hence the total number of transmissions is a more accurate metric to describe the

quality of a routing path. Before extending the analytical results based on the number

of transmissions, we define the following notation. D̃n(GF ) and D̃n(BV GF ) represent

the asymptotic network dilation bounds by replacing Rc with Rc(p) in (4.4) and (4.6).

For a given routing algorithm, Δi represents the progress toward the destination made

at the ith step of the algorithm; pi represents the PRR of the link chosen at the ith step;

Δ′ represents the minimum progress toward the destination made by the algorithm if

only considering the neighbors within Rc(p). We have the following theorem regarding

the performance of GFe and BVGFe.

Theorem 10. In a sensing-covered network that satisfies the double range property

for a probabilistic communication range Rc(p), the asymptotic expected total number

of transmissions used by algorithm Ae (A is GF or BVGF) to deliver a packet between

two nodes u and v is no smaller than D̃n(A) · |uv|/(p · Rc(p)) in presence of ARQ.

Proof. According to the definition of Rc(p), the PRR of any link within Rc(p) is no

lower than p. Since Ae chooses the next-hop node that has the maximum product of

progress and PRR, we have:

∀i, Δi · pi ≥ Δ′ · p (4.7)
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For a link with PRR pi, the expected number of transmissions is equal to 1/pi. From

(4.7), the total number of transmissions between source s and destination t satisfies

the following inequality:

∑
i

1
pi

≤
∑

i Δi

Δ′ · p =
|st|

Δ′ · p (4.8)

According to the definition of network dilation, Δ′ = Rc(p)/D̃n(A). Replacing Δ′ in

(4.8) gives the form in the statement of the theorem.

Theorem 10 shows that both GFe and BVGFe can find routing paths with bounded

number of transmissions in presence of ARQ in lossy networks.

4.4.2 Routing Algorithms without ARQ

In this section, we discuss efficient variants of GF and BVGF without support of

ARQ. When ARQ is not implemented, a node drops a packet if it fails to deliver it

to the next-hop node. The quality of a routing path can be quantified by end-to-end

reliability defined as the probability that a packet can be successfully transmitted from

source to destination along the path. It can be seen that the end-to-end reliability

of a routing path is equal to the product of the PRR of each link on the path. We

propose a new metric (|ut| − |vt|)/ ln 1
PRR(u,v)

(where u, v and t are routing node,

a neighbor of u and destination, respectively) that provides lower-bounded end-to-

end reliability when used with GF and BVGF. We refer to GF and BVGF based on

this new metric as GFr and BVGFr, respectively. We have the following theorem

regarding the performance of GFr and BVGFr.
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Theorem 11. In a sensing-covered network that satisfies the double range property

for a probabilistic communication range Rc(p), the asymptotic end-to-end reliability of

the path found by algorithm Ar (A is GF or BVGF) is no lower than eD̃n(A)·|uv|·ln p/Rc(p).

Proof. Since Ar always chooses the next-hop node that has the maximum Δi/ ln 1
pi

,

we have:

∀i,
Δi

ln 1/pi
≥ Δ′

ln 1/p
(4.9)

From (4.9), we have the following inequality:

∑
i

ln pi ≥
∑

i Δi · ln p

Δ′ =
|st| · ln p

Δ′ (4.10)

From (4.10), the reliability of a routing path found by Ar between source s and

destination t satisfies
∏

i pi ≥ e
|st|·ln p

Δ′ . Replacing Δ′ with Rc(p)/D̃n(A) ( by the

definition of D̃n(A)) gives the form in the statement of the theorem.

Theorem 11 shows that both GFr and BVGFr can find routing paths with bounded

end-to-end reliability in absence of ARQ.

4.5 Simulation Results

In this section we present our simulation results. The purpose of the simulations

is twofold. First, we compare the dilations of GF and BVGF under different range

ratios and investigate the tightness of the dilation bounds we derived in previous
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sections. We then study the average performance of the algorithms under a realistic

radio model of the Mica2 motes [15].

4.5.1 Results under the Deterministic Communication Model

Our first set of simulations are based on the deterministic communication model.

1000 nodes are randomly distributed in a 500m × 500m region that is covered by

a set of active nodes chosen by the Coverage Configuration Protocol (CCP) [65].

Redundant nodes are turned off for energy conservation. All nodes have the same

sensing range of 20m. We vary Rc to measure the network dilations of GF and BVGF

under different range ratios. As discussed in Section 4.2, the routing metric of GF

is based on Euclidean or projected distance. Since the results of the two metrics are

very similar, only Euclidean distance based results are presented in this section.

The results presented in this section are averages of five runs on different network

topologies produced by CCP. In each round, a packet is sent from each node to every

other node in the network. As expected, all packets are delivered by both algorithms.

The network lengths are logged and the dilations are then computed using Definition

4.1. To distinguish the simulation results from the dilation bounds we derived in

previous sections, we refer to the former as measured dilations. We should note

that the measured dilations characterize the average-case performance of the routing

algorithms in the particular network topologies used in our experiments, which may

differ from the worst-case bounds for all possible sensing-covered network topologies

we derived in previous sections.
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Figure 4.8: Network Dilations

Fig. 4.8 shows that the measured dilations of GF and BVGF remain close to each

other. Both algorithms have very low dilations (smaller than two) in all range ratios no

smaller than two. When Rc/Rs increases, the measured dilations of both algorithms

approach their asymptotic bounds. When Rc/Rs is close to 2, however, the difference

between the asymptotic bounds and the corresponding measurements becomes wider.

This is because, the worst-case scenarios from which the dilation bounds are derived

are rare when the network is less dense. Due to the rounding errors in deriving the

asymptotic dilation bounds (Corollary 1 and Theorem 9), the measured dilations are

slightly higher than the asymptotic bounds when Rc/Rs > 6, as shown in Fig. 4.8.

This is because when Rc becomes large, the routing paths become very short and the

effect of rounding in the calculation of network dilations becomes significant. The

result also indicates that the measured dilation of GF is significantly lower than the

asymptotic bound derived from our analysis. Whether GF has a tighter network

dilation bound is left for our future work.
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The simulation results have shown that the proposed BVGF algorithm performs simi-

larly with GF in average cases. In addition, the upper bounds on the network dilations

of BVGF and GF established in previous sections are tight when Rc/Rs is large.

4.5.2 Results under the Probabilistic Communication Model

In this section, we evaluate the performance of the extended versions of GF and BVGF

algorithms discussed in Section 4.4 in lossy networks. To simulate the probabilistic

link reception quality, we implemented the link layer model from USC [85]. Previous

empirical data shows that the USC model accurately simulates the unreliable links

between Mica2 motes [85]. In our simulations, the PRR of a link is governed by the

USC model according to the distance between the two nodes and the transmission

power. A packet is sent using different routing algorithms between any two nodes

that are more than 350m apart. A node ignores the neighbors whose links have a

PRR lower than 10%. Previous study [67] showed that such “blacklisting” strategy

can significantly improve the packet delivery performance. The rest of simulation

settings is same with those in Section 4.5.1.
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Figure 4.9: Performance with ARQ under the probabilistic communication model.
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We first evaluate the performance of our algorithms with ARQ. Fig. 4.9(a) and (b)

show the average number of transmissions and hops under different radio transmission

powers set according to the specification of Mica2 mote [15]. The minimum power

is chosen such that all neighbors within 2Rs of a node have PRRs above 10% and

thus are not blacklisted. Consistent with our analysis, this condition made all algo-

rithms successfully deliver all packets. Fig. 4.9(a) shows that all algorithms yielded

fewer transmissions when the transmission power increases. GFe and BVGFe per-

form substantially better than GF and BVGF although GF and BVGF used fewer

hops shown by Fig. 4.9(b). This result confirms the observation that product of

progress and PRR is an efficient metric for greedy forwarding in lossy networks [53].

BVGFe yielded similar performance as GFe, which is consistent to the results based

on deterministic communication model.
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Figure 4.10: Performance w/o ARQ under the probabilistic communication model.

We now evaluate the performance of our algorithms without ARQ. Fig. 4.10(a) and

(b) show the average end-to-end reliability and hop counts of different algorithms.

We can see that both GF and BVGF yielded near zero end-to-end path reliability

although they used fewer hops. This is because they tend to choose long links which,

however, are more likely to be unreliable. In contrast, both GFr and BVGFr achieved

higher end-to-end reliability as transmission power increases since the PRR of the link
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at each hop becomes higher. Although GFr used more hops than BVGFr as shown

in Fig. 4.10(b), GFr performs slightly better than BVGFr as it has more next hop

candidates and hence higher chance of choosing more reliable links.

The overall results in this section show that the routing metrics that consider both

progress and PRR are more efficient than purely progress based metric in lossy net-

works. The extended GF and BVGF based on these metrics can achieve satisfactory

performance in terms of number of transmissions and reliability on sensing-covered

networks with unreliable communication links.
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Chapter 5

Minimum Power Configuration

A limitation of existing radio power management approaches is that they only aim

at reducing the power consumed in a particular radio state. As a result, they are

only effective for partial radio platforms and network conditions. Topology control

[50, 48, 45, 30, 36, 3, 38] only reduces the transmission power of a network by adjusting

the transmission range of each node while still preserving necessary network properties

(e.g., connectivity). Similarly, power-aware routing [56, 18, 19, 10, 51] reduces the

transmission power of the nodes that lie on the communication routes. Both topology

control and power-aware routing reduce the energy consumption only when the radio

interface is actively transmitting/receiving packets. Such approaches are only effective

on the radio platforms with high transmission/reception power or networks with high

workload. However, many radio interfaces (e.g., the CC1000 radio on Mica2 motes

[15] and WLAN cards [11]) also consume non-negligible power even if they are idle.

Furthermore, many WSN applications generate low to moderate workload, resulting

most energy dissipated in idle state of the radio. Backbone maintenance [7, 11, 73, 74,

71] reduces the idle energy consumption by turning off redundant nodes while only

keeping a small number of active nodes as relays for multi-hop communication. Sleep

scheduling [78, 83, 63] reduces the idle energy consumption by scheduling nodes to
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operate at duty cycles composed of on/off intervals. However, backbone maintenance

and sleep scheduling only reduce the energy consumed by idle listening, and hence

are not suitable for the radio platforms with low idle power or the networks with high

workload.

In order to extend the system life of WSNs, we must effectively minimize the total

energy consumed in all radio states for different platforms and network workload con-

ditions. However, this goal cannot be met by combining the existing approaches in

a straightforward fashion because the power-minimal configuration depends on both

radio characteristics and dynamic network workload conditions. For example, when

network workload is low, the power consumption of a WSN is dominated by the idle

state. In such a case, scheduling nodes to sleep saves the most power. It is therefore

more power-efficient for active nodes to use long communication ranges since it will

require fewer nodes to remain awake in order to relay packets. Conversely, short ra-

dio ranges may be preferable when the network workload is high, as the radio tends

to spend more time in the transmission and reception states. We propose a novel

approach called minimum power configuration (MPC) that minimizes the aggregate

energy consumption in all power states by taking into consideration both radio char-

acteristics and network workloads. In sharp contrast to earlier research that treated

topology control, power-aware routing, and backbone maintenance in isolation, MPC

provides a unified approach that integrates them as a joint optimization problem.

The total power consumption is then minimized by jointly configuring a set of active

nodes and their transmission power.
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5.1 An Illustrating Example

In this section, we illustrate the basic idea of our approach with a simple example.

We focus on the energy consumption of radios since they tend to be the major source

of power dissipation in wireless networks. We will show that when the total energy

from each of the different radio states is considered, the optimal network configuration

depends on the radio characteristics and data rates of the network. A wireless radio

can work in one of the following states: transmitting, receiving, idle, and sleeping.

The corresponding power consumptions are represented by Ptx(d), Prx, Pid and Ps,

where d is the Euclidean distance of the transmission.

a

b

c

Figure 5.1: Two communication paths from a to c: a → c or a → b → c.

As shown in Fig. 5.1, a, b and c are three nodes located in 2D space. a needs to

send data to c at the rate of R bps. The bandwidth of all nodes is B bps. There are

two network configurations to accomplish the communication between a and c: 1) a

communicates with c directly using transmission range |ac| while b remains sleeping

or 2) a communicates with b using transmission range |ab| and b relays the data from

a to c using transmission range |bc|. Minimizing the total energy of all nodes in

the network is equivalent to minimizing the average power consumption of all radio

states. We denote the average power consumption under the two configurations as

P1 and P2, respectively. P1 and P2 can be computed as follows:
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P1 =
R

B
· Ptx(|ac|) +

R

B
· Prx + 2(1 − R

B
) · Pid + Ps

P2 =
R

B
· (Ptx(|ab|) + Ptx(|bc|)) +

2R
B

· Prx + (3 − 4R
B

) · Pid

R0

P
o

w
e

r 
C

o
n

su
m

p
tio

n

Data Rate

3Pid

2Pid+Ps

P1

P2

Figure 5.2: Average power consumption vs. data rate

Each term in P1 or P2 is the product of power consumption in a radio state and the

fraction of time the radio operates in that state. For example, in the first term of P2,

Ptx(|ab|) + Ptx(|bc|) is the transmission power of nodes a and b, and R
B

is the fraction

of time nodes a and b operate in transmission state. Similarly, the second term of P2

represents the contribution of the reception power of nodes b and c. In the third term

of P2, Pid is the idle power, and 3− 4R
B

is the sum of the fractions of time when nodes

a, b and c stay in the idle state. Specifically, node a is idle 1− R
B

of the time because

it becomes idle when not transmitting to b, node b is idle 1− 2R
B

of the time because

it becomes idle only when neither transmitting to c nor receiving from a, and node c

is idle 1 − R
B

of the time because it becomes idle when not receiving from b.

For the given radio parameters and node locations, all symbols except R are constant

in the expressions of P1 and P2. We plot P1 and P2 in Fig. 5.2 under a possible
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setting of radio parameters and node locations. We can see that P1 > P2 when the

data rate exceeds a threshold R0 given by:

R0 =
Pid − Ps

Ptx(|ac|) − Ptx(|bc|) − Ptx(|ab|) + 2Pid − Prx
(5.1)

To get a concrete estimation on R0, we now apply the parameters of the CC1000

radio on Mica2 motes [15] to (5.1). For a 433MHz CC1000 radio, the bandwidth is

38.4 Kbps. There are a total of 31 transmission power levels, each of which leads to a

different transmission range1. Suppose Ptx(|ac|) is equal to the maximum transmission

power 80.1 mW. Ptx(|ab|) and Ptx(|bc|) are equal to the medium transmission power

24.6 mW. Pid, Prx, and Ps are 24 mW, 24 mW and 6 μW, respectively. Using this

information, it can be calculated that relaying through node b is more power efficient

when the data rate is above 16.8 Kbps.

This example leads to the following observations on the power-efficient network con-

figuration: 1) When network workload is low, energy consumption of a network is

dominated by the idle state of the radio. In such a case, scheduling nodes to sleep

saves the most energy. It is therefore wise to use long communication range between

any two nodes in order to allow any nodes that would otherwise be used as relays

to sleep. 2) When network workload is high, the transmission energy dominates the

total energy consumption of a network. Since transmission power increases quickly

with distance, using shorter communication ranges that are relayed through multiple

nodes saves more energy.

1The actual transmission range of a radio also depends on environment and antenna.
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5.2 Problem Definition

We define our problem formally in this section. We first define several simple concepts.

A node can either be active or sleeping. For any given time instance, an active node

works in one of the following states: transmitting, receiving or idle. The total energy

consumption of an active node is equal to the sum of the energy consumption in all

states. The sleeping power consumption is orders of magnitude lower than active

power consumption [15, 11]. In this thesis, we only consider the total active energy

consumption in a network. We define the following notation.

1. The maximal and minimal transmission power of each node is denoted by P max
tx

and P min
tx , respectively. Ptx(u, v) is the minimum power needed for successful

transmission from node u to node v, P min
tx ≤ Ptx(u, v) ≤ P max

tx .

2. G(V, E) represents a wireless network. V includes all nodes in the network and

E is defined as E = {(u, v)|(u, v ∈ V ) ∧ (Ptx(u, v) ≤ P max
tx )}.

3. Prx and Pid represent the power consumption of a node in receiving and idle

state, respectively.

4. S = {si} and T = {tj} represent a set of source and sink nodes, respectively.

I = {(si, tj, ri,j) | si ∈ S, tj ∈ T} represents a set of traffic demands where

source si sends data to sink tj at rate ri,j.

In many sensor network applications, e.g., periodic data collection [42, 72], a source

is aware of its data rate. Alternatively, a source may estimate its average data rate

online. We assume that the total workload in the network is lower than the network

capacity, which is in turn much lower than nodes’ bandwidth in multi-hop wireless
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networks due to network contention and interference. We note that this assumption

holds in many sensor network applications with low data rates. For instance, in the

WSN deployed at Great Duck Island for habitat monitoring [59], each mote only

sends its sensor data to the base station every 20 minutes. Many other representative

applications (e.g., precision agriculture and cargo tracking) also have low data rate.

The Minimum Power Configuration (MPC) problem can be stated as follows. Given

a network and a set of traffic demands, find a subnet that satisfies the traffic demands

with minimum energy consumption. We note that minimizing the total energy con-

sumption of a network is equivalent to minimizing the average power consumption of

all nodes. We first consider the average power consumption of a node, assuming the

data path f(si, tj) from source si to sink tj is known. To simplify the formulation, we

introduce a virtual source node s∗ and virtual sink node t∗ to the network. s∗ sends

data to each source si at the rate of ri,j. Each sink tj sends data to t∗ at a rate of

ri,j. Note that the additional power consumption due to the introduction of s∗ and t∗

is constant for a given set of traffic demands. Now the average power consumption,

P (u), of any active node u (excluding s∗ and t∗), can be computed as the weighted

average of power consumption in transmitting, receiving, and idle states:

P (u) =

⎛
⎝1 − 2

∑
(u,v)∈f(si ,tj)

ri,j

⎞
⎠ · Pid +

∑
(u,v)∈f(si,tj)

ri,j · (Ptx(u, v) + Prx)

= Pid +
∑

(u,v)∈f(si,tj)

ri,j · (Ptx(u, v) + Prx − 2Pid)
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where (u, v) ∈ f(si, tj) represents that there exists a node v such that edge (u, v) is

on the path f(si, tj). Based on the average power consumption of a node defined by

the above equation, the MPC problem can be defined as follows.

Definition 1 (MPC problem). Given a network G(V, E) and a set of traffic demands

I, find a subgraph G′(V ′, E ′) (V ′ ⊆ V, E ′ ⊆ E) and a path f(si, tj) within G′ for each

traffic demand (si, tj , ri,j) ∈ I, such that the average power consumption P (G′) is

minimal, where

P (G′) =
∑
u∈V ′

P (u) = |V ′|z +
∑
u∈V ′

∑
(u,v)∈f(si,tj)

ri,j · Cu,v (5.2)

and Cu,v and z are defined as follows:

Cu,v = Ptx(u, v) + Prx − 2Pid (5.3)

z = Pid (5.4)

From the above formulation, we can see that an edge (u, v) has a cost Cu,v for each unit

of the data flowing through it, and each node has a fixed cost z that is independent

of workload. We assume that all the data in the same flow takes the same path, i.e.,

a flow is not splittable. Under such a consumption, one can show that network path

f(si, tj) is the shortest path in graph G′ with edge weight Cu,v. (5.2) can then be

reformulated as follows:
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P (G′) = |V ′|z +
∑

(si,tj ,ri,j)∈I

ri,j · P (si, tj) (5.5)

where P (si, tj) represents the shortest path in G′(V ′, E ′) with edge weight Cu,v. Ac-

cording to (5.5), the total power cost is equal to the sum of the costs along the shortest

path of each traffic demand and the total nodal costs.

When ∀(u, v) ∈ E, Ptx(u, v) + Prx = 2Pid, the cost function of the MPC problem

becomes |V ′|z. When there is only one sink t in the network, the problem is equivalent

to finding the minimum-weight Steiner tree in G(V, E) with uniform edge weight z

to connect the nodes in S ∪ {t}. This special case of the minimum-weight Steiner

tree problem is NP-hard [23]. As a result, a natural reduction from this problem can

show that the MPC problem is also NP-hard.

Although polynomial solutions for the general MPC problem are unlikely to exist,

the following non-trivial special cases of the MPC problem can be solved optimally

in polynomial time.

1. When S ∪ T = V , i.e., every node in the network is either source or sink and

hence needs to remain active. Thus the first term in (5.2) becomes |V |z which

is constant for a given network. In such a case, the solution is equivalent to

finding the shortest paths with edge weight ri,j · Ci,j connecting all sources to

their sinks and hence can be solved in polynomial time.

2. When Pid = 0, as is similar to the first case, the MPC problem can be solved

optimally by shortest-path algorithms.



63

In the problem formulation, we assume that all data sources are known offline. This

assumption may not be practical in many sensor network applications where data

sources are usually triggered by asynchronous events (e.g., an object passing by) or

a query submitted by users. That is, the data sources in many scenarios arrive in

an online fashion. In Section 6.2, we discuss both offline and oneline approximate

algorithms for the MPC problem.

In our problem definition, the energy consumption of packet retransmissions on lossy

communication links is ignored. Recent empirical studies show that lossy communi-

cation links are common in real sensor networks [67, 81]. In such a case, the com-

munication quality between two nodes can be quantified by packet reception ratio

(PRR) [85]. In this chapter, we assume an automatic repeat request (ARQ) mecha-

nism is used to deal with lossy links. A node with ARQ keeps retransmitting a packet

until the packet is successfully acknowledged by the receiver or the preset maximum

number of retransmissions is reached. To reflect the additional energy cost caused

by retransmissions, the cost function defined in (5.2) can be revised as follows. Let

PRR(u, v, Ptx) represent the PRR when u communicates with v using transmission

power Ptx. Note that PRR(u, v, Ptx) depends on the quality of both forward and

reverse links between u and v when an ARQ is used2. The expected transmission

power cost when u communicates with v with Ptx on the lossy links can be estimated

as Ptx/PRR(u, v, Ptx). Hence the most efficient transmission power that should be

used by u to communicate with v is determined as follows:

Ptx(u, v) = arg min
Ptx

PRR(u, v, Ptx)
, Pmin

tx ≤ Ptx ≤ Pmax
tx (5.6)

2Acknowledgment can be transmitted at a relatively high power level to reduce the number of
retransmissions.
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We redefine Ptx(u, v) in (5.3) of our problem formulation according to (5.6) when the

communication links are lossy.

5.3 Centralized Approximation Algorithms

We investigate approximate algorithms for the general MPC problem in the this

section. We first focus on the scenario where there is only one sink in the network

in this section. Each source si (si ∈ S) sends data to sink t at a data rate of ri.

We discuss the extension of some of our results to the scenario of multiple sinks in

Section 5.3.3.

5.3.1 Matching based Algorithm

When there is only one sink and data flows are not splittable, the MPC problem has

the same formulation as the cost-distance network design problem [44]. Meyerson

et. al proposed a randomized approximation scheme [44] that has a best known

approximation ratio of O(lg k) with k being the number of sources . We briefly

review the algorithm and propose an optimization that considerably improves the

practical performance of the algorithm.

The Meyerson algorithm takes a graph G(V, E) and outputs a subgraph G′(V ′, E ′)

that contains the paths from all sources to the sink.

The time complexity of the above algorithm is O(k2(m + n lg n)) (where k, m and

n represent the number of sources, total number of edges and nodes in G respec-

tively). As shown in [44], the algorithm terminates after at most O(lg k) iterations
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Input: G(V, E), set W = S ∪ {t} and traffic demands I
Output: G

′
(V ′, E ′)

1. Create a complete graph M containing all nodes in W as follows. Each
edge between two nodes in M is the shortest path between the two
nodes in G under the edge cost D. For two sources si and sj , Du,v =

z +
2rirj

ri+rj
Cu,v, (u, v) ∈ E. For a source si and sink t, Du,v = z +

riCu,v, (u, v) ∈ E.

2. Find a matching of graph M that has at most half the cost of the
minimum perfect matching, and has at most half of the number of
total nodes.

3. The nodes and edges of G defining each matched edge of M are added
into G′. For each matched edge (si, sj) in M , choose si to be the center
with probability ri/(ri + rj), otherwise sj will be the center. Change
the data rate of the center as ri + rj .

4. Each non-center node in a matched edge of M is removed from W . Stop
if S contains only the sink. Otherwise go to step 1 with the updated
W .

Figure 5.3: Matching based algorithm (MBA) for MPC problem
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and the expected cost introduced by the newly added edges in each iteration is at

most constant times of the cost of the optimal solution. Hence the approximation

ratio of the algorithm must be O(lg k). We refer to this algorithm as matching based

approximation (MBA) in the rest of this chapter.

We note that edge of G can lie on the matched edges of M in multiple iterations

at step 3 of MBA. However, the fixed cost of each edge z is only counted once in

the total cost of the solution (see (5.2)). This observation can lead to the following

optimization to MBA. After the matching of M is found in step 2, we redefine the

cost of each matched edge of G as Du,v =
2rirj

ri+rj
Cu,v. That is, the fixed cost of each

edge z is removed if the edge is matched. The intuition behind this consideration is

that the matchings in following iterations will tend to reuse the edges of G that have

been previously matched due to the cost reduction on these edges. Consequently,

the total cost of the solution may be reduced by more path sharing. We refer to the

MBA with this optimization as MBA-opt. Although MBA-opt does not improve the

approximation ratio of MBA, we show in section 5.3.5 that it can result in considerable

improvement on the practical performance.

Although MBA and MBA-opt have a good performance bound, they suffer from the

following drawbacks. First, efficient distributed implementations of them are difficult

to realize in large-scale sensor networks. In order to find the matching of the network

graph (step 2 of MBA) in a distributed environment, complex coordination between

nodes is needed [66]. Secondly, MBA and MBA-opt are not applicable to the online

scenario in which sources arrive dynamically because finding the matching of the

network requires the knowledge of all data sources. Finally, MBA and MBA-opt

only work for the scenario in which there is a single sink in the network. Because of
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these drawbacks, we are forced to design other approximate algorithms that are more

suitable to distributed and online implementations.

5.3.2 Shortest-path Tree Heuristic (STH)

In this section, we discuss an approximation algorithm called the shortest-path tree

heuristic (STH). The idea behind this heuristic is to balance the flow dependent cost

(ri,j ·Cu,v) and the fixed nodal cost (z) of a graph using a combined cost metric. For

convenience, we define a set of weight functions for edge (u, v):

gi(u, v) = ri · Cu,v + z (5.7)

Each weight function gi(u, v) defines a cost for edge (u, v) when the data flow from

si travels through that edge. The pseudo-code for STH is shown in Fig. 5.4. At

each iteration, STH simply finds the shortest path from one of the sources to the sink

according to weight function (5.7). The output of STH is the union of all shortest

paths found. Note that, the cost of an edge needs to be updated during each iteration

(step 2.a) since the cost depends on the data rate of the current source (according to

(5.7)).

Fig. 5.5 shows an example of the STH algorithm. The shortest paths from s1, s2 to t

are highlighted in black. Fig. 5.5(a) shows an initial network without any flows. Fig.

5.5 (b) and (c) show two iterations of STH. In each iteration, G(V, E) is weighted

according to gi and the shortest path from si to t is found. The output of STH is the

graph composed of all of the shortest paths found. According to (5.2), the average

power cost (excluding the cost of the sink) can be calculated to be 9.4.
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Input: G(V, E), source set S, sink t and traffic de-
mands I
Output: G

′
(V ′, E ′)

1. Initialize G
′
(V ′, E ′) to be empty.

2. foreach si

(a) Assign edge weights for G(V, E) accord-
ing to gi.

(b) Find the shortest path connecting si to
t.

(c) Add the shortest path found to G
′
.

3. end

Figure 5.4: Shortest-path Tree Heuristic (STH)
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Figure 5.5: (a) Initial network with edge weight Cu,v and node weight z = 2 (shown
on each node). (b) edge weights are defined by r1 · Cu,v + z. (c) edge weights are

defined by r2 · Cu,v + z.
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Step 4 of the STH algorithm can be implemented using Dijkstra’s shortest-path algo-

rithm. The complexity of STH is O(|S||E| lg |V |). It can be seen that STH outputs

the optimal solution for the two polynomial-time special cases of MPC problem dis-

cussed in Section 5.2.

Before we investigate the performance bound of STH for the general MPC problem,

we define the following notation. We define a set of weight functions wi for edge (u, v)

as follows:

wi(u, v) = ri · Cu,v (5.8)

wi(u, v) represents the cost of edge (u, v) when the data flow from si travels through

(u, v). Let P x
G(u, v) represent the cost of the shortest path between node u and v in

graph G under the weight function x. Then (5.2) can be reformulated as follows:

P (G
′
) =
∑

i

P wi

G
′ (si, t) + |V ′ |z (5.9)

We have the following theorem regarding the performance of STH.

Theorem 12. The approximation ratio of STH is no greater than |S|.

Proof. Let P (G
′
) and P (G

′
min) represent the total cost of G

′
found by STH and the

optimal solution, respectively. The total cost of the shortest paths found by STH in

G
′
with weight gi is greater than in P (G

′
) because the idle power z of each node in

G
′
might be counted multiple times. We have:
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P (G
′
) ≤
∑

i

P gi

G′ (si, t) (5.10)

Since STH finds the shortest paths in G with weight gi and G
′
min ⊂ G, we have:

∑
i

P gi

G′ (si, t) ≤
∑

i

P gi

G
′
min

(si, t) (5.11)

Consider the total cost of the shortest paths from si to t in G
′
min with weight gi. This

cost is greater than the optimal solution P (G
′
min) since weight z might be counted

multiple times for each node in G
′
min. It can be seen that z is counted at most |S|

times for each node (which occurs when a node lies on the paths from all the sources

to the sink). Thus we have:

∑
i

P gi

G
′
min

(si, t) ≤
∑

i

Pwi

G
′
min

(si, t) + |S|(|V ′ |)z

≤ |S|
(∑

i

Pwi

G
′
min

(si, t) + (|V ′ |)z
)

= |S|P (G
′
min) (5.12)

From (5.10) to (5.12), we have:

P (G
′
) ≤ |S|P (G

′
min)
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5.3.3 Incremental Shortest-path Tree Heuristic (ISTH)

In STH, the function used to weight the network is different for each source. Conse-

quently, the shortest path from a source to the sink is not affected by whether shortest

paths are already established for other sources. Intuitively, this does not seem effi-

cient since sharing an existing path could lead to lower nodal costs. Suppose we are

finding the shortest path from si to t and all the shortest paths from sj(0 < j < i)

to t have already been found. If any edge on the existing paths is reused by the new

path, the incremental cost is ri ·Cu,v. This cost does not include the nodal cost z since

it has been counted by the existing paths. That is, the edge weights on the existing

paths should not include the nodal cost z. Based on this observation, we propose

the following algorithm called incremental shortest-path tree heuristic (ISTH) that

finds the path from each source to the sink with the minimal incremental cost. The

pseudo-code of ISTH is depicted in Fig. 5.6. During its execution, the algorithm

maintains a subgraph G
′

that contains the paths from the sources to the sink that

have been visited so far. In each iteration, ISTH finds the remaining source node that

is closest to, but not connected to the sink in G
′
. It then adds the shortest path from

that node to the sink into G
′
. For convenience, we refer to the state of those nodes

already in G
′

to be active. Once a node becomes active (i.e., included by G
′
), the

cost of any edge originating from it is decreased by z to reflect the incremental cost

incurred by the edge when a new flow travels through it. Formally, when ISTH finds

the shortest path from source si to the sink, the edge cost is defined by the following

function:
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hi(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

ri · Cu,v u is active

ri · Cu,v + z otherwise
(5.13)

Input: G(V, E), source set S, sink t and traffic
demands I
Output: G

′
(V ′, E ′)

1. Initialize G
′
(V ′, E ′) to be empty.

2. Label all nodes as asleep.

3. W = S.

4. while W �= φ

(a) Find si ∈ W that has the shortest dis-
tance in G(V, E) to t with edge weight
hi(u, v).

(b) Add the shortest path from si to t in G
′
.

(c) Label all nodes on the path as active.

(d) W = W − si.

5. end

Figure 5.6: Incremental Shortest-path Tree Heuristic (ISTH)

Fig. 5.7 shows the second iteration of an example of ISTH in which the shortest

path from s1 to t has been found. The first iteration of the example is the same as

that of STH shown in Fig. 5.5(b). The total weights on the shortest path from s1

to t in Fig. 5.7 are smaller than those in Fig. 5.5(c) since the nodal cost z is not

included. Consequently, different from the case of STH where two paths must always

be disjoint as shown in Fig. 5.5(c), the shortest path from s2 to t shares an edge with

the existing path. The total number of nodes used is therefore decreased resulting

in less idle energy consumption. According to (5.2), the average power cost in this
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example (excluding the cost of the sink) can be calculated to be 7.6. This value is

smaller than the one obtained for the solution to STH. It can easily be seen that this

solution is optimal for this example.

0.4

0.4

2.4

2.2
2.6

2.22.8

2.4

2.8

s1

s2

t

Figure 5.7: The shortest path from s2 to t shares a edge with the existing shortest
path from s1 to t.

We now prove that the approximation ratio of ISTH is at least as good as that of

STH.

Theorem 13. The approximation ratio of ISTH is no greater than |S|.

Proof. Let P (G
′
) and P (G

′
min) represent the total cost of G

′
found by ISTH and the

optimal solution, respectively. P (G
′
) equals the sum of the costs of all shortest paths

found by ISTH. We have:

P (G
′
) =

∑
i

P hi

G
′ (si, t)
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According to (5.13) and (5.7), hi ≤ gi. Hence the incremental cost found by ISTH at

each iteration must be no greater than that found by STH. We have:

∑
i

P hi

G′ (si, t) ≤
∑

i

P gi

G′ (si, t) (5.14)

According to (5.14), (5.11) and (5.12), we have:

P (G
′
) ≤ |S|P (G

′
min)

As we mentioned earlier, when ∀(u, v) ∈ E, Cu,v = 0, the MPC problem is equivalent

to finding the minimum-weight Steiner tree connecting all the sources and the sink in

G with uniform edge weight z. In ISTH, once a shortest path is found, the weights on

the path become zero. Finding a subsequent shortest path from a source to the sink is

therefore equivalent to finding the shortest path to any node on the existing path. In

such a case, ISTH is equivalent to the minimum-weight Steiner tree heuristic with an

approximation ratio of 2 [24]. This result suggests that ISTH yields good performance

when the idle energy dominates the total energy consumption of a network. Such

a situation occurs when network workload or transmission/reception power is low.

Similar to STH, ISTH finds the optimal solution for the two polynomial-time special

cases of the MPC problem.

At each iteration of ISTH (see Fig. 5.6), the data source closest to the sink is chosen

for processing from among all of the remaining sources. Since this operation requires
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knowing about every source in the network, it can not be implemented online. A

straightforward modification to handle online sources is to process one new source at

each iteration of the algorithm. Although this modification likely results in average

performance degradation, the approximation ratio of ISTH, |S| (where S is the set

of sources), remains unchanged. This holds true because the proof of Theorem 13

does not require any particular sequence for the processing of sources. This property

allows ISTH to preserve its performance bound in online scenarios.

We have been focusing on the scenario involving a single sink in this section. As STH

and ISTH are based on pairwise, shortest-path heuristics, they can easily be extended

to a scenario containing multiple sinks. It can be shown that the approximation ratio

of both algorithms still holds using similar proofs.

5.3.4 Constant-ratio Approximation Algorithm

Although the STH and ISTH algorithms described previously do find the optimal

solution for the two polynomial-time special cases of the MPC problem, their known

approximation ratio is equal to the number of source nodes in the network for the

general MPC problem, causing them to not scale so well when the number of sources

becomes large. In this section, we seek an algorithm with a constant approximation

ratio. We show in the following theorem that a minimum-weight Steiner tree algo-

rithm will lead to a constant approximation ratio for MPC problem, when the ratio

of maximal transmission power to idle power is bounded.

Theorem 14. Let H be the best approximation algorithm to the minimum-weight

Steiner tree problem that has an approximation ratio β. If ∀(u, v) ∈ E, Cu,v ≤ αz, the
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solution by executing H in G with the uniform edge weight z has an approximation

ratio (1 + α)β to the optimal solution of MPC problem.

Proof. Suppose G
′
min(V

′
min, E

′
min) and G

′
(V

′
, E

′
) are the optimal solutions to the

minimum-weight Steiner tree problem and the solution of algorithm H , respectively.

Since H has an approximation ratio of β and all edges have the same weight z, we

have:

|V ′ | − 1 = |E′ | < β|E′
min| = β(|V ′

min| − 1) (5.15)

Let P (G
′
) and P (G

′
min) represent the cost of G

′
and P (G

′
min) in MPC problem. We

ignore weight z for the constant sink node in both P (G
′
) and P (G

′
min). Doing so does

not affect the quality of G
′
or the optimality of G

′
min. We have:

P (G
′
) =

∑
i

∑
(u,v)∈f(si,t)

ri · Cu,v + (|V ′ | − 1)z

≤
∑

(u,v)∈E′

(
Cu,v ·
∑

i

ri

)
+ (|V ′ | − 1)z (5.16)

where f(si, t) represents the shortest path with edge weight Cu,v from si to t. Based

on the assumption that the total workload in the network is lower than network

capacity,
∑

i ri ≤ 1. We have:
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P (G
′
) ≤

∑
(u,v)∈E′

Cu,v + (|V ′ | − 1)z

≤
∑

(u,v)∈E
′
αz + (|V ′ | − 1)z

= |E′ |αz + (|V ′ | − 1)z

= (|V ′ | − 1)(1 + α)z (5.17)

According to (5.15) and (5.17), we have:

P (G
′
) < β(|V ′

min| − 1)(1 + α)z

< (1 + α)β

(
(|V ′

min| − 1)z +
∑

i

Pwi

G
′
min

(si, t)

)

= (1 + α)βP (G
′
min)

Theorem 14 shows that the Steiner tree based algorithm performs better when the

ratio of communication power to idle power, α, is low. The intuition behind this

result is that, the algorithm only minimizes the idle energy and ignores the trans-

mission/reception energy of the radio, and hence results in more energy reduction

when the idle energy constitutes a bigger portion of the total energy consumption,

i.e., α is low. Therefore, Theorem 14 indicates that the Steiner tree based algorithm

is particularly suitable for radios with high idle power. Theorem 14 also shows that

the performance of the algorithm is dependent on β - the best approximation ratio of

minimum Steiner tree algorithms. Approximate algorithms of the minimum Steiner
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tree problem have been studied extensively [49]. The best known approximation ra-

tio is about 1.5 [49]. According to the measurements of the CC1000 radio on Mica2

motes [15], α ≈ 2.3. The approximation ratio of the scheme discussed in this section

is therefore about 5 on the CC1000 radio.

Input: G(V, E), source set S, sink t and traffic
demands I
Output: G

′
(V ′, E ′)

1. Set the weight of every edge in G(V, E) to z.

2. V ′ = t

3. W = S.

4. while W �= φ

(a) Find si ∈ W that has the shortest dis-
tance to G

′
with edge weight z.

(b) Add the shortest path found in the pre-
vious step to G

′
.

(c) W = W − si.

5. end

Figure 5.8: The Gilbert minimum Steiner tree algorithm

Fig. 5.8 shows a simple minimum Steiner algorithm proposed by Gilbert et al. [24].

At step 4(a), the shortest path from a source si to G′ is the shortest path among

the shortest paths from si to all nodes in G′ . The algorithm has an approximation

ratio of 2 [24]. In Section 5.4.2, we will discuss the design of a distributed protocol

called MASP based on the Gilbert Steiner algorithm. The rationale of employing

this algorithm instead of more complex algorithms with better approximation ratios

is that this algorithm admits an efficient distributed implementation.
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The Gilbert algorithm (see Fig. 5.8) can be extended as follows to the scenario where

sources arrive online. At step 4(a) of each iteration, a shortest path is found to

connect the new source to the subgraph composed of the sink and existing sources

before being added to the existing subgraph. The output is the subgraph composed

of all sources and their respective paths found. This scheme has been shown to have

an online approximation ratio of lg |S| to the minimum Steiner tree problem (where S

is the set of nodes to be connected) [28]. According to Theorem 14, the approximate

ratio of this online algorithm for MPC problem is (1 + α) lg |S|.

5.3.5 Performance Evaluation

In this subsection, we evaluate the average performance of the centralized approximate

algorithms we presented in previous subsections through simulations. As discussed

in Section 5.3.3, STH likely performs worse than ISTH and hence is not evaluated in

this section.

We implement MBA, MBA-opt, ISTH, and the Gillbert Steiner tree algorithm (re-

ferred to as Steiner hereafter) in a network simulator. To evaluate the effectiveness

of other energy conservation approaches to our problem, we also implemented two

baseline algorithms called Transmission-power Minimum Spanning Tree (TMST) and

Transmission-power Shortest Path Tree (TSPT). TMST finds the minimum spanning

tree of the network where each edge is weighted by the minimum transmission power

of that edge. We choose TMST as a baseline algorithm for performance comparison

since distributed MST has been shown to be an effective topology control algorithm

[38]. Similarly, TSPT finds the shortest path tree of the network when weighted by
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Tx Power Radio Current
(dBm) Range(m) Consumption (mA)
-20 5 8.6
-10 18 10.1
0 50 16.8
5 68 25.4

Table 5.1: Radio transmission parameters

transmission power, and this technique has been previously proposed as an efficient

power-aware routing scheme [56].

We use the parameters of the CC1000 radio on Mica2 Motes in the simulation. There

is no packet loss in the simulation environment. The node bandwidth is 40 Kbps. In

the simulation, only the nodes that lie on the communication paths between sources

and the sink remain active (i.e., the state of their radios is either transmitting, re-

ceiving or idle). All non-communicating nodes run in the sleeping state. The power

consumption of the radio in receiving, idle, and sleeping states is 21 mw, 21 mw and

6 μw, respectively [15]. The actual radio range of the CC1000 on Mica2 motes varies

depending on environmental factors and transmitting power. We set the parameters

of the radio range and transmitting power according to the empirical measurements

presented in [2], which are listed in Tab 5.1. When a node communicates with a

neighbor, it always uses the minimum radio range that can reach that neighbor. At

the beginning of the simulation, a communication path from each source to the sink

is found. The nodes on the communication paths remain active and all other nodes

are put to sleep. The simulation time for each algorithm is 1000 seconds. 200 nodes

are randomly distributed in a 500m × 500m region. The results in this section are

the average of 10 different network topologies.
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Fig. 5.9 shows the total energy consumption of the network when the number of

flows varies from 1 to 100. The data rate of each flow is 0.2 Kbps. We can see that

MBA-opt, ISTH and Steiner significantly outperform the other algorithms. The good

performance of Steiner and MBA-opt are expected because of their good approxima-

tion ratios. Interestingly, ISTH yields a similar performance as MBA-opt and Steiner

although ISTH’s known approximation ratio is worse than them. This result is due

to the following facts. First, the performance bound of ISTH is derived under the

worst-case scenarios, which do not exhibit in the simulation. Second, although the

aggregate data rate of all flows in the simulation is up to half of network bandwidth,

the data rate of each individual flow is very low. As a result, the active nodes on data

routes remain idle in most of the time. In such a case, ISTH minimizes the number of

active nodes, resulting similar behavior as Steiner (i.e., gi in (5.13) is close to zero).

Fig. 5.9 also shows the effectiveness of our optimization to the MBA algorithm, as

discussed in Section 5.3.1. TSPT and MST result in considerably higher energy con-

sumption than the above algorithms since they only consider transmission power and

ignore idle power.
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The results in this section show that the average performance of ISTH and Steiner is

similar to that of MBA-opt. As both ISTH and Steiner are based on the shortest-path

algorithm, they have a more efficient distributed implementation than MBA-opt. We

now turn our attention to the distributed implementation of ISTH and Steiner in the

next section.

5.4 Distributed Protocols

In this section, we present the design and implementation of two distributed routing

protocols, Minimum Power Configuration Protocol (MPCP) and Minimum Active

Subnet Protocol (MASP). These protocols are based on centralized algorithms ISTH

and Steiner presented in Section 5.3, respectively. We focus on a “many to one”

routing scenario in our discussion since it is the most common communication para-

digm in sensor networks. MPCP and MASP can be easily extended to support more

general routing scenarios.

5.4.1 Minimum Power Configuration Protocol

In this section, we present the design of the minimum power configuration protocol

(MPCP). MPCP finds the power-efficient routes for communicating nodes in a net-

work based on the distributed implementation of the ISTH algorithm with online

extentions discussed in Section 5.3.3.

Shortest-path based routing mechanisms have been extensively studied. We adopt

the Destination Sequenced Distance Vector Routing (DSDV) protocol [46] as our
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implementation framework. DSDV is based on the distributed implementation of the

Bellman-Ford shortest path algorithm [5]. A node in DSDV advertises its current

routing cost to the sink by broadcasting route update messages. A node sets the

neighbor that has the minimum cost to the sink as its parent and rebroadcasts its

updated cost if necessary. DSDV can avoid the formation of routing loops by using

sink-based sequence numbers for route updates. The routing cost of a node in DSDV

is its hop count to the sink. The routing cost of a node in MPCP, however, depends

on the operational state of the node (active or power saving) as well as the data

rates of the flows that travel through the node. We now discuss in detail the core

components of MPCP.

Node States and Routing Table

In our design, a node operates in either active or power saving mode. A node in

power saving mode remains asleep in most of the time and only periodically wakes

up. This simple sleep schedule is similar to several existing power saving schemes

such as SMAC [77]. Initially, all nodes operate in power saving mode. When a source

node starts sending data to the sink, a power-efficient routing path from the source to

the sink is found by the distributed ISTH algorithm. All nodes on the routing path

are activated to relay data from the source to the sink. All the other nodes remain

in the power saving mode to reduce energy consumption. Similarly, an active node

switches to the power saving mode if all the data flows traveling through it disappear.

Each node in the network maintains a routing table that contains the routing entries

and status of neighbors. Since the routing cost to the sink varies with the data

rate of the source, we need to store an entry for each data rate in the network.
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data rate next hop cost seq
packets/s
2.1 5 28.9 8
1 7 8.9 6
0.5 15 18.3 8
0.1 30 8.2 12

Table 5.2: A routing table in MPCP.

Specifically, an entry in the routing table of node u includes the following fields:

< ri, next hop, cost, seq > where ri is the data rate of source si, next hop is the

neighbor node with the minimum cost to the sink, cost is the cost of node u to the

sink through next hop, seq is a sequence number originated by the sink. Tab. 5.2

shows a routing table of an active node.

One simple method of obtaining source rates is to let each source flood the network

with its rate information before finding a route to the sink. This approach incurs too

much overhead, however, when a network is composed of many nodes. To reduce the

overhead, only the data rates with significant difference are kept in the routing table.

When a new source node starts sending data, it chooses the next hop node from a

routing table entry that has the data rate closest to its own data rate. The new data

rate will then be propagated to other nodes if it is significantly different from the

ones stored in their table.

Route Updates

According to cost function (5.13), the routing cost from a node to its neighbors in

MPCP depends on data rate and the change of the node’s state (active or power

saving). As a result, a new round of route updates will be triggered by any of the



85

following events: (1) a link is broken; (2) the data rate of an existing flow changes;

and (3) a data flow is started or completed.

A node detects a broken link when multiple transmissions fail. The process of route

updates caused by a broken link is similar to DSDV. A node advertise its routing

information by broadcasting a route update packet to its neighbors. After receiving

an update from a neighbor, a node calculates its new cost to the sink at each data

rate specified in the update, and updates its routing table. This new cost is equal

to the sum of the link cost to the neighbor (defined by (5.13)) and the cost of the

neighbor included in the update. A node sets a timeout after the arrival of the first

route update in this round to wait for more updates from other neighbors. If there

exist entries in the routing table that have a cost reduction above a threshold after

the timeout, the node broadcasts a route update packet containing these entries to

advertise its updated routing information.

We now discuss in detail the route updates caused by the change of data rate and

start/completion of a data flow. When a source node changes its data rate to a

value that differs significantly from the data rates stored in the routing table, the

source node notifies the sink by including the new rate in its data packets. Once the

sink sees the new rate, it broadcasts a route update with a new sequence number

to the network. The routing tables of nodes are updated when the route update is

broadcast throughout the network. Consequently, the source with the new data rate

may choose a better route due to updated routing information. When the workload

of the network is dynamic, multiple rounds of route updates may be initiated at the

same time resulting in high network contention. To reduce the overhead of route

updates in such a case, the sink can include several default data rates in its initial

route updates based on the estimation of source rates. From then on, a new round



86

of route updates is initiated only when the data rate of a flow changes to a value

significantly different from the default ones.

new
source

C

B

D

new routing
nodes

existing
routing nodes

power saving
node

A

Figure 5.10: The junction node C will initiate a round of route update due to the
arrival of new source A.

Route updates may also be triggered when a new data flow appears. If the new flow

has a data rate significantly different from the ones stored in the routing table, a

round of route updates is initiated as discussed earlier. In addition, the appearance

of a new flow may activate a node previously running in power saving mode and

reduce the cost of the node to its neighbors (see (5.13)). As shown in Fig. 5.10, a

new data flow from source node A activates nodes A, B and C before it meets the

existing routing path at a junction node D (D may be the sink node). Nodes A, B

and C then lower their routing costs after being activated. In such a case, to reduce

the number of route updates, only the node preceding the junction node initiates the

route update since it has the minimum cost to the sink among all nodes on the new

path. In Fig. 5.10, node C will broadcast a route update with a new sequence number

and reduced routing costs in order to initiate a round of route updates. Nodes B, A

and other nodes that have reduced routing costs to the sink participate in the route

update process that has been initiated by C. Note that the route updates initiated in
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this way only involve a subset of nodes in the network since many nodes (e.g., those

closer to the sink) will not participate in the route update process due to no reduction

in their routing costs.

Similar to the appearance of a new flow, the disappearance of an existing flow may

also cause route updates. In such a case, the nodes on the existing routing path

switch to the power saving mode after some timeout, resulting in higher routing costs

(see (5.13)). Again, the node preceding the junction node initiates the route update

process by advertising the new routing costs.

Link Estimation

In real wireless sensor networks, a routing protocol often suffers from dynamic and

lossy communication links. Empirical study shows that the reliability of routing

protocols can be significantly improved by only keeping “good” neighbors, e.g., those

with high packet perception ratios (PRR), in neighborhood tables [67]. A simple

way of obtaining the PRR of a link is by profiling the link characteristics off-line.

Alternatively, the PRR can be obtained from on-line link estimators [67, 12]. For

example, nodes can broadcast periodic beacon messages and the PRR of a link to

a neighbor being estimated by counting the number of messages received from that

neighbor. Further discussion on this issue is beyond the scope of this thesis.

5.4.2 Minimum Active Subnet Protocol

We now present the design of the minimum active subnet protocol (MASP) that finds

a Steiner tree connecting all sources in the network to the sink using the minimum
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number of active nodes. The MASP is also based on DSDV and has a similar design

to MPCP as both protocols are based on the shortest-path algorithm. We will now

discuss the major difference between MPCP and MASP.

In MASP, a node in power saving mode incurs a routing cost of Pi (idle power)3. Once

a data flow travels through a node, it becomes active and its routing cost reduces to

zero. That is, routing among active nodes is free. As a result, when a new source

arrives, finding the shortest path from that node to the sink is equivalent to finding

the shortest path to any active node.

Unlike MPCP, the routing cost of a node in MASP does not depend on data rates.

This independence reduces the storage overhead of the routing table at each node

as well as the network bandwidth used by route updates. Each entry of a routing

table in MASP contains < next hop, cost, seq >. The route updates of MASP

can be triggered by either a broken link, or the start or completion of a data flow.

The route updates triggered by link failures are similar to DSDV, while the updates

triggered by sources are similar to MPCP. MASP is expected to generate fewer routing

updates than MPCP, because the change in data rates does not affect the routing

cost of MASP. In other words, MASP ignores data rates because it only minimizes

idle energy. As shown in our simulation results presented in Section 6.3, MASP is

only suitable for radios with high idle power.

3Since the routing cost is the same for all power saving nodes, one can use any positive number
as the routing cost.
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5.5 Experimentation

5.5.1 Simulation Environment

Low-power wireless radios used by real sensor network platforms (e.g., Berkeley

motes) are known to have highly irregular communication ranges and probabilistic

link characterization [81]. The simplistic assumptions on wireless radio propagation

made by a network simulator may cause simulation results to differ significantly from

real-world experimental results [31]. Accurate simulation to the characterization of

real wireless radios with different transmission power is key to evaluating the realistic

performance of our protocols. Because of this importance, we took a link layer model

that was developed by USC [85] and implemented it for use with the Prowler network

simulator [55]. We also added improved routing support to this model based on work

done during the Rmase project [80]. Experimental data showed that the USC model

can simulate highly unreliable links in the Mica2 motes [85]. In our simulations, the

packet reception ratio (PRR) of each link is governed by the USC model according to

the distance between the two communicating nodes and the transmission power. The

MAC layer in Prowler employs a simple CSMA/CA scheme without RTS/CTS, which

is similar to the B-MAC protocol [47] in TinyOS. To improve the communication re-

liability in the lossy simulation environment, we implemented an ARQ (Automatic

Repeat Request) scheme that retransmits a packet if an acknowledgment is not re-

ceived after some preset timeout. The maximum number of retransmissions before

dropping a packet is 8. Prowler is a Matlab-based network simulator that employs

a layered event-driven structure similar to TinyOS. Using such a simulator allows us

to easily implement new network modules (such as the link model from USC) and to

port our protocols to Berkeley motes in future.
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5.5.2 Simulation Settings

For performance comparison, in addition to MPCP and MASP, we have implemented

two baseline protocols: minimum transmission (MT) routing [67] and minimum trans-

mission power (MTP) routing. They have similar components as MPCP except for

the cost metrics. MT is shown to be more reliable than the hop-count based routing

scheme when given a lossy networks [67]. A node in MT chooses the next hop node

with the minimum expected number of transmissions to the sink. All communication

links in the original MT protocol use the same transmission power. A link between

node u and v in MT has a cost of 1
PRR(u,v)

. To take advantage of variable transmission

power, we modified the link cost of MT to 1
PRR(u,v,Ptx(u,v))

, where Ptx(u, v) is defined

in (5.6). A node in MTP chooses the next hop node with minimum total expected

transmission power to the sink. The cost of a link between u and v in MTP is equal

to Ptx(u,v)
PRR(u,v,Ptx(u,v))

. Except for the consideration for unreliable links, MTP is similar

to the minimum power routing schemes studied in [18, 19].

In each simulation, 100 nodes are deployed in a 150m × 150m region divided into

10 × 10 grids. A node is randomly located within each grid. Source nodes are

randomly chosen. The sink is located at (150, 75) to increase the hop count from

some of the sources. The radio bandwidth is 40 Kbps. Power parameters of the radio

are set according to the empirical measurements of the CC1000 radio on Mica2 motes

[54] as follows. The CC1000 radio is capable of transmitting data at 31 power levels

ranging from -20 dBm to 10 dBm. To simplify our design, we chose 10 power levels

from the total 31 levels. The corresponding current consumption ranges from 3.7 mA

to 21.5 mA. The receiving and idle current is 8 mA. Each simulation lasts for 400

seconds. Each source sends packets at an interval randomly chosen from 10 ∼ 14
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seconds, which corresponds to an average data rate between 68.5 to 96 bps. The

number of sources varies from 5 to 30, which results in a total data rate of 0.4 to 2.4

Kbps at the sink. Real-world experiments show that the maximum effective multi-

hop bandwidth of Mica2 motes can barely reach 6 Kbps due to channel contention

and lossy wireless links [26], which conforms to our observation in simulations.

During the initialization state, a source node starts sending data at some random

time after its route to the sink is found. After this initialization phase, a node that

does not lie on any communication path will enter power saving mode automatically,

as discussed in Section 5.4. The power saving mode has a period of 10 seconds and

an active window of one second. The data packet size is 120 bytes. A routing update

packet is 40 bytes. The results in this section are the average of 5 different network

topologies.

5.5.3 Performance of MPCP

In this section, we evaluate the performance of MPCP. Since the performance of

MASP varies with a platform-dependent parameter α (see Section 5.3.4), we compare

it with MPCP under different platform parameters in Section 5.5.4.

Fig. 5.11 shows the routing topologies produced by different protocols in a typical

run with 20 sources. The circles in the figure represent data sources and small dots

represent other nodes. We can see that the topologies produced by MT and MTP are

similar and both have over 33 active nodes on the communication paths. In contrast,

MPCP activates only 24 nodes, i.e., 4 more nodes besides data sources that must

remain active. As the number of data sources increases, MPCP can effectively reuse
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Figure 5.11: Routing topologies of different protocols with 20 sources.

more active sources on different communication paths and hence further reduce the

number of active non-source nodes. For example, MPCP activates only one non-

source node when there are 30 sources. This result clearly illustrates that MPCP can

significantly reduce the energy wasted for idle listening by sharing active nodes on

different communication paths.

The most important metric for our performance evaluation is energy consumption.

For each protocol, we measure the difference between the total energy cost of the

communicating network and that of an idle network where there is no communication

activity and all nodes run in the power saving mode. This metric indicates the net

energy consumed by a protocol due to the communication activities of the network. As

shown in Fig. 5.12(a), MPCP consumes considerably less energy than other protocols.

As the number of sources increases, routing paths from different sources share more

nodes under MPCP and MASP, resulting in more energy reduction in the idle state
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and better energy efficiency. The overall energy reduction of MPCP can be as high

as 30% over MTP and 26% over MT.

Another interesting result in Fig. 5.12(a) is that, although MTP optimizes the trans-

mission energy, it has a similar total energy cost to that of MT, even though MT

makes simpler routing decisions based on the number of transmissions. As transmis-

sion power grows quickly with transmission distance, the routing paths found by MTP

are likely to consist of more hops. Consequently, more nodes have to remain active

on the routing paths, resulting in more energy wastage due to idle listening. On the

other hand, although MT does not optimize transmission energy, its routings paths

contain fewer hops and hence more nodes can run in power saving mode. In contrast

to MTP or MT who only reduces the radio energy costs under partial working modes,

MPCP effectively minimizes the total energy cost of radios based on data rates.
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(b) Total energy excluding idle energy of sources.

Figure 5.12: Energy consumption of different protocols.

We observe that, when the number of source nodes is large, most of the energy

consumption is due to the idle listening of the sources. This phenomenon reduces

the difference in total energy consumption between different protocols. To focus our

analysis on the energy consumption of non-source nodes, we measure the difference
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between the total energy consumption of the network and that of the same network

where there is no communication activity. That is, a network all non-source nodes

remain in the power saving mode but all source nodes remain in the idle state. This

metric indicates the net energy consumption of the communication activities excluding

the idle listening of source nodes. Fig. 5.12(b) shows that MPCP consumes at most

86% less energy than MT or 83% less than MTP. This result is consistent with the

observation from the routing topology of MPCP in Fig. 5.11(c) that MPCP activates

much fewer non-source nodes by effectively sharing intermediate source nodes on

different paths. Another interesting result in Fig. 5.12(b) is that MPCP may consume

less energy on intermediate nodes as the number of sources increases. This is because

MPCP tends to route the data from a source through other sources that must remain

active anyway. Reusing these sources, results in lower routing costs to the sink.

More intermediate nodes may, therefore, run in power saving mode as the number of

sources increases. We note that although the energy reduction by routing through

other active sources is generally viable in the “many to one” communication pattern,

it may be affected by the spatial distribution of sources in other scenarios.
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(b) End-to-end delay.
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Figure 5.13: Communication performance and overhead of different protocols.

Next we evaluate the communication performance of the various protocols. Fig.

5.13(a) shows the data delivery ratio at the sink under different protocols. We can

see that the delivery ratio of all protocols decreases slowly the more sources there
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are in the network. MPCP delivers slightly less data than the other protocols when

the number of sources exceeds 15. This occurs because MPCP causes slightly higher

network contention due to path sharing between different sources when the network

workload is high.

We plot the average end-to-end delay of data packets in Fig. 5.13(b). Not surprisingly,

MT yields the shortest latency since it finds the routing paths with fewer retransmis-

sions. MPCP yields a higher latency when network workload becomes higher due to

the network contention caused by path sharing between different sources.

Finally, Fig. 5.13(c) shows the overhead of different protocols in terms of the total

number of useful bytes in all route update messages. The overhead of MT and MTP is

similar and remains roughly constant as more sources appear. MPCP incurs a higher

overhead because the appearance of a new source node changes the node states and

routing costs (see (5.13)), triggering more route updates than MTP and MT. However,

consistent to the discussion in Section 5.4, most route updates are triggered by the

first several sources and hence the total number of updates remains roughly the same

as the number of sources increases. This behavior allows MPCP to scale well to

large-scale networks. Despite the additional overhead compared with MT and MTP,

MPCP still achieves significantly less energy consumption, as shown in Fig. 5.12(a)

and (b).

5.5.4 Comparison of MPCP and MASP

As discussed in Section 5.4.2, MASP may incur a lower overhead than MPCP because

it does not depend on information about the current set of sources and their data



96

rates. A disadvantage of MASP, however, is that its energy performance depends on

the power characteristics of the radio. We now compare the performance of MPCP

and MASP with different radio characteristics.

With the advancement in radio technology, the idle power of radio will continue to

decrease in the future. To measure the impact of radio characteristics on MPCP and

MASP, we simulate the two protocols using three different idle currents: 8 mA, 0.365

mA, and 0.02 mA. These three idle currents span three different orders of magnitude,

and hence allow us to evaluate the energy performance of MPCP and MASP on a

wide range of possible radio platforms. The transmission/reception current remains

the same as the setting used in Section 5.5.2.
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(b) Idle current is 0.365mA.
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Figure 5.14: Energy consumption on different platforms.

Fig. 5.14 shows the energy consumption of MPCP and MASP. When the idle current

is 8 mA, MASP consumes similar energy to MPCP, even though MASP only mini-

mizes the number of active nodes and does not directly optimize the overall energy

consumption like MPCP does. MPCP considerably outperforms MASP when the

idle current is lower. This result can be explained as follows. First, the achievable

maximum bandwidth on multi-hop networks is fairly low compared with the ideal

radio bandwidth. For example, the practical maximum bandwidth of Mica2 motes

can barely reach 6 Kbps due to channel contention and lossy wireless links [26]. This
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results in having only one sixth of the ideal radio bandwidth. Consequently, most

energy consumption is due to idle listening of nodes instead of transmission/reception

when the idle current is 8 mA. In other words, the impact of data rates on the overall

energy consumption is limited when the idle current is high, making MPCP behave

similar to MASP, as discussed in Section 5.3.3. When the idle current is 0.365 mA

or 0.02 mA, the transmission/reception energy dominates the total energy consump-

tion. In such a case, the performance of MASP degrades significantly as it only aims

at minimizing the idle listening energy. This performance degradation of MASP is

consistent to the analysis of the Steiner algorithm on which MASP is designed. As

discussed in Section 5.3.4, the approximation ratio of the Steiner algorithm increases

with α, which in turn increases as the idle current becomes lower. In contrast, MPCP

yields a much better performance than MASP when the idle current is low because

it always minimizes the total energy consumption of all radio states.
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Figure 5.15: End-to-end delay on different platforms.
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Figure 5.16: Routing overhead on different platforms.
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Fig. 5.15 shows the end-to-end packet delay under MPCP and MASP. Consistent

with the results on energy consumption, MPCP performs similar to MASP when the

idle current is 8 mA and considerably outperforms MASP when the idle current is

0.365 mA or 0.02 mA. When the idle current is low, the routing cost under MPCP is

dominated by the transmission/reception power (see (5.13)), resulting in a shortest-

path tree like routing topology with more intermediate nodes than the Steiner tree

like routing topology of MASP. A packet therefore travels fewer hops to the sink

under MPCP causing the end-to-end delay to be shorter.

Finally, Fig. 5.16 shows the overhead of MPCP and MASP in terms of the total

number of useful bytes in all route update messages. We can see that MASP incurs

significantly lower overhead than MPCP when the idle current is 8 mA. This is due

to the fact that each route update of MPCP contains more routing information as the

routing cost depends on data rates. MPCP does, however, incur a lower overhead as

the idle current decreases. In particular, MPCP incurs a overhead similar to MASP

when the idle current is 0.02 mA. As the idle current decreases, the impact of node

state on the routing cost, i.e., whether a node is active or not, decreases accordingly.

As a result, the activation of nodes due to the appearance of new data flows causes

fewer route updates. In contrast, MASP generates a similar number of route updates

for all the three idle currents because the routing cost of a node in that protocol only

depends on its state, i.e., whether the node is active or not.

The results in this section indicate that MPCP preserves the satisfactory performance

under a wide range of radio characteristics. When the idle power of the radio is high,

it reduces the energy wasted in the idle state by minimizing the number of active

nodes. On the other hand, when the idle power of the radio is low, it saves energy

by reducing the transmission energy. Such a joint optimization approach adopted by
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MPCP enables it to flexibly adapt to different radio platforms. In contrast, MASP

is only suitable for radios with high idle power and introduces less overhead than

MPCP.
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Chapter 6

Configurable Topology Control

Topology control is a key technique for improving energy efficiency and communica-

tion capacity of multi-hop wireless networks. In such a scheme, nodes minimize their

transmission power while guaranteeing certain global network performance metric.

Most previous works [50, 48, 45, 30, 36, 3, 37] aim at maintaining connectivity-based

metrics of a network through reduced transmission power. However, network connec-

tivity does not suffice to provide satisfactory communication performance when the

underlying links among nodes are lossy. Recent empirical studies [81, 1] revealed that

lossy and asymmetric links are common in real WSN deployments even with low net-

work contention [84, 8]. These empirical findings have questioned some fundamental

assumptions made by many existing works, like the unit disk graph (UDG) model

of the radio. Although UDG allows a geometric treatment to the topology control

problem, it does not capture the real characteristics of the lossy links since there does

not exist a clear distance threshold that defines the communication range of a node

[1]. Moreover, new topology control objectives need to be devised since traditional

connectivity-based metrics do not guarantee satisfactory communication performance

in presence of lossy wireless links. Finally, unlike many traditional ad hoc networks,

many WSN applications only impose light load on the network. For instance, in the
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WSN deployed at Great Duck Island for habitat monitoring [59], each of the 98 motes

wakes up every 20 minutes, sends its sensor data to the base station, and goes back to

sleep. Many other representative applications (e.g., precision agriculture and cargo

tracking) also have low data rate. Topology control algorithms may be designed to

exploit the light load of this common class of applications.

We propose a new formulation of topology control problem for lossy WSNs based on

a new metric called dilation of transmission count (DTC). DTC accounts for lossy

links and quantifies the worst-case path quality of a network topology. We then

propose a set of novel, localized configurable topology control (CTC) algorithms that

can achieve different DTC bounds. CTC has two salient features. It can provide path

quality assurance over lossy and asymmetric links in WSNs. Furthermore, it enables

applications to achieve desired tradeoff between transmission power and path quality

based on their specific requirements.

6.1 Problem Formulation

In this section, we first introduce a network model that captures the realistic prop-

erties of WSNs. We then give new formulation of the topology control problem in

WSNs.
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6.1.1 Network Model

Each node can transmit at any power from a discrete set S = {Pi|1 ≤ i ≤ n}.
Pi > Pj ⇔ i > j. For example, the CC1000 radio on Mica2 motes [15] can transmit

at 32 different power levels.

The packet reception rate, PRRu,v,i, is defined as the probability for node v to success-

fully receive a packet that u transmitted using power Pi. PRRu,v,i can be estimated

based on the physical model of the radio [85, 84, 8], or using a link estimator [67, 12]

that collects the packet reception statistics online. The transmission count, Ru,v,i, is

defined as the expected number of transmissions needed for node u to successfully

send a packet to v at power Pi. Ru,v,i = 1/PRRu,v,i. Note that Ru,v,i may not equal

Rv,u,i due to link asymmetry.

The network is denoted by a directed graph G(V, E). V includes all nodes in the

network. E = {(u, v, i) | Ru,v,i ≤ T ; u, v ∈ V ; Pi ∈ S}. We ignore the links that have

a transmission count higher than T 1. G(V, E) is a multi-graph where there may exist

multiple links between two nodes at different power. Suppose u transmits to v at

power P1 and P2. Then there are two directed links from u to v if Ru,v,i ≤ T, i = 1, 2.

The transmission count of a path is the sum of transmission counts of all links on the

path. The minimum transmission count from u to v is the minimum transmission

count among all paths from u to v.

We note that the above network model is very general. It can model realistic network

properties such as lossy and asymmetric links. It can also be generalized to model

heterogenous networks which have radios with different communication ranges.

1T corresponds to the maximum number of transmissions in the automatic repeat request (ARQ)
mechanism at the MAC layer.
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In this chapter, we focus on the WSNs with light workload and hence little inter-

ference caused by concurrent transmissions. Accordingly, we assume that a higher

transmission power leads to a better link quality (and hence a lower transmission

count), i.e., Pi > Pj ⇒ Ru,v,i < Ru,v,j . This assumption is justified by the fact that,

when the interference is low, a higher transmission power will result in a higher signal

strength, which alleviates the impact of path fading and noise. This assumption has

been confirmed by several recent empirical studies on real WSNs [57, 12].

We assume nodes are stationary. Note that most existing WSNs comprise of station-

ary nodes.

6.1.2 Topology Control Problem

The problem of topology control has different formulations corresponding to different

control strategies and optimization metrics. In this chapter, we consider both per-

node and per-link power control strategies. While per-node power control assigns each

node a power, per-link power control may assign a node different power for each link

that originates at it. We consider two optimization metrics: min sum that minimizes

the total power of all nodes or links in the network, and min max that minimizes the

maximum power among all nodes or links. The min max metric may lead to a longer

lifetime by balancing the power consumption of different nodes. We first formulate

the problem of topology control for WSNs with per-node control and the min sum

metric, and then give the formulations in other cases.

We use GM to denote the network topology where each node transmits at the maxi-

mum power. GM achieves the best path quality among all network topologies under
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any possible power assignment when the network workload is light. When per-node

power control is used, a power assignment assigns a transmission power to every node

in the network. GΩ(V, EΩ) represents the network graph under power assignment Ω.

We define the dilation of transmission count (DTC) of GΩ as the maximum ratio of

the minimum transmission count between any two nodes in GΩ to that between the

same nodes in GM . DTC quantifies the worst-case degradation in network’s path

quality under a power assignment relative to the maximum-power case.

Given a DTC bound t ≥ 1 specified by the application, our objective is to choose a

power assignment Ω that minimizes the total power of all nodes under the constraint

that the DTC is no greater than t:

Ω = argmin
∑
Pi∈Ω

Pi, subject to

max
u,v∈V

ΓGΩ
(u, v)

ΓGM
(u, v)

≤ t (6.1)

where ΓGX
(u, v) denotes the minimum transmission count from u to v in the network

under power assignment X.

The other variations of the topology control problem can be formulated similarly.

When the optimization metric is min max, the term to be minimized in the above

formulation needs to be replaced by maxPi∈Ω Pi. When the per-link power control is

used, power assignment Ω assigns a transmission power to the source node of each

link in the network.
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6.2 The CTC Algorithms

In this section, we present a set of localized Configurable Topology Control (CTC)

algorithms specially designed for lossy WSNs. CTC enforces the DTC requirement by

replacing each max-power link with a low-power path that has a bounded transmission

count relative to the replaced link. This strategy can be implemented in a localized

fashion since a replacement path is likely located within the neighborhood of the

replaced link in a dense network. However, the challenge is to ensure the replacement

paths found by different nodes are consistent. The key feature of CTC is that it

achieves this consistency in a localized fashion without any decision exchange among

neighboring nodes.

In the rest of this section, we first describe the concept of neighborhood used by

CTC. We then illustrate the basic idea of CTC using a simple example, followed by

the detailed description of the CTC algorithms. Finally we present the theoretical

analysis of CTC.

6.2.1 Neighborhood

The CTC algorithms use a two-hop neighborhood graph based on link qualities. Link

(u, v, i) originates from u to v if Ru,v,i ≤ T . Node v is node u’s one-hop neighbor if

there exists at least one link, (u, v, i), Pi ∈ S, from u to v. The one-hop neighborhood

graph of u includes u and all the one-hop neighbors of u, and all the links from u to

its neighbors. The two-hop neighborhood graph of node u is the union of the one-hop

neighborhood graphs of u and u’s neighbors. We use Ni(u) = (Vi(u), Ei(u)) (i = 1, 2)

to denote the one-hop and two-hop neighborhood graphs at node u.
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Although links may be asymmetric, we require the neighborhood relation to be sym-

metric, i.e., (u, v, i) ∈ E1(u) ⇔ (v, u, j) ∈ E1(v). Each node u can easily enforce this

requirement by pruning the links to the neighbors who do not include u within their

one-hop neighborhood.

In order to construct N2(u), node u needs to collect the packet reception rate (PRR)

of the links within its two-hop neighborhood at different power levels. Each node can

measure PRRs of one-hop links based on data or hello messages, and exchange them

with its one-hop neighbors. Efficient algorithms for neighborhood discovery and link

quality estimation have been proposed in earlier work [67, 12] and is not the focus of

this thesis.
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Figure 6.1: The execution of two different algorithms.

6.2.2 An Illustrative Example

In this section, we illustrate the basic idea of CTC using a simple example depicted

in Fig. 6.1. We will discuss how CTC is executed at three nodes a, b, and c when

per-node power control and the min sum metric are used. Fig. 6.1 only shows a

subset of the links that exist between nodes a ∼ e for the clarity of illustration. In

this example, the DTC bound specified by the application is 3. Fig. 6.1(a) illustrates

a naive algorithm in which each node only replaces its own max-power links. Fig.

6.1(b) illustrates the CTC algorithm with the min sum metric. Each link is labeled
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by power / transmission count. max represents the maximum transmission power.

Solid radials represent the actual links after the execution of the algorithm. The

max-power links and their corresponding replacement paths are labeled by the same

symbols.

We first discuss the naive localized algorithm in Fig. 6.1(a) that may result in conflict-

ing power assignments by different nodes. In this algorithm, each node independently

replaces each of the max-power links that originate from it with a low-power path

whose transmission count satisfies the specified DTC bound. Fig. 6.1(a) depicts a

possible configuration output after the algorithm is executed at nodes a, b, and c.

Node b replaces the max-power link (b, e, max) with path (b, a, 4) → (a, e, 1). The to-

tal transmission counts of the new path is 1.1+2.4 = 3.5, which is lower than triple of

that of the replaced max-power link (b, e, max). Similarly, nodes a and c replace their

max-power links (a, e, max) with (a, e, 1), and (c, d, max) with (c, a, 2) → (a, d, 3).

Notice that a is assigned two different powers, 3 and 1, on the three replacement

paths. If each node sets its power independently according to the replacement paths

it finds, node a will set a power of 1 as it is not aware of the existence of the other

replacement paths. As a result, the actual quality of link from a to e is lower than

required by the path found by b. Consequently, the path from c to d has a dilation

of (2.1 + 1.9)/1.2 = 3.3 that violates the required DTC bound of 3. We can see

that this problem is caused by the inconsistency of the local paths found by different

nodes. An simple solution to resolve such conflicts is to have nodes exchange their

local solutions with their neighbors. However, such solution is not desirable due to

the overhead and convergence latency.

We now discuss how CTC solves this problem. The basic idea is that, in addition

to replacing its own max-power links, each node also computes its power assigned by
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its neighbors on their local paths. As a result, it always chooses a power no lower

than any power assigned by itself and its neighbors, which preserves the dilation of

all replacement paths.

Specifically, a node finds a replacement path for each max-power link in its two-hop

neighborhood. The replacement path must yield the minimum total power among all

possible paths that satisfy the dilation constraint. For instance, the replacement path

of (b, e, max) is (b, a, 4) → (a, e, 1), which has the minimum total power among all

paths from b to e with a dilation lower than 3. Node a starts with the lowest power,

and once finds a new replacement path that includes itself, it increases its power to

match its power assigned on the path if necessary. As shown in Fig. 6.1(b), node a

first assigns itself a power of 1 after replacing the links (a, e, max) and (b, e, max), and

then increases its power to 3 after finding the replacement path for links (c, d, max).

As a result, all replacement paths are preserved after a executes the algorithm.

We can see from Fig. 6.1(b) that all the nodes on a replacement path find the

same path when they replace the same max-power link by executing the algorithm

locally. For example, the path (c, a, 2) → (a, d, 3) is found by both c and a to replace

(c, d, max) in their executions. As a result, the dilation of the path is preserved as a

and c will assign their power no lower than the values on the path. In other words, the

network after power reduction satisfies the dilation requirement. We offer a rigorous

proof of the correctness of a generalized algorithm in Section 6.2.5.
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6.2.3 Per-node Power Control

In this section, we present the CTC algorithm with the per-node control strategy.

We first describe the algorithm with the min sum metric, and then discuss how the

algorithm can be modified to adopt the min max metric. For each max-power link,

CTC finds a replacement path composed of up to d hops in the node’s two-hop

neighborhood2. d is referred to as search depth hereafter. A higher search depth

increases the opportunity for a CTC algorithm to find lower power assignment at the

cost of higher computation complexity.

The algorithm executed at node u with the min sum metric is depicted in Fig. 6.2.

To enforce consistent power assignments on the replacement paths found by different

nodes, u “simulates” the execution of the algorithm at other nodes by invoking La-

belSet(v) for each node v ∈ V1(u). Function LabelSet(v) finds the replacement paths

with dilation bound t for all the max-power links that originate from v. Special care

needs to be taken at this step since a node has different neighborhood view from its

neighbors. The key of the CTC algorithms is that if a node lies on a replacement

path found by its neighbor, it will also find the same path in its own execution of

the algorithm. Once node u finds a replacement path that includes it, it improves its

power to match its power assigned on the path if necessary.

The function LabelSet extends the Generalized Permanent Labeling Algorithm (GPLA)

[16] proposed for the shortest path problem with time window (SPPTW). A special

case of SPPTW, the weight-constrained shortest path (WCSP) problem, resembles

finding a replacement path in our problem. Each link in a WCSP problem is assigned

2Note that a two-hop neighborhood graph consists of all the immediate links of the node’s one-hop
neighbors. Hence, its diameter can be higher than two.
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two different weights. The goal is to find the shortest path between two nodes in

terms of one weight metric under the constraint that the total weights of the other

metric is bounded. The power and transmission count of a local path correspond to

the two different weight metrics in a WCSP problem. However, different from GPLA

that finds a single best path between two nodes, LabelSet(v) finds the best replace-

ment paths from v to all its neighbors. In additional to minimizing the total power of

a replacement path, we also extend GPLA to incorporate other optimization metrics

like min max.

Input: t, d, N1(u), N2(u)
Output: power(u)

power(u) = min;
for v ∈ V1(u) call LabelSet(v); end

function LabelSet(v)

1. W = t · max{Rv,w,max|(v, w, max) ∈ E1(v)}. Set Lv = {(0, 0)} and Li = ∅ for all
i ∈ V1(v) − {v}.

2. If all labels have been marked, go to 5); else choose i ∈ V1(v) that has an unmarked
label (Rq

i , P
q
i ) with minimal Rq

i .

3. For each link (i, j, k) ∈ E2(u) do
Lj = Lj ∪ {(Rq

i + Ri,j,k, P q
i + Pk)}, if the following conditions are met:

Rq
i + Ri,j,k ≤ W (6.2)

|q| < d (6.3)

j ∈
⋂
k∈q

V1(k) (6.4)

�(Rq
j , P

q
j ) ∈ Lj ,

(Rq
j ≤ Rq

i + Ri,j,k) ∧ (P q
j ≤ P q

i + Pk) (6.5)

4. Mark label (Rq
i , P

q
i ). Go to step 2.

5. For each link (v, w, max) in E1(v), do:

(a) Find the label (Rq
w, P q

w) in Lw such that Rq
w ≤ t · Rv,w,max and has the minimal

P q
w.

(b) If there exists a u’s link (u, z, k) ∈ q and power(u) < Pk, power(u) = Pk.

Figure 6.2: The Per-node CTC Algorithm with the min sum metric (executed at u)
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LabelSet(v) is a dynamic programming procedure during which the partial paths found

are stored by labels on nodes. Specifically, a label on node i is a tuple (Rq
i , P

q
i ) where

q corresponds to a path from v to i, and Rq
i and P q

i are the transmission count and

total power of the path respectively. Such a path is a candidate replacement path for

the max-power link from v to i, and can also be a partial path on the replacement

paths for the links from v to other neighbors. Li represents the set of labels on i that

corresponds to all such partial paths.

The procedure starts from the source node v with label {(0, 0)} and all label sets on

other nodes are initiated to be empty. Then the algorithm executes in iterations. In

each iteration (composed of step 2 to 4), an existing label (Rq
i , P

q
i ) with minimum

transmission count is extended along all outgoing links of node i, which corresponds

to extending the partial path q to all possible next-hop nodes (see step 3). The label

is marked after all such next-hop nodes are found (see step 4). The search process

initiated from source node v terminates if all labels on the nodes within V1(v) have

been marked.

Step 3 extends label (Rq
i , P

q
i ) along a link (i, j, k) by adding the transmission count

and power of link (i, j, k) to Rq
i and P q

i respectively. The link will be added to the

label set of j, if the constraints (6.2)-(6.5) are met.

Constraint (6.2) requires that the total transmission counts of the expanded path must

be smaller than W that is t times the maximum transmission count of all the max-

power links originated from v. This constraint reduces the search space by eliminating

the paths that would have a dilation higher than t. Note that (6.2) is a necessary

but not sufficient condition. That is, a path that satisfies (6.2) may still exceed the

dilation bound t because W is equal to t times the maximum transmission count of
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all max-power links of v. However, such paths are still preserved during the searching

process since they may be segments of valid replacement paths found later in the

process. Constraint (6.3) limits the maximum hop count of a path to d. Constraint

(6.4) enforces that all nodes on a path are located within the one-hop neighborhood

of each other. As we will see in the analysis in Section 6.2.5, this constraint is critical

for ensuring the consistency in the power assignments computed by different nodes.

Finally, (6.5) ensures that there does not exist a label on the next-hop node that

represents a better path than the extended path. A path A is better than path B if

and only if A has a lower transmission count and lower power than B. If (6.5) does

not hold, we keep the paths with higher power but lower transmission count, or the

paths with higher transmission count but lower power, since they both may satisfy

constraint (6.2) and evolve into valid replacement paths in following iterations.

At the end of the procedure, for each max-power link (v, w, max), we choose a path

found from v to w (represented by a label on w) as the replacement path if it has the

minimum total power among all paths that satisfy the dilation constraint (see step

5.a). Note that such a path must exist since in the worst case the max-power link

(v, w, max) will be found. Finally, if node u (that executes the algorithm) lies on the

replacement path, it sets the power to the max of its current power and the power

on the path.

Minimizing the maximum power on a replacement path may lead to more balanced

power on different nodes. We modify CTC depicted in Fig. 6.2 as follows to adopt the

min max metric. In a label (Rq
i , P

q
i ), instead of storing the total power of path q in

P q
i , we redefine P q

i as the maximum power of the links on q. Accordingly, constraint

(6.5) needs to be changed to �(Rq
j , P

q
j ) ∈ Lj , (Rq

j ≤ Rq
i +Ri,j,k)∧(P q

j ≤ max(P q
i , Pk)).
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6.2.4 Per-link Power Control

Different from per-node control that restricts a node to a fixed power, per-link control

allows a node to use different power to transmit to different neighbors. As a result,

per-link control may lead to more energy saving. An advantage of the algorithm de-

picted in Fig. 6.2 is that it can be easily modified to use per-link control. Specifically,

node u stores a power power(u, v) with an initial value of minimum power for each

of its one-hop neighbors, v ∈ V1(u). In addition, step 5.b needs to be modified as

follows: If there exists u’s link (u, z, k) ∈ q and power(u, z) < Pk, power(u, z) = Pk.

Notice that both per-node and per-link control share the same procedure for search-

ing replacement paths (step 1 to 4 of function LabelSet in Fig. 6.2). Hence, the

same modification introduced in Section 6.2.3 can also be used to adopt different

optimization metrics, including min sum and min max, in per-link control.

6.2.5 Correctness of CTC

We now prove the correctness of CTC. We first show that CTC with per-node control

and the min sum metric achieves the required dilation bound. We then extend this

result to per-link control and the min max metric.

Theorem 15. Suppose M is the power assignment where each link is assigned the

maximum power, Ω is the power assignment produced by the CTC algorithm with a

DTC bound t ≥ 1. Then the network GΩ satisfies the DTC bound t: maxu,v∈V
ΓGΩ

(u,v)

ΓGM
(u,v)

≤
t.

Proof. To prove that the minimum transmission count between any pair of nodes in

GΩ is no greater than t times of that between the same pair of nodes in GM , we show
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that any link in GM , say (v, w, max), is replaced by a path in GΩ with a dilation no

greater than t. We prove that this holds after the execution of the algorithm in Fig.

6.2 at each node. We use F u
v,w to denote the local replacement path from node v to

node w found by node u in u’s execution of the algorithm. Note that F u
v,w corresponds

to the label (Rq
w, P q

w) found by u at step 5.a. Since (v, w, max) is replaced by u with

a path F u
v,w that has a dilation no greater than t (enforced at step 5.a), it remains to

show that this local path is preserved by the power choices made by other nodes on

the path in their executions of the algorithm. Suppose (x, y, i) is an arbitrary link on

path F u
v,w. That is, u assigns power Pi to x. We now show that the power choice of

node x, power(x), computed by itself is no lower than its power, Pi, assigned by u on

path F u
v,w.

One observation is that x ∈ V1(u) since a node in V2(u) − V1(u) does not have any

outgoing links, and hence (x, y, i) would not exist. It is easy to see that power(u) ≥ Pi

holds if x = u according to step 5.b in Fig. 6.2. We now show power(x) ≥ Pi also

holds for any x ∈ V1(u) − {u}.

We define graph G∗ = (V ∗, E∗) as follows.

V ∗ =
⋂

k∈V1(u)

V1(k)

E∗ =
⋃

a,b∈V ∗∧(a,b,i)∈E1(a)

(a, b, i)

V ∗ comprises the set of nodes that are included in the one-hop neighborhood graphs of

u and all u’s one-hop neighbors, and E∗ comprises the links between these nodes. In
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the following, we will prove that G∗ is the searching space for the replacement path of

(u, v, max) in both x and u’s local executions of the algorithm. First, constraint (6.4)

in Fig. 6.2 enforces that all possible replacement paths of (u, v, max) must reside

in G∗. Second, E∗ ⊆ E2(u)
⋂

E2(x), because E∗ contains only the links between

the nodes in V ∗ that are included by both V1(u) and V1(x) by definition. Hence

G∗ ⊆ N2(u)
⋂

N2(x). In other words, both u and x search for the replacement path

of (u, v, max) in G∗. This conclusion, combined with the fact that the replacement

path is optimal (in terms of total power) among all paths in G∗ that satisfy the length

constraint ((6.3) in Fig. 6.2) and the dilation constraint, leads to the conclusion that

x and u find the same replacement path F u
v,w. Hence, according to step 5.b, the power

of x after its execution of the algorithm is no lower than its power on the replacement

path. We have shown that each replacement path is preserved by the power choices

made by all the nodes in their local executions of the algorithm. That is, each max-

power link is replaced by a path with a dilation lower than t after the execution of the

algorithm at each node. Therefore, the resultant network has a dilation lower than

t.

We note that similar arguments can prove the correctness of the CTC algorithm when

it adopts per-link control strategy or the min max metric. This is because, the nodes

on a replacement path will find the same path as long as the the path is optimal (in

min sum or min max metric) within the neighborhood shared by all the nodes on the

path.
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6.2.6 Time Complexity of CTC

We now analyze the time complexity of CTC. Suppose the number of links in each

node’s two-hop neighborhood is bounded by O(E2). Procedure LabelSet(v, W ) with-

out constraints (6.3) and (6.4) is similar to the original GPLA algorithm that has a

complexity of O(|E2|W ). Since we only keep undominated labels, there is a at most

one label kept for each value of transmission counts, and there are at most W values

of transmission counts. That is, a node has at most W labels. Hence, in step 2, a link

is processed at most W times. Summing the number of times an link is processed

over all links gives a time complexity of O(|E2|W ). We note that this complexity is

pseudo-polynomial as it depends on parameter W .

On the other hand, the actual time complexity of LabelSet(v, W ) is lower due to

the constraints (6.3) and (6.4) in Fig. 6.2. Specifically, (6.3) requires the num-

ber of hops of a path to be smaller than d. Suppose the number of nodes within

a one-hop neighborhood is bounded by O(V1), the total number of link process-

ing in LabelSet is bounded by O(|V1|d−1). Hence the time complexity of LabelSet

is bounded by O(min(|V1|d−1, |E2|W )). Since LabelSet is invoked for each one-hop

neighbor, the overall time complexity of the generalized CTC algorithm is O(|V1| ·
min(|V1|d−1, |E2|W )). We note that this complexity result is an upper bound, which

does not consider constraint (6.4). Although this bound is exponential in d, we show

experimentally that small search depth, (e.g., choosing d = 2 or 3) gives a very

good performance in Section 6.3. This is, in part, because it is unlikely to find long

replacement paths within a two-hop neighborhood.
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6.3 Evaluation

We have evaluated CTC through two sets of simulations. We first study the network

topology produced by CTC using a simple simulator. We then evaluate CTC in

realistic packet-level simulations using an open-source WSN simulator called Prowler

[55]. To create a realistic simulation environment, we implemented the probabilistic

link model from USC [85] in both simulators. Previous experiments showed that the

USC model produces lossy and asymmetric links similar to Mica2 motes [85].

6.3.1 Quality of Network Topology

In this section, we evaluate how well CTC can configure a network topology to dif-

ferent dilation bounds using the simple simulator. The packet reception ratio of each

link is computed according to the link model from USC [85]. These simulations allow

us to evaluate the quality of network topologies produced by different CTC algorithms

under a wide range of settings.

In each simulation, nodes are uniformly deployed in a 150×150 m2 region. The total

number of nodes is 100 unless otherwise mentioned. Each data point presented in the

results is the average of five different network topologies. Its 90% confidence interval

is also shown. Each node can transmit at 11 different power levels from -20 dbm to

10 dbm, at an increment of 2 dbm3.

We compare CTC against an existing topology control algorithm called LMST [38].

Each node running LMST builds a minimum spanning tree (in term of Euclidean

3The Chipcon CC1000 radio on Mica2 motes supports 32 power levels. While we only use 11
power levels in our simulations, using more power levels may further improve the performance and
configurability of the network at the cost of higher overhead.
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distance) within its neighborhood and reduces its transmission power to reach only

the neighbors on the tree. We chose LMST as the baseline algorithm for performance

comparison since it is reported in [38] that it yields a better power efficiency than

several earlier algorithms such as CBTC [36] and R&M [50].

The original design of LMST relies on the neighborhood within the maximum com-

munication range of a node. However, the notation of communication range is not

applicable when communication links are lossy. We extend LMST to handle lossy

networks by blacklisting all links with a PRR lower than a threshold. A node in-

cludes another node in its neighborhood only when the link to the node has a PRR

higher than the preset threshold.

We first vary the search depth of CTC from 2 to 5 to evaluate its impact on the

topology quality. For each combination of optimization metric and search depth,

we measure the DTC of the network topology configured by each algorithm. Each

setting is denoted as CTC-control-metric-depth. For example, CTC-node-mm-3hop

represents the per-node control algorithm with the min max metric with a search

depth of 3 hops.

Fig. 6.3 shows the measured DTC under CTC-node with different search depths

when the required dilation ranges from 1.5 to 5.5. CTC-node-ms yields the same

DTC 1.5 irrespective the search depth. This is because the min sum metric results in

unbalanced node power on replacement paths. As a result, a node has a high chance

of being assigned a high power even when the search depth is small, because it lies on

many replacement paths. When the search depth increases, CTC-node-mm achieves

a better configurability as it can find replacement paths with lower power. Fig. 6.3

shows that CTC-node can produce highly configurable network topologies with a
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search depth as low as 3. A small search depth is desirable as the time complexity of

CTC increases with the search depth.
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Fig. 6.4 shows the measured DTC under the CTC-link algorithms. Similar to CTC-

node-ms, CTC-link-ms yields the same DTC irrespective the search depth. We can see

that CTC-link demonstrates better configurability than CTC-node. This is because

per-link control allows a node to use different transmission power when it lies on

multiple replacement paths. Furthermore, a search depth of only 2 enables CTC-link

to achieve a high degree of configurability at low computation cost. Overall our results

show that the CTC-link algorithms can provide more efficient and flexible topology

control than the CTC-node algorithms.

Fig. 6.5 compares the DTC of CTC and LMST algorithms under different node densi-

ties. LMST-0.4 and LMST-0.6 represent the LMST algorithm with a PRR threshold

of 0.4 and 0.6, respectively. Under all node densities, CTC consistently produces

topologies that satisfy the required quality bounds. In contrast, the DTC of LMST

has a high variation for different networks with the same density, and is heavily af-

fected by node densities. This is because LMST tends to connect nodes with short and
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low-power links that are more likely to be lossy. This result shows that connectivity-

based topology control algorithms cannot provide guaranteed path quality in lossy

WSNs as they do not account for link quality. The DTC of LMST decreases with a

larger PRR threshold, because the links retained by each node become more reliable.

However, a high PRR threshold may cause a node to blacklist too many links result-

ing network partition. Choosing a PRR threshold for LMST that achieves both low

DTC and network connectivity under different network settings is difficult. We set

the maximum PRR threshold to 0.6 in the following simulations as it results in the

lowest DTC without partitioning the network under our settings.
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Figure 6.5: Measured DTC of CTC and LMST.

6.3.2 Simulation Settings on Prowler

We also implemented CTC and the USC link model in Prowler [55], an open-source

network simulator that employs a layered event-driven structure similar to TinyOS.

The MAC protocol employs a CSMA/CA scheme similar to B-MAC [47]. The max-

imum number of retransmissions before dropping a packet is 3. DSDV [46] is used

as the routing protocol. Similar to the MT protocol [67] we modified DSDV [46] to
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use transmission count as the routing metric which is superior to hop count in lossy

wireless networks [67, 20, 14].

The node distributions are the same as in the first set of simulations. The node

bandwidth is 40 Kbps. The data packet size is 120 bytes. Each node runs an online

link estimator similar to the one described in [67] to estimate the link quality in its

two-hop neighborhood. The network follows a traffic pattern in typical data collection

applications [59]. Every source sends a packet to the base station every 5 minutes.

The base station is located in the middle of the right border of the region. Sources are

randomly chosen from the left 60% of the region to increase the distance to the base

station. We varied the number of sources from 5 to 50. Each result is the average

of 10 different network topologies with a 90% confidence interval. Each run lasts 80

minutes of simulation time.

6.3.3 Performance Results

We evaluate both communication performance and energy consumption of different

algorithms. The search depth of all CTC algorithms is set to 3. We used two CTC

algorithms: ctc-node-mm with a required DTC bound of 2, and ctc-link-ms with a

required DTC bound of 3. Besides LMST, we also use the network where each node

transmits at the maximum power as a baseline, which is denoted by MAX-POWER

in all figures. As light workload is generated in our simulations, MAX-POWER yields

the best performance in terms of delay and delivery ratio.
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Fig. 6.6 shows the data delivery ratio under each algorithm. Similar to MAX-

POWER, all CTC algorithms delivered over 95% of the total packets to the base

station. LMST yields the lowest delivery ratio due to the lossy links on its topology.
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Fig. 6.7 shows the average delay of the received packets at the base station. LMST

yields the highest delay because a packet often experiences retransmissions over lossy

links. Both CTC algorithms achieve lower delay than LMST. Furthermore, the delay

under CTC increases with a higher DTC bound. This result shows that CTC enables
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applications to effectively control the network performance by adjusting the DTC

bound.

Fig. 6.8 shows the transmission energy consumed by different algorithms. CTC-link

performs slightly better than CTC-node. Interestingly, although LMST assigns lower

power than the other algorithms, the network consumes almost the same amount of

energy under LMST as under MAX-POWER. This is because, the links on LMST’s

topology are less reliable resulting in excessive energy waste on packet retransmis-

sions. Therefore, the benefit of lower power is offset by the increase in the number

of transmissions in lossy networks. In contrast, CTC-link-ms reduces the energy con-

sumption by 27% ∼ 36% compared with MAX-POWER. This result demonstrates

the importance of considering lossy link models in both design and evaluation of

topology control.

 0
 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

 5  10  15  20  25  30  35  40  45  50

V
a
r
i
a
t
i
o
n
 
o
f
 
E
n
e
r
g
y
 
C
o
n
s
u
m
p
t
i
o
n
 
x
 
1
0
-
2

Num of Data Sources

ctc-node-mm-3hops (t=2)
ctc-link-ms-3hops (t=3)

LMST-0.6
MAX-POWER
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Fig. 6.9 shows the variation of nodes’ transmission energy consumption in a typical

run. The variation of the energy consumption affects the lifetime of the network

before partition. Both CTC-node and CTC-link achieve significantly lower variation

in nodes’ energy consumption than LMST when source density is high. They also

achieve much more balanced energy consumption in the network than MAX-POWER
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under all source densities. This result indicates that CTC can effectively prolong the

lifetime of the network.
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Chapter 7

Probabilistic Coverage

Maintenance

Coverage maintenance protocols provide required sensing coverage over a geographic

region by activating a subset of nodes, while scheduling the others to sleep, to con-

serve energy. Unfortunately, although a number of coverage maintenance protocols

have been developed [9, 61, 65, 75, 76], they are often designed based on determin-

istic detection models (such as the disc model) that are not applicable to real-world

distributed sensing applications. For example, existing protocols assume that each

sensor performs sensing independently. This assumption is invalidated by many sen-

sor network applications which rely on data fusion to improve sensing performance.

In this chapter, we investigate coverage maintenance based on a probabilistic dis-

tributed detection model that allows efficient data fusion from multiple nodes. We

characterize coverage by the minimum event detection probability in a region and the

system false alarm rate from the active nodes in a network. In our model, the event

detection probability and false alarm rate are computed based on an existing data

fusion algorithm that correlates detection decisions from multiple nodes. While the
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adopted fusion algorithm is not new, this coverage formulation provides a basis for

bridging the gap between coverage maintenance protocols and distributed detection

algorithms.

Distributed detection problem has been shown to be computationally difficult and

even NP-complete in some cases [62]. In general, the computational cost for deter-

mining the detection probability from a large number of nodes is high due to the

need to consider the combination of detection decisions from multiple nodes. Con-

sequently, the key challenge to developing a coverage maintenance protocol that is

based on realistic distributed detection model is to (re-)configure the network cover-

age within a short time while reducing the number of active nodes in order to prolong

the network lifetime. A coverage configuration (or configuration for abbreviation) of

a sensor network is characterized by a set of active nodes that can maintain the cov-

erage of the network. Reconfiguration is needed at runtime when the current active

nodes fail to cover the network. Quick reconfiguration is particularly important in

large and dynamic sensor networks subject to node failure and changing application

requirements. Unfortunately, the need to reduce the number of active nodes and the

network coverage configuration time can conflict with each other. For example, while

a centralized algorithm that treats the whole network as a single fusion group can

result in a small number of active nodes, it often requires an extremely long time to

configure a large network. On the other hand, although a protocol can significantly

reduce the configuration time by dividing the network into separate fusion groups

that can configure themselves in parallel, it may result in excessive number of active

nodes due to the lack of coordination among neighboring fusion groups.

We develop a novel distributed coverage maintenance protocol called the Coordinat-

ing Grid (Co-Grid) protocol that meets both key requirements. Co-Grid organizes
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the network into fusion groups located on overlapping virtual grids. Through effec-

tive coordination among neighboring fusion groups, Co-Grid can achieve comparable

number of active nodes as the centralized algorithm. Furthermore, the coverage con-

figuration time of Co-Grid is competitive with the protocol based on separate fusion

groups. We also present a theoretical analysis of the efficiency of the Co-Grid pro-

tocol. Despite the inter-dependency among fusion groups, our analysis shows that

Co-Grid can achieve a high degree of parallelism in the coverage configuration process.

This property enables Co-Grid to accomplish configuration quickly and scale to large

networks.

7.1 Detection Model

In this section, we present a distributed detection model that can be combined with

our coverage maintenance protocol. We assume that each node in a sensor network

belongs to one or more fusion groups. Each fusion group has a node serving as its

fusion center. Each node in the fusion group measures the signal and makes its own

local decision on whether a target is present or not. Then the local decisions of

individual nodes are transmitted to the fusion center. The fusion center uses a fusion

rule to reach a global decision based on the local decisions.

7.1.1 Signal Model

In a large-scale sensor network, the system detection performance depends on the

spatial distribution of nodes. To capture the correlation between the spatial prop-

erty of a sensor network and the system detection performance, we introduce spatial
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signal decay parameters into the Neyman-Pearson detector model [64]. Each node

detects the targets of interest by measuring the sound power with its acoustic sen-

sor. The power of the acoustic signal emitted by a target decays over the distance

of propagation. Specifically, for a target located at point (x, y), we assume that the

signal power measured by node i located at position (xi, yi) can be described by the

following equation:

e(xi, yi) =
be0

d((x, y), (xi, yi))a
(7.1)

where d((x, y), (xi, yi)) is the distance between the target and node i. e0 represents

the initial power of the signal emitted by the target. We assume that the location

of a potential target is not known to the nodes in advance. a and b are attenuation

factors determined by propagation properties of sound signals.

A node makes a decision on whether a target is present or not based on its measure-

ment. The noise in the measurement of a node is modeled as a Gaussian distribution

with zero-mean and the target signal is modeled as a Gaussian distribution with

nonzero-mean. We assume that when the target is present, the mean of the target

signal observed at node i equals the square root of the signal power. Thus the task

of detection at node i is to test the following two hypotheses:

H0 : p(zi|H0) = 1√
2πσ

exp
(
− z2

i

2σ2

)
(7.2)

H1 : p(zi|H1) = 1√
2πσ

exp

(
− (zi−

�
be0

d((x,y),(xi,yi))
a )2

2σ2

)
(7.3)

where zi represents the measurement at node i. H0 and H1 represent the hypothesis

that the target is absent and present, respectively. When the signal power decays
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with distance, the difference between the means of the two hypothesis decreases ac-

cordingly, resulting in worse detection performance.

7.1.2 Decision Rules

We assume that node 0 serves as the fusion center in a fusion group and all other

nodes (1 ∼ n) in the fusion group send their decisions to node 0 which makes a global

decision. In this section, we investigate the decision rule at node i (1 ≤ i ≤ n) and

the fusion center, respectively.

At node i (1 ≤ i ≤ n), the optimal decision rule is LRT (Likelihood Ratio Test)[64]:

ui=1

P (zi|H1)

P (zi|H0)
>< λi (7.4)

ui=0

where ui represents the decision (0 or 1) of detection at node i. Using (7.2) and

(7.3), the LRT can be transformed to a test on node measurement zi and a decision

threshold λ∗
i , i.e., node i decides on one (a target is detected) if its measurement zi is

greater than λ∗
i , otherwise it decides on zero (no target is detected).

For node i (1 ≤ i ≤ n), the false alarm rate, denoted by PF i, represents the probability

that node i decides on one while no target is present. The detection probability,

denoted by PDi, represents the probability that a target located at (x, y) is detected

by node i. The false alarm rate (detection probability) of node i (1 ≤ i ≤ n) is referred

to as the local false alarm rate (detection probability) while that of the fusion center
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is referred to as the system false alarm rate (detection probability). The local false

alarm rate and detection probability are given by:

PF i =

∫ ∞

λ∗
i

p(zi|H0)dzi (7.5)

= Q

(
λ∗

i

σ

)
(7.6)

PDi(x, y) =

∫ ∞

λ∗
i

p(zi|H1)dzi (7.7)

= Q

⎛
⎝Q−1(PF i) −

√
be0

d((x,y),(xi,yi))a

σ

⎞
⎠ (7.8)

Q(x) is given by 1√
π

∫∞
x

e−t2/2dt. λ∗
i can be solved from (7.6) when PF i is known.

From (7.8), we can see that the detection probability of node i depends on the local

false alarm rate and the distance to the target.

In this chapter we assume that the fusion center uses the majority rule1. That is,

when the number of ones is larger than that of zeros in the local decisions, fusion

center decides that a target is present. The system detection probability at location

(x, y) (denoted by PD(x, y)) and the false alarm rate (denoted by PF ) can be expressed

as follows:

PD(x, y) =
∑

|S1|>|S0|

∏
i∈S0

(1 − PDi(x, y))
∏
j∈S1

PDj(x, y) (7.9)

PF =
∑

|S1|>|S0|

∏
i∈S0

(1 − PF i)
∏
j∈S1

PFj (7.10)

1The LRT (Likelihood Ratio Test) at fusion centers is dependent on the target location, and
hence is not applicable here.
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where S0 and S1 represent the set of nodes whose decisions are zeros and ones, re-

spectively. We can see that the number of addends in (7.9) equals the number of

node combinations in which more than half of nodes decide one. Thus the complexity

of computing PD(x, y) is O(2n) (where n is the number of nodes). According to the

definition of detection probability in (7.9), the minimal detection probability in region

A is:

PDmin = min
(x,y)∈A

∑
|S1|>|S0|

∏
i∈S0

(1 − PDi(x, y))
∏
j∈S1

PDj(x, y) (7.11)

We assume that all nodes have the same local false alarm rate α0. From (7.13) and

(7.10), we have: ∑
|S1|>|S0|

∏
i∈S0

(1 − α0)
∏
j∈S1

α0 ≤ α (7.12)

Since α and the number of nodes are known, the maximal value of local false alarm

rate at each node can be solved from (7.12) and will be used by each node in order to

achieve the highest system detection probability PD(x, y). Then the decision threshold

λ∗
i on the measurement of node i (1 ≤ i ≤ n) can be solved from (7.6).

7.2 Problem Formulation

In this chapter, we define coverage of a sensor network based on a probabilistic detec-

tion model. A point p is covered by a sensor network if the probability that a target,

located at p, is detected by the active nodes is above threshold β and the system false

alarm rate is below threshold α. A geographic region is covered by a sensor network
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if all the points in this region are covered. Formally, the coverage requirement of a

region A is defined as:

(∀(x, y) ∈ A, PD(x, y) ≥ β) ∧ (PF ≤ α) (7.13)

where PD(x, y) and PF represent the detection probability of a target located at (x, y)

2 and the system false alarm rate, respectively.

This probabilistic coverage formulation captures the requirements of many detection-

based applications in sensor networks. In addition, it is also useful for other types

of sensing applications. For example, a coverage maintenance protocol based on this

detection model can be used in a surveillance application. The network can execute

the protocol to maintain sufficient detection probability. Once a target is detected,

the sleeping nodes are woken up to execute more sophisticated sensing tasks such as

intruder tracking.

In this chapter, we focus on the design of distributed network protocols that can

provide the required coverage over a region by activating a small number of nodes

within a short time. Note that while this thesis does not focus on the design of data

fusion algorithms, our coverage maintenance protocols can be extended to incorporate

different data fusion algorithms.

2For convenience, PD(x, y) is referred to as the detection probability at (x, y) hereafter.
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7.3 Design of Coverage Maintenance Protocols

In this section we present the design of three coverage maintenance protocols. The

first protocol, Central, employs a centralized algorithm that treats the whole region

as a single fusion group. To reduce the coverage configuration time, we further design

two distributed algorithms based on “virtual grid”s. The Separate Grid (Se-Grid)

protocol divides the region into separate grids and all nodes in each grid form a

fusion group. Fusion centers perform coverage configuration for their respective grids

independently of each other. The Coordinating Grid (Co-Grid) protocol organizes

the region into overlapping grids that coordinate with each other to achieve coverage.

7.3.1 Centralized Coverage Maintenance

Protocol

In the Central protocol one node is elected among all nodes in the region A to serve

as the fusion center. In the coverage configuration phase, the fusion center decides

which nodes should remain active and compute their local false alarm rate such that

the coverage requirement (7.13) is met. Initially all nodes are marked as sleep by the

fusion center. In each iteration of the algorithm, a node is marked as active. Given

the system false alarm rate threshold α and the number of current active nodes, the

fusion center computes a local false alarm rate for active nodes by (7.12). Using

the active nodes’ locations and the local false alarm rate, the fusion center finds the

location (xmin, ymin) in region A that has the minimal detection probability PDmin.

If PDmin is less than β, the fusion center finds the node closest to point (xmin, ymin)

among all sleeping nodes and marks it as active. This process repeats until the
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minimal detection probability PDmin in region A is greater than β. Then, the fusion

center sends a list of active node IDs and the local false rate it computed to all nodes

in region A. If a node finds its ID in the list, it remains active and sets its decision

threshold according to the local false alarm rate using (7.6). Otherwise it goes to sleep

and wakes up periodically to check whether it should activate itself (by listening to

messages from the fusion center). The pseudo code for the coverage configuration

algorithm of Central is shown as follows:

/*α and β are the thresholds on the system false alarm rate

and detection probability, respectively*/

Central(α,β)

begin

Initialize table actNodes that stores the IDs and

locations of active nodes to ∅;
PDmin = 0;

Randomly pick a sleeping node and put in actNodes;

/*Initialize the local false alarm rate to the system

false alarm rate*/

α0 = α;

while (PDmin < β)

if all nodes in G(i, j) are active

return FAILURE;

fi

/*If more than one point has detection probability

PDmin, randomly pick one as (xmin, ymin)*/

Find the point (xmin, ymin) ∈ A that has minimal

detection probability PDmin based on α0 and the

active node locations in actNodes according to

(7.8) and (7.11);

Put the sleeping node closest to point (xmin, ymin)
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in actNodes;

/*Adjust the local false alarm rate to satisfy the

constraint on the system false alarm rate*/

Re-compute α0 based on α using (7.12);

end

broadcast the active node table actNodes and α0

to all nodes;

end

In each iteration of Central, the fusion center computes the minimal detection prob-

ability PDmin in the region. From (7.11), we can see that the optimal solution of

PDmin is computationally difficult to obtain and only the numerical solution exists.

We compute the approximate solution of PDmin as follows. The region is divided

into a matrix of small square patches and the target is assumed to only appear at the

corners of the patches (referred to as sample points). The detection probability associ-

ated with each sample point is then computed using (7.9) and the minimum detection

probability is obtained. As discussed in Section 7.1.2, the complexity of computing

the detection probability of a point is O(2n). Central may incur high computational

cost and unacceptable coverage configuration time when the number of active nodes

is large. Furthermore, distant nodes make irrelevant detection decisions due to signal

decay. Consequently, fusing the decisions from all active nodes in the region may not

improve the overall detection performance. We evaluate this effect experimentally in

Section 6.3.
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7.3.2 Coverage Maintenance Protocol based on Separate Grids

To facilitate parallel processing, we propose the Se-Grid protocol. In Se-Grid, the

deployment region of a sensor network is divided into a matrix of identical grids.

Each grid is labeled as G(i, j) where (i, j) is the grid index. No grids overlap with

each other. The nodes in each grid form a fusion group that executes the Central

protocol within its own grid. That is, each fusion group is responsible for covering its

own grid by activating nodes within the grid.

Se-Grid can effectively reduce the configuration time because the grids in the region

are configured in parallel. However, since Se-Grid restricts decision fusion within

each grid, a node cannot contribute to the decision fusion of a neighboring fusion

group even if it is close to the grid’s boundary. Furthermore, the nodes close to grid

boundary are more likely to be activated. This is because the detection probability

of nodes decreases quickly with distance, and hence the vicinity of grid boundary

usually has lower probability than other locations. Therefore, Se-Grid may activate

redundant nodes on both sides of a grid boundary.

7.3.3 Coverage Maintenance Protocol with

Inter-grid Coordination

Since the problem of Se-Grid is mainly caused by the lack of collaboration among

adjacent fusion centers, we design the Co-Grid protocol that provides efficient inter-

grid coordination. In Co-Grid, the network deployment region consists of overlapping

grids. Each grid is composed of four identical sub-grids and each sub-grid belongs to
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up to four grids. Figure 7.1 illustrates nine overlapping grids composed of 16 sub-

grids. The fusion center of each grid is located at the center of the grid and denoted

by a small black circle. Each sub-grid is labeled as s(i) and each grid is labeled

as G(i, j). For example, grid G(1, 2) consists of four sub-grids s(5), s(6), s(9) and

s(10). s(10) (shaded in Figure 7.1) belongs to four overlapping grids G(1, 2), G(1, 3),

G(2, 2), G(2, 3). We say two fusion centers are adjacent if their grids overlap, i.e.,

share one or more sub-grids. A fusion center can have up to eight adjacent fusion

centers. Since each node belongs to multiple grids, it can contribute to the detection

at multiple fusion centers around it. Therefore this algorithm can potentially result

in less active nodes by reducing the redundancy in neighboring grids.

G(2,3)G(1,3)

G(1,2) G(2,2)

G(1,1) G(2,1)

G(3,2)

G(3,1)

G(3,3)
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s(8)s(7)s(6)s(5)

s(9) s(11) s(12)

s(16)s(15)s(14)s(13)

s(10)

Figure 7.1: Overlapping Grid Layout

In each iteration of Co-Grid, similar to Se-Grid, a fusion center computes the detec-

tion probability of each sample point in a grid and activates the node closest to the

sample point with the minimum detection probability until the minimum detection

probability in the grid is above threshold β. However, the overlapping grid layout

introduces additional complexity in the design due to the dependency among over-

lapping grids. Since each sample point p in the region belongs to up to four grids

(referred to as the master grids of point p), we only need to guarantee that the joint

detection probability from p’s master grids is no lower than β. However, the joint
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detection probability is difficult to compute because the master grids of p share nodes

with each other and hence their detection probabilities are not independent. Instead

of enforcing the joint probability, Co-Grid guarantees the coverage of point p by en-

suring that at least one of its master grids has a detection probability at p that is

no lower than β. That is, Co-Grid uses the maximum of the detection probabilities

computed by all the master grids of p as an approximation to the joint detection prob-

ability at p. For example, to compute the detection probability of a sample point in

sub-grid s(10) in Figure 7.1, the fusion center of G(2, 2) computes the maximum of

the point’s detection probabilities computed by the fusion centers in G(1, 2), G(1, 3)

and G(2, 3).

To find the point with the minimum detection probability in a grid, a fusion cen-

ter running Co-Grid needs to compute every sampling point’s detection probability,

which is the maximum of all detection probabilities computed by the point’s mater

grids. To reduce the inter-grid communication, instead of communicating detection

probabilities of sample points among adjacent fusion centers, we let each fusion cen-

ter compute the detection probabilities on behalf of its adjacent fusion centers. A

fusion center keeps a local false alarm rate and a list of locations of active nodes for

each adjacent fusion center. The procedure performed by the fusion center in grid

G(i, j) to compute the minimal detection probability PDmin(i, j) of grid G(i, j) can

be formulated as follows:

PDmin(i, j) = min
(x,y)∈G(i,j)

max
(x,y)∈G(m,n)

PD(x, y, m, n) (7.14)
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where PD(x, y, m, n) represents the sample point (x, y)’s detection probability in its

master grid G(m, n) (G(m, n) is an adjacent grid of G(i, j)). Note each sample point

has up to four master grids and all sample points in a sub-grid share the same master

grids. PD(x, y, m, n) is computed according to (7.9) and (7.12) using the locations of

active nodes and the local false alarm rate of grid G(m, n).

At runtime, when the fusion center in G(i, j) activates a node in its grid, the local

false alarm rate of active nodes in G(i, j) needs to be re-computed using (7.12) to

satisfy the constraint on the system false alarm rate. This may potentially result in

changes in the detection probabilities of all sample points in the grid. Due to sharing

of sub-grids, up to eight adjacent fusion centers need to know the updated local alarm

rate and locations of active nodes in G(i, j) before they can activate any new node.

Therefore, activating a new node in a grid may invalidate the ongoing processes of

activating any other new node in its adjacent grids. To resolve the contention among

adjacent grids, we consider the following two approaches. 1) The fusion center in

G(i, j) notifies its adjacent fusion centers both before it starts and after it completes

the process of finding a new active node. Because the location of the new active

node is unknown before the process completes, all the adjacent fusion centers have

to wait until they receive the result from the fusion center in G(i, j). While this

“locking” strategy sequentializes all the computations of adjacent fusion centers, it is

pessimistic and may unnecessarily reduce the efficiency of Co-Grid (detailed analysis

is presented in Section 7.4). 2) Each fusion center performs the process of activating

new nodes independently. Whenever the fusion center in G(i, j) activates a new node,

it advertises the local false alarm rate and the locations of current active nodes to

its adjacent fusion centers, which cancel their current computations and restart with
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the updated parameters received from the fusion center of G(i, j). This approach

maximizes the parallelism of adjacent fusion centers and is adopted by Co-Grid.

The pseudo-code of the Co-Grid protocol at fusion center G(i, j) is shown as follows:

/*Global definitions*/

struct Grid {
/*IDs and locations of the active nodes in the grid*/

list actNodes ;

/*Local false alarm rate of the active nodes*/

double α0;}
/*Information of grid G(i, j)*/

struct Grid self ;

/*Information of adjacent grids*/

struct Grid adjGrids[8] ;

/*α and β are the thresholds on the system false

alarm rate and detection probability*/

ActivateNode(α,β)

begin

if all nodes in G(i, j) are active

return FAILURE;

fi

if self.actNodes is empty

Randomly pick a sleeping node and put

in self.actNodes;

fi

do

/*Adjust the local false alarm rate α0 to satisfy

the constraint on the system false alarm rate*/

Compute self.α0 using self.actNodes

according to (7.12);
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/*If more than one point has detection probability

PDmin, randomly pick one as (xmin, ymin)*/

Find the point (xmin, ymin) ∈ G(i, j) that has the

detection probability PDmin according to (7.14)

using self and adjGrids;

if PDmin ≥ β return SUCCESS ;

Put the sleeping node closest to point (xmin, ymin)

in self.actNodes;

/*Advertise the change of state*/

send an Update message including self.α0 and

self.actNodes to all adjacent fusion centers;

while(PDmin < β)

return SUCCESS ;

end

/* The following function is called whenever the

fusion center receives an Update message from

an adjacent fusion center. */

UpdateParameters

begin

Stop the execution of ActivateNode;

Update adjGrids array with received information;

Call ActivateNode(α,β);

end

After the process of coverage maintenance completes, each fusion center sends the

list of active nodes and the local false alarm rate it computed to all nodes in its

grids. If a node finds itself in the list of active nodes, it remains active and sets a

decision threshold according to the local false alarm rate it received (see (7.6)). Since

each node belongs to up to four master grids, an active node may have up to four
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decision thresholds. During detection phase, an active node periodically compares

its measurement with each decision threshold and sends a decision (0 or 1) to the

corresponding fusion center. Hence an active node needs to send up to four decision

messages in each detection period.

7.4 Analysis of the Degree of Parallel Configura-

tion

In Se-Grid, each fusion center can turn on new nodes independently from each other.

However, this is not the case for Co-Grid due to the inter-dependencies among over-

lapping grids. As described in Section 7.3.3, when a fusion center adds a new active

node, all the adjacent fusion centers have to re-start their computation from scratch.

We define effective computation as the computation in a fusion center that will lead

to the addition of a new active node. Any two adjacent fusion centers cannot perform

effective computation at the same time. We define the degree of parallel configuration

(DPC) as the total number of fusion centers that can perform effective computations

simultaneously in the whole network. Clearly DPC has a significant impact on the

coverage configuration time of the whole network. The DPC of Se-Grid is the total

number of grids because all the grids can configure themselves in parallel. In con-

trast, the DPC of Central is only 1. However, it is less straightforward to quantify

the parallelism of Co-Grid due to the inter-grid dependencies.

In order to understand the cost of inter-grid coordination on configuration time, we

now analyze the degree of parallel configuration under Co-Grid. We model the net-

work as a graph (referred to as parallelism graph) where each fusion center is a vertex
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and an edge exists between two adjacent fusion centers to represent the fact that any

two adjacent fusion centers cannot perform effective computation simultaneously. The

fusion centers that can proceed simultaneously form an independent set3 of the par-

allelism graph. Maximal independent set of a graph is a subset of vertices such that

there is no edge between any pair of vertices in the set and no more vertices can be

added without making it a non-independent set. It is clear that the best-case and

worst-case DPCs are equal to the maximal and minimal cardinality of the maximal

independent sets of the parallelism graph, respectively.

(1,2) (2,2)

(1,1) (2,1)

(1,3) (2,3)

(3,1)

(3,2)

(3,3)

(1,2) (2,2)

(1,1) (2,1)

(1,3) (2,3)

(3,1)

(3,2)

(3,3)

(a) Best Case (b) Worst Case

Figure 7.2: An example of degree of Parallel Configuration.

Figure 7.2 shows two possible states of the network at configuration time. The network

is composed of 9 overlapping grids. One fusion center is located at each grid center.

Figure 7.2(a) shows the maximal possible degree of parallel configuration where each

of the four fusion centers denoted by black circles can activate a node simultaneously.

That is, in the best case the DPC of the network is 4 under Co-Grid. On the other

hand, Figure 7.2(b) shows the worst-case DPC is 1 where only fusion center (2, 2)

activates a node while all other fusion centers cannot proceed.

The best-case DPC of Co-Grid equals the maximal number of grids that do not overlap

in the region and can be as good as Se-Grid. Figure 7.3 shows the worst-case DPC of

3An independent set of a graph is a subset of the vertices such that no any two vertices in the
subset is connected by an edge.
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Co-Grid and the DPC of Se-Grid under different grid width in a 120×120 m2 region.

The worst-case DPC of Co-Grid is obtained by computing the minimal cardinality of

the maximal independent sets in the corresponding parallelism graph.

When the network size approaches infinite, it can be shown that the worst-case and

best-case DPCs of Co-Grid are n/9 and n/4, respectively, where n is the total number

of grids. Since Co-Grid has four times as many grids as Se-Grid for the same grid size,

the lower-bound on the ratio between the DPCs of Co-Grid and Se-Grid approaches

4/9 for large regions. This result indicates that the DPC of Co-Grid increases about

proportionally with the number of grids and hence can scale well in large networks in

term of configuration time.
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Figure 7.3: Degree of Parallel Configuration vs. grid width.

7.5 Performance Evaluation

In this section we present the simulation results using Matlab. In addition to our

protocols presented in Section 7.3, we implemented a protocol called Random as the

baseline for performance comparison. Random works similarly to Se-Grid except
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that a fusion center always randomly activates a new node in each iteration until the

desired detection probability is achieved. Comparing our protocols against Random

allows us to study the effectiveness of the greedy strategy that activates the node

closest to the point with minimum detection probability.

In each experiment, 2000 nodes are randomly deployed in a 120 × 120 m2 region.

The thresholds on the system detection probability and false alarm rate are 90% and

5% respectively. All results in this section are averages of five runs. The attenuation

factors in the signal decay model (see (7.1)) are set to b = 1, a = 2 and the initial

signal power of the target (e0) is set to 200. The variance σ of the noise and node

measurement distribution is set to 1.

Since the complexity of computing the detection probability of a point using (7.9) is

O(2n) (n is the number of active nodes), the simulations are extremely time consuming

when the number of active nodes is large.
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Chapter 8

Conclusions and Future Work

In this thesis we propose a unified power management approach that contributes the

state-of-the-art of power management in WSNs in several important aspects.

We first conduct theoretical analysis of the fundamental relationship between sens-

ing coverage and network connectivity. Specifically, our analytical results show that

K-coverage implies K-connectivity when the double range property (i.e., the commu-

nication range is at least twice the sensing range) holds. We then analyze the impact

of sensing coverage on the performance of greedy geographic routing algorithms. We

prove that simple greedy geographic routing algorithms such as Greedy Forwarding

and Bounded Voronoi Greedy Forwarding may be highly efficient in sensing-covered

networks with deterministic or probabilistic communication links. This result in-

dicates that the redundant nodes can be turned off without significant increase in

network length as long as the remaining active nodes maintain sensing coverage.

Therefore, our analysis justifies the coverage maintenance protocols [61, 71, 75, 76]

that conserve energy by scheduling redundant nodes to sleep. Moreover, we derive

lower bounds on the lengths of the network routes found by GF and BVGF. These

bounds enable a source node to efficiently compute an upper-bound on the network
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length or expected number of transmissions of its routing path based on the location

of the destination. This capability can be useful to real-time communication protocols

that require such bounds to achieve predictable end-to-end communication delays.

Our analyses yield key insights for treating sensing and communication within a

unified power management framework, which is in sharp contrast to several exist-

ing approaches that address the two problems in isolation. Specifically, given the

QoS requirements of Ks-coverage and Kc-connectivity, a power management protocol

only needs to satisfy max(Ks, Kc)-coverage when the double range property holds.

Moreover, simple greedy geographic routing algorithms have analytical performance

guarantees on sensing-covered networks.

We then develop a novel radio power management approach called Minimum Power

Configuration (MPC). In contrast to the existing approaches that treat different radio

states (transmission/reception/idle) in isolation, MPC integrates them in a unified

optimization framework that considers both the set of active nodes and their trans-

mission power in a network. We have presented a set of approximation algorithms

with provable performance bounds, and the practical MPCP protocol that dynami-

cally (re)configures a network based on current data rates. We also proposed a more

efficient protocol called MASP that only minimizes the total number of active nodes

in a network. Simulations based on a realistic radio model of Mica2 motes show that

MPCP can conserve significantly more energy than representative topology control

and power-aware routing schemes. Furthermore, while MASP is suitable for radios

with high idle power, a key advantage of MPCP is that it yields satisfactory per-

formance under a range of representative radio characteristics, allowing it to flexibly

adapt to different radio platforms.
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Finally, we develop two power management schemes that account for realistic sensing

and communication properties (e.g., asymmetric and lossy communication links and

probabilistic sensing range) of WSNs. These works is an important step toward pro-

viding robust sensing and communication performance for real-world sensor network

applications.

Configurable Topology Control (CTC) is a topology control protocol designed for

lossy WSNs. The key novelty of CTC lies in its capacity of configuring a network

topology to achieve desired path quality bounds in a localized fashion. We have also

presented four CTC algorithms that combine per-node/per-link power control with

two metrics for power assignment. Simulations based on realistic characteristics of

Mica2 motes show that CTC can provide desired tradeoff between power consump-

tion and network performance according to application requirements. Furthermore,

CTC outperforms an existing topology control algorithm, LMST, in terms of both

communication performance and energy consumption. Our results demonstrate the

significant impact of realistic link models on power management for WSNs.

We have developed a new coverage maintenance protocol called Co-Grid that main-

tains probabilistic detection guarantees over a region. Co-Grid is designed based

on a distributed detection model that considers data fusion among multiple nodes.

This distinguishes Co-Grid from existing protocols that are based on simpler detection

models. Furthermore, Co-Grid can meet sensing QoS (e.g., maximum detection prob-

ability and minimum false alarm rate) that are more consistent with the requirements

of real-world event monitoring applications. Our theoretical analysis and simulation

results demonstrate that Co-Grid not only competes well against the centralized pro-

tocol in terms of the number of active nodes, but also consistently outperforms the

protocol based on separate grids in terms of the configuration time.
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The presented unified power management approach suggests several interesting fu-

ture work and research directions. This thesis mainly focuses on minimizing the total

energy consumption of a network. One interesting direction for future research is to

extend the proposed approach to maximize the system lifetime of WSNs. The defin-

ition of system lifetime is specific to application scenarios. For example, the lifetime

of a data collection network may be defined as the time duration in which certain

throughput can be constantly maintained at base station, while a surveillance net-

work may consider the loss of sensing coverage to be the end of system lifetime. Based

on the former lifetime definition, we will extend MPCP to incorporate appropriate

routing metrics (e.g., those based on node residual energy) to achieve more balanced

energy dissipation and prolong network lifetime [56, 39]. Similarly, Co-Grid can be

extended to meet the coverage-based lifetime requirement by balancing the energy

consumption of different nodes in sleep schedule.

Another direction is to extend our analyses of the relationship between sensing and

communication to more realistic radio and sensing models. To account for asymmetric

and loss communication links, we have adopted a generic graph model in the design of

the CTC protocol where each link is associated with a communication direction and

the packet reception ratio in this direction. In contrast to the widely adopted disc

sensing model, Co-Grid is designed based on a probabilistic sensing model that ac-

counts for signal decay and interference from environmental noise. More sophisticated

sensing models can be derived from established distributed signal processing theories

or empirically estimated at run-time. We will incorporate these realistic models into

a unified power management framework for WSNs. Such a framework will provide

a sound foundation for designing and analyzing energy conservation protocols for

real-world sensing applications.
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This thesis work focuses on the power management of radios. We plan to integrate

our work with the power management of other components (e.g., sensors, CPU, and

Flash) on WSN platforms. Although the issue of power management for each of

these components has been extensively studied, a holistic system approach to power

management still does not exist. In particular, the complex interactions between the

power management of different components require careful analysis and may lead to

interesting system solutions.
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