9,220 research outputs found

    Target localization in wireless sensor networks for industrial control with selected sensors

    Get PDF
    This paper presents a novel energy-based target localization method in wireless sensor networks with selected sensors. In this method, sensors use Turbo Product Code (TPC) to transmit decisions to the fusion center. TPC can reduce bit error probability if communication channel errors exist. Moreover, in this method, thresholds for the energy-based target localization are designed using a heuristic method. This design method to find thresholds is suitable for uniformly distributed sensors and normally distributed targets. Furthermore, to save sensor energy, a sensor selection method is also presented. Simulation results showed that if sensors used TPC instead of Hamming code to transmit decisions to the fusion center, localization performance could be improved. Furthermore, the sensor selection method used can substantially reduce energy consumption for our target localization method. At the same time, this target localization method with selected sensors also provides satisfactory localization performance

    Target Tracking in Confined Environments with Uncertain Sensor Positions

    Get PDF
    To ensure safety in confined environments such as mines or subway tunnels, a (wireless) sensor network can be deployed to monitor various environmental conditions. One of its most important applications is to track personnel, mobile equipment and vehicles. However, the state-of-the-art algorithms assume that the positions of the sensors are perfectly known, which is not necessarily true due to imprecise placement and/or dropping of sensors. Therefore, we propose an automatic approach for simultaneous refinement of sensors' positions and target tracking. We divide the considered area in a finite number of cells, define dynamic and measurement models, and apply a discrete variant of belief propagation which can efficiently solve this high-dimensional problem, and handle all non-Gaussian uncertainties expected in this kind of environments. Finally, we use ray-tracing simulation to generate an artificial mine-like environment and generate synthetic measurement data. According to our extensive simulation study, the proposed approach performs significantly better than standard Bayesian target tracking and localization algorithms, and provides robustness against outliers.Comment: IEEE Transactions on Vehicular Technology, 201

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
    • …
    corecore