799 research outputs found

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured

    Land use, urban, environmental, and cartographic applications, chapter 2, part D

    Get PDF
    Microwave data and its use in effective state, regional, and national land use planning are dealt with. Special attention was given to monitoring land use change, especially dynamic components, and the interaction between land use and dynamic features of the environment. Disaster and environmental monitoring are also discussed

    Active microwave remote sensing of earth/land, chapter 2

    Get PDF
    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained

    Summary of the Active Microwave Workshop, chapter 1

    Get PDF
    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications

    Shuttle imaging radar-C science plan

    Get PDF
    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit

    Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley

    Get PDF
    Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry

    Comparison of Machine Learning Methods Applied to SAR Images for Forest Classification in Mediterranean Areas

    Get PDF
    In this paper, multifrequency synthetic aperture radar (SAR) images from ALOS/PALSAR, ENVISAT/ASAR and Cosmo‐SkyMed sensors were studied for forest classification in a test area in Central Italy (San Rossore), where detailed in‐situ measurements were available. A preliminary discrimination of the main land cover classes and forest types was carried out by exploiting the synergy among L‐, C‐ and X‐bands and different polarizations. SAR data were preliminarily inspected to assess the capabilities of discriminating forest from non‐forest and separating broadleaf from coniferous forests. The temporal average backscattering coefficient (°) was computed for each sensor‐polarization pair and labeled on a pixel basis according to the reference map. Several classification methods based on the machine learning framework were applied and validated considering different features, in order to highlight the contribution of bands and polarizations, as well as to assess the classifiers’ performance. The experimental results indicate that the different surface types are best identified by using all bands, followed by joint L‐ and X‐ bands. In the former case, the best overall average accuracy (83.1%) is achieved by random forest classification. Finally, the classification maps on class edges are discussed to highlight the misclassification errors

    Performance Evaluation of a Biometric System Based on Acoustic Images

    Get PDF
    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications

    Exploiting the ANN Potential in Estimating Snow Depth and Snow Water Equivalent From the Airborne SnowSAR Data at X- and Ku-Bands

    Get PDF
    Within the framework of European Space Agency (ESA) activities, several campaigns were carried out in the last decade with the purpose of exploiting the capabilities of multifrequency synthetic aperture radar (SAR) data to retrieve snow information. This article presents the results obtained from the ESA SnowSAR airborne campaigns, carried out between 2011 and 2013 on boreal forest, tundra and alpine environments, selected as representative of different snow regimes. The aim of this study was to assess the capability of X- and Ku-bands SAR in retrieving the snow parameters, namely snow depth (SD) and snow water equivalent (SWE). The retrieval was based on machine learning (ML) techniques and, in particular, of artificial neural networks (ANNs). ANNs have been selected among other ML approaches since they are capable to offer a good compromise between retrieval accuracy and computational cost. Two approaches were evaluated, the first based on the experimental data (data driven) and the second based on data simulated by the dense medium radiative transfer (DMRT). The data driven algorithm was trained on half of the SnowSAR dataset and validated on the remaining half. The validation resulted in a correlation coefficient R ≃ 0.77 between estimated and target SD, a root-mean-square error (RMSE) ≃ 13 cm, and bias = 0.03 cm. ANN algorithms specific for each test site were also implemented, obtaining more accurate results, and the robustness of the data driven approach was evaluated over time and space. The algorithm trained with DMRT simulations and tested on the experimental dataset was able to estimate the target parameter (SWE in this case) with R = 0.74, RMSE = 34.8 mm, and bias = 1.8 mm. The model driven approach had the twofold advantage of reducing the amount of in situ data required for training the algorithm and of extending the algorithm exportability to other test sites
    corecore